
Writing on Clouds

Vadim Mazalov and Stephen M. Watt

Department of Computer Science
The University of Western Ontario
London Ontario, Canada N6A 5B7
{vmazalov,Stephen.Watt}@uwo.ca

Abstract. While writer-independent handwriting recognition systems
are now achieving good recognition rates, writer-dependent systems will
always do better. We expect this difference in performance to be even
larger for certain applications, such as mathematical handwriting recog-
nition, with large symbol sets, symbols that are often poorly written,
and no fixed dictionary. In the past, to use writer-dependent recogni-
tion software, a writer would train the system on a particular computing
device without too much inconvenience. Today, however, each user will
typically have multiple devices used in different settings, or even simulta-
neously. We present an architecture to share training data among devices
and, as a side benefit, to collect writer corrections over time to improve
personal writing recognition. This is done with the aid of a handwriting
profile server to which various handwriting applications connect, refer-
ence, and update. The user’s handwriting profile consists of a cloud of
sample points, each representing one character in a functional basis. This
provides compact storage on the server, rapid recognition on the client,
and support for handwriting neatening. This work uses the word “cloud”
in two senses. First, it is used in the sense of cloud storage for informa-
tion to be shared across several devices. Secondly, it is used to mean
clouds of handwriting sample points in the function space representing
curve traces. We “write on clouds” in both these senses.

Keywords: Handwriting Recognition, Mathematical Handwriting Recog-
nition, Cloud Computing, Service Oriented Architecture

1 Introduction

We are interested in online recognition of handwritten mathematics. The wide-
spread use of hand-held mobile devices and tablets has created a ubiquitous
environment for two-dimensional math input. Writing mathematics on a digital
canvas is similar to traditional pen-on-paper input. It does not require learn-
ing any typesetting languages and can be efficient, given a robust and reliable
implementation. According to one study [1], pen-based input of mathematics is
about three times faster and two times less error-prone than standard keyboard-
and mouse-driven techniques. However, recognition of mathematics is a harder
problem than recognition of natural language text.



2 Vadim Mazalov and Stephen M. Watt

In our classification paradigm, a character is represented by the coefficients of
an approximation of trace curves with orthogonal polynomials [4]. Classification
is based on computation of the distance to convex hulls of nearest neighbours
in the space of coefficients of approximation. Typically, the method does not
require many training samples to discriminate a class. However, because there
are a large number of classes in handwritten mathematics, the training dataset
may contain tens of thousands of characters. The underlying recognition model
allows the dataset to evolve over the course of normal use. Furthermore, as a
user makes corrections to mis-recognized input, new training data is obtained.
Therefore, synchronization of the dataset across several pen-based devices may
become tiresome. To address this aspect, we propose to delegate the storage of
the training database, as well as some of the recognition tasks to a cloud.

In the present work we describe a cloud-based recognition architecture. It
has potential to be beneficial not only to end users, but also to researchers in
the field. A cloud infrastructure can assist in the capture of recognition history.
The “knowledge” obtained from the public usage of the recognition software can
help to improve the accuracy continuously. This serves as a basis for an adap-
tive recognition that results in asymptotic increase of user-, region-, or country-
centered classification rate. Additionally, such a model has a number of other
advantages: First, it allows the writer to train the model only once and then use
the cloud with any device connected to the Internet. Secondly, it gives the user
access to various default collections of training samples across different alpha-
bets (e.g. Cyrillic, Greek, Latin), languages (e.g. English, French, Russian), and
domains (e.g. regular text, mathematics, musical notation, chemical formulae).
Thirdly, it provides a higher level of control over the classification results and
correction history.

The architecture we present may be applicable to a variety of recognition
methods across different applications, including voice recognition, document
analysis, or computer vision. To demonstrate its use in recognizing handwrit-
ten mathematical characters, we have performed an experiment to measure the
error convergence as a function of the input size and find an average number of
personal samples in a class to achieve high accuracy.

The rest of the paper is organized as follows. Section 2 introduces the char-
acter approximation and recognition foundation, as well as some preliminary
concepts required by the proposed architecture. Section 3 describes the cloud–
based recognition framework, starting by giving an overview of the components.
Then the flow of recognition and correction, as well as possible manipulations
of clusters, are presented. Section 4 describes details of the implementation of
the system, the structure of a personal profile, the interface for training and
recognition, the server side, as well as calligraphic representation of recognized
characters. The recognition error decrease as a function of the input size of a
writer is presented in Section 5. Section 6 concludes the paper.



Writing on Clouds 3

2 Preliminaries and Related Work

2.1 Recognition Aspects

In an online classification environment, a curve may be given as an ordered set
of points in a Euclidean plane. Devices are capable of sampling the coordinates
of a stylus as functions of time. The inputs to online classification are typically
given as vectors of pen coordinates, represented as real numbers received at a
fixed frequency [4]. In addition, some devices can collect other information, such
as pressure or pen angle, as well as spatial coordinates when a stylus is not
touching the surface. We however do not rely on this additional information so
we can maintain hardware independence.

The input traces may be regarded as parametric functions and we may rep-
resent these using standard approximation methods as truncated orthogonal
polynomial series

X(t) ≈
d∑

i=0

xiBi(λ), Y (λ) ≈
d∑

i=0

yiBi(λ)

where Bi(λ) are the orthogonal basis polynomials, e.g. Chebyshev, Legendre or
Legendre-Sobolev polynomials, and λ is a parameter, e.g. time or arc-length [4].
Multi-stroke characters may be represented by concatenating the coordinate
sequences of the strokes.

Having the coefficients of approximation, a character can be represented as
the tuple

x0, x1, ..., xd, y0, y1, ..., yd.

In this vector, coefficients x0 and y0 give the initial position of the sample and
can be neglected to normalize location of the character. Dividing the rest of the
vector by the Euclidean norm will normalize the sample with respect to size. We
base classification on a distance (in some norm) to the convex hull of k nearest
neighbours in the space of coefficients [4].

2.2 Architectural Aspects

Cloud computing allows remote, distributed storage and execution. The eco-
nomic stimuli for providing software services in a cloud infrastructure are similar
to those for centralized supply of water or electricity. This relieves consumers
from a number of issues associated with software maintenance, while the provider
may continuously improve the service.

Agility of a cloud service is usually achieved by its internal organization
according to the principles of the Service-Oriented Architecture (SOA). SOA
allows splitting computational tasks into loosely coupled units, services, that
can be used in multiple unassociated software packages. An external application
executes a service by making a call through the network. The service consumer
remains independent of the platform of the service provider and the technology
with which the service was developed.



4 Vadim Mazalov and Stephen M. Watt

2.3 Related Work

Several related projects have been described that mostly target development of
managed experimental repositories and resource sharing in the context of: docu-
ment analysis [7], astronomical observations [14], or environmental research [2].
In contrast, our primary objective is improvement of usability of recognition
software across different pen-based devices. Collecting a comprehensive database
that facilitates research is the second priority.

3 Clouds Serving Clouds

Touch screens with the ability to handle digital ink are becoming de facto stan-
dards of smart phones and tablet computers. The variety of such platforms
challenges conventional recognition applications because:

– Certain mobile devices have limited storage capacity and computational
power, restricting ink storage and processing. Recognition of handwritten
math requires extra resources to build classification theories and to calcu-
late the confidence of each theory [3].

– Development of a single recognition engine that runs efficiently across all the
platforms is not easy, and in most cases a trade off has to be made, affecting
classification performance.

– The evolving personal training datasets and correction histories are not syn-
chronized across the devices.

Similar to the software as a service delivery model, we propose to have digital
ink collected and, possibly, processed through a thin client, but its storage and
some computationally intensive procedures are performed centrally in the cloud.

From the high-level, the system contains the following elements

– Canvas of a pen-based device, that can collect digital ink.
– HLR (High-Level Recognizer) accepts raw ink from the canvas and performs

initial preprocessing of the ink.
– Recognizer is a character recognition engine, developed according to the

principles described in [4].
– Database stores personal handwriting data, profiles of samples, correction

history, etc.

Profiles of training samples are clouds of points in the space of approximated
curves, each point being one character. These points are saved in a database
in the cloud. When users sign up for the service, they are assigned a default
dataset of training samples. If a person has several handwriting domains (e.g.
different fields using mathematics, physics, music, etc), each domain should have
a separate dataset, and the recognition application should allow switching be-
tween the subjects. The user shapes the datasets through a series of recognitions
and corrections. Below, we show experimentally that the number of corrections
decreases over time and eventually becomes quite small.



Writing on Clouds 5

Fig. 1. The data flow diagram for recognition and correction

3.1 Recognition Flow

The overall recognition flow is shown in Figure 1. The High-Level Recognizer
(HLR) accepts raw ink from the canvas and preprocesses it. The output of the
HLR is available to the recognizer in the form of normalized coefficients. The
coefficients are recognized. The results of classification are sent to the canvas
and saved in the database.

Representation of Characters For a single-stroke character, after approxi-
mation of coordinates with truncated orthogonal series, the sample can be rep-
resented as

1

‖x, y‖
, x0, y0, x

′
1, y

′
1, ..., x

′
d, y

′
d (1)

where x0, y0 are Legendre-Sobolev coefficients that control the initial position
of the character, x′1, y

′
1, ..., x

′
d, y

′
d are normalized coefficients, and ‖x, y‖ is the

Euclidean norm of the vector [4]

x1, ..., xd, y1, ..., yd

The first three elements in (1) are ignored during recognition, but used in restor-
ing the initial size and location of the character.

For a multi-stroke symbol, coefficients are computed for every stoke, as de-
scribed for a single-stroke character, and also for all strokes joined sequentially.
Coefficients of strokes are used for display of the sample and normalized coeffi-
cients of joined strokes are used for classification.

The described representation of samples allows significant saving on storage
space and computations, since coefficients of symbols can be directly used in
recognition without repetitive approximation [10]. However, this compression
scheme is lossy and should not be used when precision of digital ink is of high
importance, e.g. in applications that involve processing of personal signatures.

Recognition Individual handwriting can differ significantly from the default
collection of training samples. This is illustrated by the historical use of a per-
sonal signature as a form of authentication of documents. It is to be expected
that a successful recognition system should adapt to personal writing style. With



6 Vadim Mazalov and Stephen M. Watt

coefficients ::= 1
‖x,y‖ ;x0; y0;x′

1; y′
1; ...;x′

d; y′
d

msg ::= <m:Process>
<m:mt>coefficients</m:mt>
(<m:tr>coefficients</m:tr> <m:tr>coefficients</m:tr> + )?

</m:Process>

Fig. 2. The format of the SOAP message sent to the cloud

...

<soap:Body xmlns:m="http: //www.inkml.org/processing">

<m:Process >

<m:mt>0.005;94; -91;11;2; -14;64; -70;

-18;1; -75;14;14;8;4; -2;4;0; -9;5;10; -11;5; </m:mt>

</m:Process >

</soap:Body >

...

Listing 1. An example of the body of a SOAP message for a single-stroke character

k-nearest neighbors and related methods, the test sample can be easily intro-
duced to the training set after classification. This facilitates adaptive recognition,
since the model remains synchronized with the writer’s style.

Two modes of recognition are possible, local and remote.

Local recognition is suitable for devices with sufficient computational capa-
bilities. In this mode, the points that form the convex hulls of classes are stored
on the device locally and periodically synchronized with the server. Synchroniza-
tion can be performed through a profile of samples. The local recognition mode
is useful when the user does not have a network connection and therefore can
not take advantage of the remote recognition described below.

In remote recognition mode, digital curves are collected and preprocessed
locally, and the coefficients are sent to a remote recognition engine. Having rec-
ognized the character, the server returns encoding of the symbol and nearest
candidates. This mode allows to minimize the load on the bandwidth, since the
training dataset does not have to be synchronized with the device. Coefficients
can be transmitted in the body of a SOAP message, using the syntax shown
in Figure 2. The element <m:mt> contains the normalization weight, the origi-
nal coefficients of the 0-degree polynomials, and the normalized coefficients used
in recognition. Additionally, for a multi-stroke sample, the <m:tr> element is
used to represent each stroke independently. Examples of messages for a single-
stroke and a multi-stroke character are shown in Listing 1 and Listing 2 respec-
tively. The bodies of the SOAP messages contain enough information for both
recognition and restoring approximate representation of a character in its initial
position.

The results of recognition can be returned in a SOAP message, as shown
in Listing 3. The body contains Unicode values of the top candidates to enable



Writing on Clouds 7

...

<soap:Body xmlns:m="http: //www.inkml.org/processing">

<m:Process >

<m:mt>1;0;0; -5; -22; -14; -15; -44; -72;20;13; -27;43;4;

-28;48; -1; -10;16; -32; -17; -1; -12;</m:mt>

<m:tr>0.005;92; -85; -1;3; -7;62; -79; -30;

4; -61;32;4; -2;15; -4; -4;6; -3;0;6; -9;0; </m:tr>

<m:tr>0.009;115; -100; -71; -102; -10; -1;11;1;

-6; -8;5;6; -5; -9;2;3; -2; -5;6;6; -5; -9;</m:tr>

</m:Process >

</soap:Body >

...

Listing 2. An example of the body of a SOAP message for a multi-stroke character

...

<soap:Body xmlns:m="http: //www.inkml.org/processing">

<m:Response >

<m:Unicode >0030, 004F, 006F</m:Unicode >

</m:Response >

</soap:Body >

...

Listing 3. An example of the body of a SOAP response from the recognition service

the client application to visualize recognized characters in a printed format. For
calligraphic rendering, corresponding coefficients can be included as well.

When the recognition is incorrect, the user can fix the result on the canvas.
A correction message is sent from the canvas to the recognizer and the database,
see Figure 1. The correction message may contain Unicode value of the new
character and the ID of the sample. After correction, if the recognition engine
is context-sensitive, neighboring characters can be reclassified. Implementation
of sensitivity to the context depends on the domain. With handwritten text,
this task is solved by comparing a recognized word with entries in a dictionary.
With mathematics, it is a harder problem, since expressions are represented as
trees. Progress can be achieved by considering the most popular expressions in
the subject and their empirical or grammatical properties, see for example [8].

3.2 Manipulation of Clouds

With the discussed representation of samples as clouds in high dimensional space,
they can also be treated as sets. In this context, corresponding theoretical do-
mains become applicable, such as the set theory or some elements of compu-
tational geometry. Consider training characters from two classes, say i and j,
forming sets Si and Sj respectively. Then Si∩Sj will produce samples written in
an ambiguous way: If classes i and j represent characters 9 and q then a sample



8 Vadim Mazalov and Stephen M. Watt

Fig. 3. A sample that belongs to classes “q” and “9”

that belongs to both classes can look as the one shown in Figure 3. A näıve
approach to compute such intersection is to find the subset of points in each
cluster with the distance to the second cluster being zero. To make the clouds
linearly separable, the samples that belong to both clusters can be deleted or
assigned a specific label. A similar operation is to find Sq \S9 that will result in
points that can not be confused with the adjacent class.

Another example is computing the “average” character, as the center of mass
of samples in a style, and using the character in calligraphic rendering of recog-
nized samples.

These and other operations can be expressed naturally as operations on the
classes represented as clouds of points. With some other machine learning frame-
works the analogous procedures can be more awkward.

4 Implementation

From a high level viewpoint, the system contains the following parts, as shown
in Figure 4.

– A user interface for training (used to collect profiles of characters).
– A user interface for recognition (ink canvas, HLR, and recognizer).
– A cloud – a web infrastructure that serves as a recognizer (in the remote

recognition mode) and as an efficient storage of user-specific training data,
allowing access, update, sharing, continuous adaptation of the shapes of
clusters, etc. In the current prototype implementation, the back end consists
of a web server, an application server, and a DBMS.

Communication between the client application for training and the cloud is
performed through sending profiles, i.e. zipped XML documents that contain
personal catalogs (clouds of points). The application server communicates with
the database through SQL.

4.1 Initial Training

In an adaptive recognition environment, the training phase is not required. How-
ever, having some number of training samples in each class can significantly im-
prove the initial recognition. Training is normally performed before usage of the
application or after introducing a new character to the repository. Once training
is finished the profile is synchronized with the cloud.



Writing on Clouds 9

Fig. 4. Interaction of user interfaces for collection and recognition with the cloud

Catalog

Symbol1

Style1

Sample1 Sample2 ...

Style2

...

...

Symbol2

...

...

Fig. 5. The structure of a catalog

The Structure of a User Profile A profile is a dataset of training characters
used in recognition. The dataset is a collection of catalogs. Each catalog is a
hierarchical container of symbols, styles, and samples. Figure 5 shows a structure
of a catalog where

– Catalog is a catalog of related symbols, e.g. Latin characters, digits, mathe-
matical operators, etc.

– Symboli is a recognition class, e.g. “a”, “1” or “±”.
– Stylei is a style, i.e. one of the possible ways to write the symbol. Our recog-

nition algorithm is dependent on the direction of writing and the number of
pen-ups of a character. For example, symbol l can have two styles: one style
represents writing the character from the top to the bottom and another
style – from the bottom to the top.

– Samplei is a training sample, written according to the corresponding style.

Each user can have several profiles used together or independently, representing,
for example, different areas of mathematics, chemistry or music. System profiles



10 Vadim Mazalov and Stephen M. Watt

Fig. 6. The main window of the training application

should also be available – the default collections of typical symbols, styles, and
samples in a domain.

The XML tree of a profile corresponds to the hierarchy of a catalog: It should
contain symbols, styles, samples, and coefficients. The normalized coefficients
ci ∈ [−1, 1] can be compactly stored in a byte variable as [127ci], where [x] is
rounding of x to an integer [4].

4.2 Implementation of the Application

For simplicity, our current model is implemented in three-tier architecture. The
client applications for collection, recognition, and the application server have
been developed in Java. Requests to the application server are routed through a
web server.

Client Application for Collection of Characters The front end provides
a convenient interface for the user to input and manage training samples. The
interface comes along with the structure of the user profile. Specifically, the main



Writing on Clouds 11

window of the application is a tabbed panel with each tab representing a catalog
of samples, as shown in Figure 6. A tab contains a list of symbols of the catalog.
Once the user selects a symbol, the panel with styles becomes available. Styles
are shown as animated images for visualization of stroke order and direction.
The discussed elements of the interface (catalogs, symbols, styles, and samples)
are highly dynamic: A context menu is available that allows to create, to delete
or to merge with another element. A profile can be saved on a local hard drive
and reopened, as well as synchronized with the server.

Each provided sample should be assigned to a style. If a style has not been
selected, it is determined automatically based on its shape and the number of
strokes. This recognition is usually of high accuracy, since the candidate classes
are styles of the selected symbol and the number of styles is typically small.

The Client Interface for Recognition Classification of handwritten char-
acters takes place when a user performs handwritten input through a separate
application. The current implementation is integrated with the InkChat [5], a
whiteboard software that facilitates engineering, scientific, or educational pen-
based collaboration online. Nevertheless, a number of alternative applications
can be used as the recognition front end, e.g. MathBrush [6], a pen-based sys-
tem for interactive mathematics, or MathInk [13], a mathematical pen-based
plug-in that can run inside computer algebra systems, such as Maple [9], or
document processing software, such as Microsoft Word.

There can be two approaches to recognition – character-at-a-time (each char-
acter is recognized as it is written) and formula-at-a-time (characters are recog-
nized in a sequence, taking advantage of the context and common deformation
of samples). Classification results can be displayed super-imposed on the digital
ink or replace it. For each entered character, a context menu is available that
lists the top recognition candidates, as shown in Figure 7. If the user chooses
another class from the candidates listed in the context menu, adjacent characters
should be reclassified based on the new context information.

The Server Side The server side has the following interacting parts: the
Apache web server, an application server, and MySQL DBMS. The user up-
loads a profile to the application server as a zipped file. The profile is unzipped
and parsed. Information is inserted in the database.

Upon download of a profile, the process is reversed – the user sends a request
to the application server over the web server. The application server selects data
from the database, forms an XML profile, performs compression, and sends it to
the client.

In the current implementation, a client communicates with the application
server over HTTP, but an encrypted communication channel is suggested in a
production environment. Furthermore, profiles are recommended to be stored in
the database in an encrypted format.



12 Vadim Mazalov and Stephen M. Watt

Fig. 7. Client interface for recognition

(a) (b)

Fig. 8. (a) A set of provided samples, and (b) the average sample

4.3 Attractive Display of Recognized Characters

Some research has shown that averaging can be used to make faces look attrac-
tive [12]. We adopt a similar approach to generate visually appealing output.
The shape of each output stroke is obtained by taking the average of coefficients
of approximation of corresponding strokes of samples in the style

c̄i =

∑n
j=1 cij

n

where c̄i is the i-th average coefficient of a stroke and n is the number of samples
in the style. The traces of the average character are then computed from the
average series. This approach allows personalized output, representing samples
in a visually appealing form and yet preserving the original style of the writer,
as illustrated in Figure 8.

5 Experimental Evaluation

We describe results of an experiment that shows performance of adaptive author-
centered recognition that can be implemented with the cloud infrastructure.
The experimental setting aims to simulate decrease in the classification error
depending on a user’s input size, given that the application is initially trained
with a default dataset.



Writing on Clouds 13

(a) The Null strategy (b) The Basic strategy

Fig. 9. The average recognition error of the (N+1)-th sample in a class among all
classes by an author. All authors are shown in the plot.

5.1 Setting

The experimental dataset is identical to the one described in [4]. Further, each
sample is assigned to one of the 369 authors. Then for each author, the dataset is
split in two parts: samples provided by the author (used in testing) and the rest of
the dataset (used in training). A test sample is extracted from a randomly chosen
class among those written by the test author and recognized. The recognition
error of the N -th sample by the author is computed as the ratio of the number of
misrecognitions of the N -th sample to the total number of N -th samples tested.
This run is repeated 200 times and the average is reported. We consider two
strategies for processing the recognized character

– Null strategy: The test sample is disregarded after recognition. This strategy
is implemented for comparison with the Basic strategy.

– Basic strategy: The test sample is added to the corresponding training class.
This facilitates adaptive recognition when the training cluster is adjusted to
the style of the current user with each new sample provided.

The Basic strategy does not provide a mechanism to remove training samples
that have negative impact on recognition. In [11], we developed an adaptive
instance-based classifier that assigns a dynamic weight to each training ex-
emplar. If the exemplar participates in a correct (incorrect) classification, the
weight is increased (decreased). Samples with the minimal average weight
are removed from the dataset.



14 Vadim Mazalov and Stephen M. Watt

Fig. 10. The average recognition error among all authors of the (N+1)-th sample in a
class for the Basic strategy (solid) and the Null strategy (dash).

5.2 Results

Figures 9(a) and 9(b) demonstrate the average recognition error of the N -th
sample in a class among all classes by an author for the Null and the Basic
strategies respectively. Authors are shown in the plot in different colors. These
figures show that the approach gives consistent results for different authors. The
average recognition error among all authors is presented in Figure 10 for the
Basic and the Null strategies.

On average, the Basic strategy demonstrates improvement over the course
of use, which is most noticeable for less than 20 samples in a class by an au-
thor. Given that the dataset contains several hundred classes, synchronization
of samples across devices is a valuable advantage and can make the recognition
workflow efficient and smooth.

6 Conclusion

We have shown how online handwriting recognition systems can take advantage
of centralized, cloud-based repositories. Incremental training data, ground truth
annotations, and the machine learning framework can usefully reside on a server
for the benefit of multiple client devices. We find this particularly effective for
symbol sets that occur in mathematical handwriting.

With another meaning of the word “cloud”, our character recognition meth-
ods rely on clouds of points in an orthogonal series coefficient space. The rep-
resentation of these clouds of training and recognition support data is quite



Writing on Clouds 15

compact, allowing collections of data sets to be cached locally even on small
devices or transmitted over slow network connections. These clouds can evolve
as new data is received by the server, improving recognition. These clouds also
provide a simple but effective method for handwriting neatening, by taking an
average point for each style.

We find that placing recognition point sets (“clouds” in one sense) in dis-
tributed storage and computing environments (“clouds” in another sense) to be
a particularly fruitful combination.

References

1. Anthony, L., Yang, J., Koedinger, K.R.: Evaluation of multimodal input for en-
tering mathematical equations on the computer. In: CHI ’05 extended abstracts
on Human factors in computing systems. pp. 1184–1187. CHI EA ’05, ACM, New
York, NY, USA (2005), http://doi.acm.org/10.1145/1056808.1056872

2. Beran, B., van Ingen, C., Fatland, D.R.: Sciscope: a participatory geoscientific
web application. Concurrency and Computation: Practice and Experience 22(17),
2300–2312 (2010)

3. Chan, K.F., Yeung, D.Y.: Mathematical expression recognition: a survey. IJDAR
3(1), 3–15 (2000)

4. Golubitsky, O., Watt, S.M.: Distance-based classification of handwritten symbols.
International J. Document Analysis and Recognition 13(2), 133–146 (2010)

5. Hu, R.: Portable implementation of digital ink: collaboration and calligraphy. Mas-
ter’s thesis, University of Western Ontario, London, Canada (2009)

6. Labahn, G., Maclean, S., Marzouk, M., Rutherford, I., Tausky, D.: A preliminary
report on the MathBrush pen-math system. In: Maple 2006 Conference. pp. 162–
178 (2006)

7. Lamiroy, B., Lopresti, D., Korth, H., Heflin, J.: How carefully designed open re-
source sharing can help and expand document analysis research. In: Document
Recognition and Retrieval XVIII - DRR 2011. vol. 7874. SPIE, San Francisco,
United States (Jan 2011)

8. MacLean, S., Labahn, G., Lank, E., Marzouk, M., Tausky, D.: Grammar-based
techniques for creating ground-truthed sketch corpora. Int. J. Doc. Anal. Recognit.
14, 65–74 (March 2011), http://dx.doi.org/10.1007/s10032-010-0118-4

9. Maplesoft: Maple 13 user manual (2009)
10. Mazalov, V., Watt, S.M.: Digital ink compression via functional approximation.

Proc. of International Conference on Frontiers in Handwriting Recognition. pp.
688–694 (2010)

11. Mazalov, V., Watt, S.M.: A structure for adaptive handwriting recognition. In:
Proc. of the International Conference on Frontiers in Handwriting Recognition
(submitted) (2012)

12. Perrett, D., May, K., Yoshikawa, S.: Facial shape and judgments of female attrac-
tiveness. Nature 368, 239–242 (March 1994)

13. Smirnova, E., Watt, S.M.: Communicating mathematics via pen-based computer
interfaces. In: Proc. 10th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing, (SYNASC 2008). pp. 9–18. IEEE Computer
Society (Sept 2008)

14. Szalay, A.S.: The sloan digital sky survey and beyond. SIGMOD Rec. 37, 61–66
(Jun 2008), http://doi.acm.org/10.1145/1379387.1379407


