
Lightweight Abstraction for
Mathematical Computation in Java

Pavel Bourdykine and Stephen M. Watt

Department of Computer Science
University of Western Ontario

London, Canada
pbourdyk@csd.uwo.ca Stephen.Watt@uwo.ca

Abstract. Many object-oriented programming languages provide type
safety by allowing programmers to introduce distinct object types. In
the case of Java, having objects as the sole abstraction mechanism also
introduces a considerable or even prohibitive cost, especially when deal-
ing with small objects over primitive types. Consequently, Java library
implementations frequently avoid abstraction and are not type safe in
practice. Many applications, including computer algebra, use values log-
ically belonging to many different non-interchangable types. Languages
such as Java are then either unsafe or inefficient to use in these applica-
tions. We present a solution allowing type safety in Java with little per-
formance penalty. We do this by introducing a specialzed kind of object
that provides distinct types for type checking, but which can always be
removed entirely at compile time. In our implementation, programs are
compiled twice, first with objects to verify type safety, and then with the
objects removed for efficiency. This gives significant performance gains
across a range of tests, including the generic SciGMark tests.

1 Introduction

A large part of the art of programming language design lies in how one assembles
a multitude of ideas that are in principle distinct into a few simple constructs
that work well together. When this is done well, it can be beautiful. When this is
done badly, it can make programs inefficient and error-prone. This paper argues
that this is what has happened in languages such as Java, where objects are the
sole data abstraction mechanism, and we present a solution.

A simple example of separate considerations that can be nicely combined is
given by the modern return statement. In principle, setting the value of a func-
tion and the transfer of control back to the caller are completely separate ideas.
Indeed, in older programming languages these were done separately. One might
easily want to perform some clean up actions, such as closing files, returning
resources or updating global state, after the return value is determined. How-
ever, in these cases, using a temporary variable with modern return is neither
costly nor dangerous. At first sight, using objects as the sole data abstraction
mechanism would seem to be a similar happy combination. Abstract data types
typically have several fields in a hidden representation and provide operations on
the abstract values, just as with classes in an object-oriented world. But there
are several problems with this:



Abstraction is not just hiding record fields. Providing data abstraction only
via objects forces all thinking about abstraction into the model of field visibil-
ity in composite structures. Quite often, one wishes to consider simple values
as elements of a distinct type. For example, even though window IDs may be
represented as integers, it would enhance program safety if they were treated as
a distinct type. Likewise for values in different prime fields should be of different
types from the integers and from each other. Additionally, composite data is
often not represented as fields in an object. For example, it is not uncommon to
represent colors as 32-bit integers with bit fields representing component values.
Abstraction can help ensure that only integers intended to be color information
are used as such.

Abstraction does not always need dynamic allocation, inheritance, synchro-
nization, or other heavy-weight mechanisms. Sometimes we want abstraction
only to ensure that programs do not depend on details that may later change
and to enhance safety by ensuring values are not used inappropriately. It may
be known from the outset that these values will not ever be used in any fancy
ways. For example, we may know that there will never be any derived types
from colors, there will be no subtle multiprocessing on single color values, etc.
Requiring all of these features to be supported on abstract values first has a
cost, and second reduces flexibility to have these abstract values treated in other
interesting ways.

Abstraction is not used if it is too inefficient or onerous. When data ab-
straction carries a significant efficiency penalty and thought on the part of the
programmer, then it is not used.

In languages such as C++, where objects and primitive types are on a similar
footing, the extra cost need not be large. Nevertheless, even here, mechanisms
have been proposed for opaque type definitions in C++ [1]. In languages such
as Java, where there is a strong distinction between primitive types and object
types, the cost to use objects is many times that of using primitive types. Pro-
grams are inefficient, programmers circumvent the type system or both. This has
many obvious problems. If Java were not such a widely adopted language, we
could reject it as being ill suited in these circumstances. As it is, some solution
is needed.

The contribution of this paper is to show how light weight abstraction may be
provided in Java. This provides type safety without introducing any significant
inefficiencies. It is therefore suitable for creating light-weight abstract types for
computationally intensive, efficiency-critical tasks such as computer algebra and
scientific computing. Section 2 shows how this may be achieved by introducing
object types with sufficient restrictions that they are guaranteed to be removed
at compile time. While these ideas are presented for Java, the same ideas could
equally well be applied in other settings. Section 3 then describes a tool that
implements this mechanism that can be used in conjunction with standard Java
compilers. Section 4 presents performance results, comparing the usual use of
objects, the present light-weight abstraction mechanism and raw primitive types.
These comparisons are made using the SciGMark test suite and details are shown
for polynomial and matrix multiplication. Finally Section 5 concludes the paper.



2 Opaque types in Java

To deal with the problems outlined, we introduce the notion of opaque types in
the Java programming language. These types allow development of Java code
that is reusable, elegant, and efficient. Opaque types are meant to be used as
regular object types that can be represented internally by any other Java type
with a focus on representation via primitive built-in Java types. The new types
are required to behave and act like regular object types in the way they interact
with the Java class hierarchy and the static type-checker. An example of this
kind of application may be an object that has a small finite number of different
states that can be intuitively represented by a set of bit patterns. Although this
can be implemented similarly to something written in assembly language, by
using int types, resulting in code that is quite efficient, the code’s extensibility
would suffer. Moreover, like assembly, this type of code is difficult to maintain,
and debug[2, 3]. This may lead to errors that could have been easily avoided if
object types were used.

This approach encompasses a core notion of opacity. High level Java objects
do not necessarily have to be represented or compiled as such. Objects simply
serve as identification handles for static type-checking prior to compilation. The
underlying type of these objects may be anything suitable for internally repre-
senting the construction. In this fashion, an alternative String object may be
represented by a character array allowing for operations very similar to those on
strings implemented in C or C++. In turn, a more complex object may be rep-
resented by such an alternative String thus creating an artificial class hierarchy
that remains consistent and type-safe. In this work, however, we are concerned
mostly with objects that may be represented by primitive types in order to boost
performance.

Along with the optimized version of the opaque type the regular unchanged
version of the class is kept for reference and debugging purposes. Leaving the
user code unchanged after compilation allows for more straight forward top-level
design where good Object Oriented Design practices may be followed. The user
may also choose to compile the opaque-typed code and run it as is, without
conversion, in order to ensure correctness. Keeping both versions of the class
demonstrates the type safety of opaque Java types as either version of the project
will produce identical execution results.

In order to implement Java opaque types, we introduce a set of type rules
that have to be followed in order to use such objects safely and efficiently. These
rules may be used by a preprocessor to transform the user’s regular objects into
those for which the generated code will use the underlying primitive types. We
now give a more detailed description of these rules.

2.1 Opaque type rules

We use a Java code annotation (called Opaque) to identify classes as opaque
types. Java annotations allow embedding of meta-data directly into Java source
code. “Annotations do not directly affect program semantics, but they do affect
the way programs are treated by tools and libraries, which can in turn affect
the semantics of the running program.”[4] The annotation has a single String



type field that denotes the primitive representation type of the opaque object.
For example, the annotation @Opaque("int") indicates that the object is opaque
and that its primitive representation is of type int. Currently, the annotation field
serves as a way to quickly identify the underlying type and speed up opaque type
file analysis but could be left out in later versions of the solution. The single
annotation dictates all the required information to the preprocessor. The next
restrictions/rules must be followed in order to guarantee successful conversion
consistent with the Java language standard:
– Rule 1 object must have a single protected field of the underlying type

unless it is a subclass of an opaque type
– Rule 2 object constructor(s) must be declared private
– Rule 3 all methods accessing or modifying the underlying type field repre-

sentation must be declared static (or final static if no subclasses over-
ride the methods)

Rule 1 enforces opaque type representation and assures that it matches with the
type specified by the annotation. The field (from here on in referred to as rep)
takes place of the opaque object whenever it appears in translated user code. It
is important that its uses are properly implemented and ensures there are no
compilation issues post-conversion. The approach to having a single field for the
representation is similar to that used in Aldor [5].

If the new opaque object extends an opaque type (the inheritance property
detected by the preprocessing utility), the new object must not include a rep

field in its declaration. The rep field is instead inherited from the superclass and
bares the same primitive type. This ensures consistency in method inheritance
and conversion.

Rule 2 follows the Java convention that only object types require a construc-
tor. Since the new opaque object is to be converted to its underlying primitive
type representation wherever it is used, its constructor must remain private.
Creating new instances of the opaque object is still possible through the use of
the static method “New”. This method should be implemented by the user as
a means of converting from the underlying primitive type to the object type pri-
marily for testing purposes and initial implementation of code that uses opaque
types. The typical implementation is outlined in Figure 1(a).

Rule 3 places a restriction on the other methods possibly acting on the ob-
ject representation. Default visibility static methods allow inheritance and class
access to regularly used operations within the new object. At first glance this
may seem limiting for using the object; however, since object instances are all
converted to the underlying primitive type, only class methods remain as valid
operations that can act upon the object’s actual implementation, i.e., its rep

field. This method declaration simplifies the preprocessor task of handling ex-
tension quickly and efficiently and assures the opaque object is not inflated by
non-static behaviors.

The approach takes advantage of the way Java class hierarchy works by allow-
ing subclasses to preserve the “is a” relationship and properly inherit methods
with default visibility. Properties of method overloading are also preserved due
to use of default visibility and the requirement of using the class name whenever
a method is called.



// a. Opaque object,
// typical "New" implementation
@Opaque("short")
public class MyOpaqueObject {

protected short rep;
private MyOpaqueObject(short r) {

rep = r;
}
...
public static MyOpaqueObject
New(short r) {

return new MyOpaqueObject(r);
}

}

// b. Opaque object before conversion
@Opaque("int")
public class BaseClass {

protected int rep;
private BaseClass(short r) {

rep = (int) r;
}
public static void
operator(BaseClass bc, short modifier) {

...
}
...

}

// c. Opaque object after conversion
public class BaseClass {

protected int rep;
private BaseClass(short r){ rep = (int) r; }

public static void
operator(int bc, short modifier) {

...
}
...

}
// d. Regular main class
@Opaque("user")
public class TopLevel {

public static void main(String[] args){
OpaqueType var = OpaqueType.New(param);
...

}
}
// e. Opaque array initialization
@Opaque("user")
public class TopLevel {

public static void main(String[] args){
OpaqueType[] ots = new OpaqueType[DATA_SIZE];
for(int i=0; i < DATA_SIZE; i++)

ots[i] = OpaqueType.New(param);
...

}
}

Fig. 1. Opaque object creation and use

2.2 Converted classes
The style for new object creation is modified slightly when attempting to make
use of opaque types. It is useful to illustrate exactly what changes in the type dec-
laration following invocation of the code conversion utility. Figures 1(b) and 1(c)
show the original version of a simple class and its converted result respectively.

In Figure 1(b), object BaseClass is a Java opaque type represented by the
built-in Java int type. The important details to notice regarding this class are
its protected int rep field, private constructor and static void operator

method. These three points are required by the semantic rules outlined in Sec-
tion 2.1 and allow BaseClass to be converted and compiled as its underlying
built-in type (int).

The converted BaseClass can be seen in Figure 1(c). In the new version of the
class, the @Opaque(“int”) annotation has been removed, and the static method
operator has been modified to use only arguments of the proper underlying
types. The class retains its “high level” handle - BaseClass. Hence the user
code that makes use of the class only needs minor typing modifications.

2.3 Opaque user classes
Java classes that declare or make use of opaque objects are also annotated with
the @Opaque annotation. Instead of an underlying rep type, the user classes
contain the keyword “user” as the single parameter to the annotation. A user
class may look as simple as in Figure 1(d).

Classes declaring objects of opaque type that are not opaque themselves (an-
notated as @Opaque(“user”)) undergo only minor changes during the conversion
step. Opaque types are constructed in a way such that their declaration, initial-
ization and usage do not require any object-exclusive syntax aside from declaring



data structures whose elements are opaquely typed. The most common and prim-
itive of these data structures is an array. Declaration of Java arrays containing
opaque typed members is syntactically identical to any other array declaration
(for any number of dimensions). Initialization, however, is dictated by the na-
ture of the opaque members themselves - each opaque object is initialized via the
New method as opposed to using the Java new keyword. This simple yet notable
concept is summarized in Figure 1(e).

2.4 Annotation processing example

The structure that opaque annotations impose on Java source code is non-
hierarchical despite playing a role in the hierarchical class structure of Java. The
traversal through this construction of annotated source files is straight forward
for the most part and the conversions applied to the code are often influenced
directly by information contained in the same processing step. Figure 2 illus-
trates some subtleties during the conversion step that arise when analyzing a
deep class hierarchy for opaque objects.

@Opaque("int")
public class BaseClass {

protected int rep;
private BaseClass(short r){

rep = (int) r;
}
public static void operator

(BaseClass bc,
short modifier)

{ ... }
...

}

@Opaque("int")
public class ChildClassOne

extends BaseClass
{

private ChildClassOne(short r){
rep = (int) r;

}
...

}

@Opaque("int")
public class ChildClassTwo

extends BaseClass
{

private ChildClassTwo(long r){
rep = (int) r;

}
...

}

@Opaque("int")
public class ChildClassThree

extends ChildClassTwo
{

private ChildClassThree(int r){
rep = r;

}
public static ChildClassThree operator

(ChildClassTwo modifier, short cc){
...

}
...

}

Fig. 2. Inheritance during conversion

The analysis of such a hierarchy takes place as follows. The Opaque-annoted
classes are identified among the source files and a list of them is stored along
with their representation (taken from the String-type annotation argument).
In Figure 2 this list would consist of pairs BaseClass & int, ChildClassOne &

int, ChildClassTwo & int, ChildClassThree & int. The annotations make
the suggested representation clear, but we still have to check that the class does
not attempt to use a differently typed field. As you can tell, the underlying
representation property is inherited, in this case all the way down the hierarchy
from BaseClass. Method inheritance is taken care of by standard Java, for
example, the operator method of ChildClassThree is overwritten for only that



class and the overloaded method works as expected. The goal of our approach is
to make the preserved object properties as intuitive as possible (i.e., make them
work as the programmer would expect) during application of the opaque types
mechanism.

3 Java Implementation

Implementing opaque Java types requires careful considerations in order to abide
by the set restrictions and still make the new data declaration forms useful. For
performance, ideally, the underlying representation of a particular type could
be determined during the compilation process and the underlying type used for
code generation. This kind of automated optimization would mean a seamless
implementation of a significant performance gain. However, allowing the pro-
grammer to specify the underlying type of the opaque object allows for greater
flexibility for accomplishing a certain task, even if at the cost of some efficiency.

A sophisticated mechanism to determine the underlying object representation
on the fly could be an area of significant research, however, at this time we have
elected to make the choice explicit. Hence the steps to build projects containing
opaque types are quite straight forward.

Code conversion utility In order to realize the potential of Java opaque types we
need to develop a dual view of the annotated objects to the compiler. The first is
the object view – necessary to take advantage of Java’s inherent ability to handle
a rich type hierarchy. The second is the underlying representation view, the one
to be used during optimization and code generation phases of compilation. This
dual representation is achieved using a code conversion utility written in Java
itself making use of Pattern and Matcher classes from the java.util.regex

package.
These classes provide a convenient way to identify where and how opaque

types are used and apply conversions directly to Java source code. This allows
the utility to finish its tasks in a timely manner without complicating the process
of going from regular-looking objects (opaque types) to the immediate underlying
representation.

The utility performs the following steps:

1. identify all recently modified Java source files in target project
2. sort source files into regular, opaque typed, and opaque user classes
3. build record of all opaque types and their underlying representations
4. convert all opaque sources

Automating the building process Utilizing a pre-processor-like code conversion
application prior to compilation complicates the building process by adding a
necessary intermediate step to the routine mechanism. However, Java is a flexible
language with a relatively long standing industry and research history. By this
virtue a number of tools have been developed that augment various features of
the language in particular when it comes to its compilation and building process.



One of such tools is the Ant scripting language[6]. We use an Ant build script
to perform the following tasks:

1. back up original source files
2. invoke converter on files modified since last invocation
3. compile newly converted files

Eclipse IDE Integration into a main-stream development environment may seem
like an extraneous task; however, this discussion follows naturally due to the
Eclipse’s ability to use Ant build scripts instead of the default compiler or build-
chain. Implementing the build script directly into the Eclipse IDE allows the
user to seamlessly develop code utilizing opaque types in the IDE.

Further details of the implementation are described in the first author’s mas-
ter thesis [7].

4 Performance Results

If regular Java objects performed as well as built-in types, there would be no
need to invent a new mechanism for abstraction. This, however, is not the case.
Primitive types in Java perform far better than objects.

We consider the overall application performance for synthetic tests by the
time it takes the program to execute, and the memory consumed during its ex-
ecution. Computational benchmark performance is compared using the number
of floating operations per second performed by various implemented algorithms.
We compare performance of Java code using regular objects, code which has
been converted to use opaque objects, and code implemented with the use of
primitive types only (dubbed “specialized”). For the purposes of measuring per-
formance in such a way we have devised several synthetic tests that demonstrate
opaque type advantages using brief implementations and included two modi-
fied benchmarks from the SciMark[8] and SciGMark[9] performance benchmark
suites. The measurements for testing performance that could be adjusted to
utilize opaque types most naturally have been included in this report. The par-
ticular benchmarks chosen from SciMark 2.0 and SciGMark 1.0 suites are dense
polynomial multiplication with integer field coefficients originally developed for
SciMark benchmark and modified by SciGMark and sparse matrix multiplication
with real coefficient values.

The modified applications accomplish identical tasks and have minimal im-
plementation differences aside from the use of opaque types and corresponding
annotations. Along with the borrowed benchmarks, the synthetic tests that range
from simple classes implementing only a few methods with shallow class hier-
archy to classes with a large internal representation (e.g. a large integer array),
several constructors, and a large number of methods are used to measure “bare
bone” performance. All tests were executed 10 times in order to compensate
for varying CPU and memory loads on different platforms. The averaged results
were recorded and are shown next. The computationally intensive benchmarks



were executed on large data sets in order to maximize the effect of data alloca-
tion and access on performance when dealing with objects versus more primitive
structures in large quantities. This in turn increased result accuracy due to float-
ing point operations being used as the measurement units. The simple tests were
chosen to reflect varying uses and applications developers may encounter when
writing Java code for a typical project.

Benchmark implementations were tested on several different platforms in or-
der to demonstrate opaque types’ independence of environment when increasing
computational performance. The platforms used for testing were as follows:

– Intel C2Q Q6600 @ 2.4GHz, 4GB RAM, Windows 7 x86 64, JRE 1.7 (lambda)
– Intel I7-870 @ 2.93GHz, 16GB RAM, Ubuntu Server 10.04 x86 64, JRE 1.6 (tedium)
– Intel Xeon E5620 @ 2.4GHz, 24GB RAM, Ubuntu 10.04 x86 64, JRE 1.6 (z600)
– Intel I5-660 @ 3.33GHz, 4GB RAM, Ubuntu 10.04 x86 64, JRE 1.6 (PCA-45)
– Intel C2D E4600 @ 2.4GHz, 2GB RAM, Ubuntu 10.04 x86 64, JRE 1.6 (orccapc02,

orccapc03, orccapc04)

Running of experiments on different platforms has also given us an opportu-
nity to look at the variance in underlying software that affects the performance
of Java applications using opaque types. The results were not significantly im-
pacted by execution on different platforms, and even the JVM versions used did
not incur a great deal of variance on the results.

Execution time and memory use were measured using built-in Java tools for
determining system time (method currentTimeMillis() in java.lang.System),
and tools for determining how memory is currently used by the Java Virtual
Machine - Runtime methods called totalMemory() and freeMemory(). All tests
measuring memory use were carefully designed to avoid involuntary garbage col-
lection and execution time tests were averaged to account for varying CPU load
during the experiments and were generally run at the highest CPU affinity.

Complex internal representations Similarly to the opaque types used through
this work, it is possible to represent object types by a single primitively typed
array fields of fixed size. For example, an opaque type object may be represented
by 256 bits, or an array of size 4 of type long[]. The next set of tests deals
with objects represented by different sized arrays of primitively typed variables.
The tests use the same, previously shown, metrics to measure execution speed
and memory use. The implementation of the actual accomplished operation is
kept as identical as possible to avoid performance differences due to algorithmic
discrepancies. This assures that we compare directly the speed and size of regular
objects versus opaque objects without introducing unnecessary bias.

Figure 3 illustrates an OpaqueObject represented by the long[] type and
a RegObject that has a field of type long[]. Both objects have the similarly
implemented method called setBit. Method setBit takes an argument of type
int that corresponds to the bit number that must be turned on in the internal
representation of the OpaqueObject or the field of the RegObject with 0 being the
least significant bit. Imagine arranging either the internal long[] representation
of OpaqueObject or the field of RegObject as sets of back-to-back 64 bit sets (each



@Opaque("long[]")
public class MyOpaqueObject {

protected long[] rep;
private OpaqueObject(long[] arg){

rep = new long[arg.length];
for (int i = 0; i < arg.length; i++)

rep[i] = arg[i];
}
public static OpaqueObject
New(long[] arg) {

return new OpaqueObject(arg);
}
public static OpaqueObject
setBit(OpaqueObject o, int i) {

long mask = (long) (1 << (i % 64));
o.rep[i / 64] |= mask;
return o;

}
...

}

public class RegObject {
private long[] rep;
public RegObject(long[] arg){

rep = new long[arg.length];
for (int i = 0; i < arg.length; i++)

rep[i] = arg[i];
}
public void setBit(int i){

long mask = (long) (1 << (i % 64));
rep[i / 64] |= mask;

}
...

}

Fig. 3. Regular and opaque objects with array typed fields

set represented by a long type value) where significance of the bits increases with
the array index of the respective field. Thus operation setBit is potentially able
to turn on a single bit in a bit set of size over 2,000,000,000. For the test, however,
we limit the size of the long array to 4.

Putting it together The next set of performance comparison tests consists of
two standard benchmarks taken from the SciMark and SciGMark suites. In or-
der to implement polynomial multiplication and sparse matrix multiplication
benchmarks we build on the conventions established previously and reuse some
implementations from the synthetic benchmarks.

The first test performed is sparse matrix multiplication with double preci-
sion floating point coefficients taken randomly from the complex number set.
This is one of the most natural performance indicators for a language feature
or a hardware benchmark. In this case, the test’s aim is to demonstrate that

Code Improvement
PC Generic Specialized Opaque Opaque vs. Opaque vs.

(mflops) (mflops) (mflops) Generic Specialized
lambda 131.84 475.22 383.64 2.91 0.81
tedium 194.64 1199.08 968.4 4.98 0.81

z600 175.16 1044.22 833.06 4.76 0.80
PCA-45 158.82 1077.7 845.84 5.33 0.78

orccapc04 57.20 363.5 303.68 5.31 0.84
orccapc03 62.34 371.1 299.45 4.80 0.81
orccapc02 60.94 368.4 301.94 4.95 0.82

sodium 54.82 311.26 248.48 4.53 0.80
Overall average improvement: 4.70 0.81

Table 1. Matrix Multiplication



Code Improvement
PC Generic Specialized Opaque Opaque vs. Opaque vs.

(mflops) (mflops) (mflops) Generic Specialized
lambda 75.54 279.56 223.86 2.96 0.80
tedium 147.02 900.44 729.06 4.96 0.81

z600 131.32 800.68 639.42 4.87 0.80
PCA-45 136.54 910.64 723.38 5.30 0.79

orccapc04 56.29 355.15 285.91 5.08 0.81
orccapc03 54.98 350.90 288.3 5.24 0.82
orccapc02 57.84 355.32 287.92 4.98 0.81

sodium 38.90 223.68 179.52 4.61 0.80
Overall average improvement: 4.75 0.81

Table 2. Polynomial Multiplication

it is possible to significantly increase the raw number of floating point calcula-
tors (measured here in millions of floating point operations per second) without
losing correctness by reducing abstraction (or removing it altogether) in the
implementation. Unfortunately, fully disposing of abstraction, as SciGMark im-
plementation shows, highly obscures the code. Use of primitive types yields high
performance and optimized execution, however, the code becomes more com-
plex and is difficult to modify. The matrix sizes used for measurement are N by
N matrices with N = 10, 000 averaging 100, 000 non-zero coefficients per matrix.

The purpose of the implementation using opaque types is to preserve ab-
straction introduced by the generic object implementation utilized by SciGMark
while pushing performance figures towards that of the specialized code. Fig-
ures 4(a), 4(b), 4(c) show snippets of the code implementing the underlying
complex data and algorithms used in this benchmark. The included code shows
implementation of the type creation, summing, and multiplication.

Performance results using these varying implementations of the complex data
types are summarized in Table 1. Analyzing the data it’s easy to conclude that
without loss of much generality, the opaque implementation is on average 4.7
times faster than the general object implementation and is only about 20%
slower than the specialized implementation from Figure 4(b).

The second benchmark used in our final set of tests is polynomial multipli-
cation with dense polynomials of degree ≤ 40. The polynomial coefficients are
once again taken from the complex set and are implemented in three different
ways according to each multiplication algorithm (generic objects, specialized,
opaque). Table 2 summarizes obtained results measured in millions of floating
point instructions per second with similar conclusions being drawn from this set
of data as the sparse matrix multiplication.

Implementing dense polynomial multiplication using the proposed opaque
typed method allows for an average of 4.75 times the number of operations per
second while accomplishing the same task. The opaque implementation loses out
to specialized code by an average of only 19%. This is an expected and impressive



// a. Generic object implementation
public class Complex <R extends IRing<R>> {

private R re;
private R im;
public Complex<R> create(R re, R im) { return new Complex<R>(re, im); }
public Complex<R> s(Complex<R> o) { return new Complex<R>(re.s(o.re()),im.s(o.im())); }
public Complex<R> m(Complex<R> o) {

return new Complex<R>(re.m(o.re()).s(im.m(o.im())), re.m(o.im()).a(im.m(o.re())));
}

}
// b. Specialized implementation
public class Complex {

private double re;
private double im;
public Complex create(double re, double im) { return new Complex(re, im); }
public Complex s(Complex o) { return new Complex(re + o.getRe(), im + o.getIm()); }
public Complex m(Complex o) {

return new Complex(re*o.getRe() + im*o.getIm(), re*o.getIm() + im*o.getRe());
}

}
// c. Opaque object implementation
@Opaque("double[]")
public class Complex {

protected double[] rep;
public static Complex create(double re, double im) { return Complex.New(re, im); }
public static Complex s(Complex o) { return Complex.New(s.rep[0]+o.rep[0], s.rep[1]+o.rep[1]); }
public Complex m(Complex o) {

return new Complex(s.rep[0]*o.rep[0]+s.rep[1]*o.rep[1], s.rep[0]*o.rep[1]+s.rep[1]*o.rep[0]);
}

}

Fig. 4. Multiplication: generic, specialized and opaque object implementation

result considering how much abstraction is preserved through the use of opaque
types.

5 Conclusions and Further Directions

We have observed that Java programmers and library designers have been forced
to work around the language’s abstraction mechanisms for performance-sensitive
code. In practice, programs have used primitive types, such as int, when an
abstraction should be used. The recent addition of Enumerations to the language
help in some settings, but is of no help when the values are used in mathematical
computations.

We have shown how type-safe, but very efficient programs may be obtained
with the concept of an opaque type in Java. An opaque type is distinct and
incompatible with its underlying representation type, which may be a primitive
type or an object type. We have shown how opaque types may be provided via
classes with only static methods, and annotated for handling with a software
tool in a standard Java environment. Opaque types are type checked as though
they were object types, but compiled as the actual representation values. This
allows opaque values to benefit from all the optimizations on primitive types
without relying on sophisticated data structure elimination optimizations.

At the moment, our software tool operates by compiling the code twice, but
of course this could easily be integrated into any compiler. While we focus on



Java for practical reasons, we expect the same observations and techniques to
be directly applicable in other similar settings.

References

1. Brown, W., E. Progress toward Opaque Typedefs for C++0X. 2005.
2. Johnston, B. Java programming today. Upper Saddle River, NJ; Pearson Prentice

Hall, 2004.
3. Koffman, E., B. Objects, abstraction, data structures and design using Java. John

Wiley and Sons, 2005.
4. Sun Microsystems, Inc. Annotations. 2004. http://java.sun.com/j2se/1.5.0/

docs/guide/language/annotations.html

5. Watt, S.M. Aldor in Handbook of Computer Algebra. 265–270. Grabmeier, J.,
Kaltofen, E., Weispfenning V. (eds), Springer Verlag, Heidelberg. 2003

6. The Apache Ant Project. 2010. http://ant.apache.org
7. Bourdykine, P. Type Safety without Objects in Java, MSc. Thesis, U. Western

Ontario, 2009.
8. Miller, B., Pozo, R. SciMark 2.0 Java Benchmark. National Institute of Standards

and Technology, 2004.
9. Dragan, L., Watt, S.M. Performance Analysis of Generics for Scientific Computing,

93–100, Proc. SYNASC 2005, IEEE Press.


