
A Structure for Adaptive Handwriting Recognition

Vadim Mazalov and Stephen M. Watt
Department of Computer Science

University of Western Ontario
London, Canada

{vmazalov, Stephen.Watt}@uwo.ca

Abstract

We present an adaptive approach to the recognition
of handwritten mathematical symbols, in which a recog-
nition weight is associated with each training sample.
The weight is computed from the distance to a test char-
acter in the space of coefficients of functional approxi-
mation of symbols. To determine the average size of the
training set to achieve certain classification accuracy,
we model the error drop as a function of the number
of training samples in a class and compute the average
parameters of the model with respect to all classes in
the collection. The size is maintained by removing a
training sample with the minimal average weight after
each addition of a recognized symbol to the repository.
Experiments show that the method allows rapid adap-
tation of a default training dataset to the handwriting of
an author with efficient use of the storage space.

1 Introduction
Hardware support for digital handwriting has

reached its maturity, while algorithms for handling and
recognizing 2D input are still evolving. Our objective is
to develop an online adaptive handwriting recognition
algorithm, efficient in terms of the storage space, and to
test the method on the dataset of handwritten mathemat-
ical characters. Mathematics is one of the most difficult
forms of handwriting to be recognized due to non-trivial
syntactic verification and the large set of classes (that in-
clude Latin and Greek alphabets, digits, operators and
special characters) with many similar-looking symbols
written in non-linear form. Nevertheless, some progress
has been made by representing x and y coordinates of
a sample as parameterized functions and approximat-
ing the functions with truncated series of orthogonal
polynomials. The samples are classified with the dis-
tance to the convex hull of k nearest neighbors in the
space of coefficients of approximation [2]. The method

yields high accuracy, but has a significant drawback –
it does not adapt to variations in writing style of trained
classes. This is not acceptable in a production environ-
ment, since out of the box recognition applications are
usually trained with a default dataset of samples. Such
dataset relieves the user from an exhaustive training of a
mathematical recognizer that may include several hun-
dred classes. However, default training of some classes
may differ from the writing style of the user. This con-
cern is aggravated for online algorithms that typically
depend on the direction and order of writing of strokes.
Therefore, instances that appear identical visually, but
written in different styles, will be represented by points,
positioned in absolutely different locations in the coef-
ficients space. Thus, some training samples may repre-
sent noise and have negative impact on efficiency and
accuracy.

The exemplar-based learning in higher dimensions
is challenging due to the increase of sparsity of samples
of a class. Therefore, selection of training exemplars
has been thoroughly studied in instance-based machine
learning and related applications [6]. Some methods
suggest to retain a subset of the original instances [3, 1],
while other techniques propose to compute prototypes
from the training data [4]. Due to the nature of our clas-
sification method, we investigate the former approach.
It can be divided in incremental (start from an empty
training set and add instances one by one), and decre-
mental (start from the training set with all samples and
remove instances that are redundant or decrease accu-
racy). A decremental procedure DROP1 [6] suggests to
remove a point if all of its neighbors can still be cor-
rectly classified without the point. This and many other
techniques [3, 1] study the local relationship between
samples without taking into account that the training
dataset may change over time, moving the underlying
points in various directions.

We develop an online algorithm for adaptive recog-
nition of handwritten characters that is based on rein-

forcement of samples that have positive impact on clas-
sification and removal of samples that cause error or are
neutral. The method is suitable in both settings: When
users train a recognizer from scratch or when they use
the default dataset as the starting point. In the latter set-
ting, to determine the average size of a training class,
we model the error drop as a function of the number
of samples and attempt to correlate parameters of the
model with some spatial measurements of the class.

The proposed adaptive algorithm computes the par-
ticipation weight of each of the k neighbors in a correct
(incorrect) recognition and adds (subtracts) the value to
(from) the total weight of the neighbor. In a sense, the
method is similar to the IB3 algorithm [1], in which re-
moval or retaining of instances is based on counters.
However, the IB3 method is offline, meaning that it is
run only once to select good classifiers out of the pool
of training samples, while our algorithm is online and
makes removal decisions with each new sample avail-
able from the input. The method presented has poten-
tial of asymptotic improvement in performance over the
course of its use and is suitable for a variety of instance-
based machine learning applications. Unlike some al-
gorithms, based on neural networks or hidden Markov
models, the proposed technique uses only gradual up-
dates, making it suitable for real-time applications.

The main results of this paper are

• an experimental analysis of how error rate drops as
a function of the class size;

• an empirical model for the error rate, fitting the
experimental data well, to determine the average
size of a class for desired accuracy;

• an adaptive algorithm for distance-based symbol
recognition, using the functional approximation
framework.

This paper is organized as follows. Section 2 de-
scribes some basic preliminaries. Section 3 explains our
approach to modelling the recognition error. The adap-
tive recognition algorithm is presented in Section 4.
Section 5 gives the experimental results that show good
approximation of the error function and rapid adapta-
tion of the recognition algorithm to the writing style of
a user. Finally, Section 6 concludes the paper.

2 Preliminaries

In online classification environment, a character is
given as a sequence of points available from the digital
pen. For a single-stroke sample, coordinates of points
are represented as parameterized functions X(λ) and

Y (λ), where parameter λ can be time, arclength, etc.
These functions are approximated with truncated or-
thogonal polynomial basis. The 0-order coefficients of
approximation regulate the initial position of the char-
acter and can be neglected to normalize location of the
symbol. Dividing the rest of the vector by Euclidean
norm can normalize the sample with respect to size. For
a multi-stroke character, all strokes are joined consecu-
tively and the resulting stroke is processed as it is de-
scribed for a single-stroke symbol. Normalized coeffi-
cients of characters can be regarded as features describ-
ing objects to be classified. The recognition algorithm
is based on the distance to convex hulls of k-nearest
neighbors in the space of coefficients [2].

3 Modelling the Recognition Error

In our classification paradigm, the concept of person-
alized recognition can be reformulated as continues for-
mation of the training set. A set of training characters of
a class forms a cluster in the space. A priori knowledge
of the average initial size of a training class to achieve a
desired classification accuracy is important for compact
storage. It has an additional usability-related benefit:
When a new class is introduced to the dataset, the user
can be informed about the expected error drop depend-
ing on the number of samples introduced to the class.

Here and below, we will use the following notation:
n is the number of training samples that the class con-
tains in a given moment and N is the maximal num-
ber of training samples available in the class. Based on
our observation, convergence of the recognition error of
samples of a class can be closely described by the mod-
els

ε(n) =
An+B

n+ C
(1)

where A,B and C are parameters, or

ε(n) = αe−βf(n) (2)

where α and β are parameters, and f(n) is a monotoni-
cally increasing function.

Our objective is to find values of the parameters for
each class. We expect the parameters to be dependent
on some inner properties of a class, as well as the posi-
tioning of the class relative to neighboring classes. Fur-
ther, the mean parameters can be used to describe the
average error drop.

4 Adaptive Recognition

Most commonly, misclassification of handwritten
characters occurs when different samples are written

similarly, since writing styles of users can vary signif-
icantly. On the other hand, classes of characters pro-
vided by one user can usually be discriminated well.
As discussed in Section 2, only k samples of a candi-
date class are used in classification of a test symbol.
Each of these k exemplars should be awarded a weight,
computed as a function of the distance to the test sam-
ple. If the training symbol is located relatively close to
the test character, the weight should have large abso-
lute value, otherwise the weight should be close to zero.
If the training sample is of the same class as the test
symbol, the weight should be positive and otherwise –
negative.

In general, distances between training samples
within a class do not follow any of the major univariate
distributions, since a class may contain several styles
that group the exemplars. Therefore, basing the weight
on statistical properties of a class can be quite challeng-
ing. Instead, we take the weight as follows: For a given
test sample ts and a training exemplar ti, the recogni-
tion weight has the form

wti =
1

d(ts, ti) + 1

where d(ts, ti) is the distance between the points. This
weight is added to the total weight of the sample ti, if
ts and ti belong to the same class, and subtracted other-
wise.

When a new sample is recognized, it is added to the
class, and simultaneously a sample with the minimal av-
erage weight is removed from the dataset to prevent its
growth. Nevertheless, at any given moment, the size of
a class should not be less than k (the number of nearest
neighbours that form convex hull during classification).
The outline of the method is presented in Algorithm 1.

5 Experimental Results

This section presents experimental results of mod-
elling the recognition error and the adaptive classifica-
tion method. The experimental dataset is identical to
the one described in [2].

5.1 Modelling the Recognition Error

We conducted a series of experiments to measure
how the recognition rate changed as points were added
to the classes. Each class was measured separately, in
the following manner: All symbols from the class to
be tested were removed from the training data set and
the symbols from other classes were retained. Further,
the samples from the test class were separated randomly

Algorithm 1 Adaptive recognition algorithm
Input: ts – a test sample to be recognized.
{Recognize the sample as explained in Section 2}
Cl← recognition class of ts
{Recompute weights}
for i = 1→ T do
{For each of the candidate classes}
if Ti = Cl then

for j = 1→ k do
{Increase the weight of each nearest neighbor
tij in the correct class}
wtij ← wtij + 1

d(ts,tij)+1

end for
else

for j = 1→ k do
{Decrease the weight of each nearest neigh-
bor tij in the incorrect class}
wtij ← wtij − 1

d(ts,tij)+1

end for
end if
{Increase the counter}
for j = 1→ k do
Ctij ← Ctij + 1

end for
end for
{Remove the exemplar with the minimal average
weight among the classes with the number of sam-
ples > k}
Remove exemplar t : wt = min

ij
{wtij

Ctij
, |Ti| > k}

Assign an initial weight to ts and add ts to the recog-
nized class.

into a test set Pi and a training set Pr. Then the symbols
from Pr were added, initially one at a time and then in
larger groups. After each addition of points, the recog-
nition rate of the ensemble was measured using the test
set. Thus, for each class, the recognition rate was tested
first with 0 training points, then with 1 training point,
then with 2, then after 3, 4, 5, 6, 7, 8, 10, 12, 14, 16,
20, 24, 28, 32, 40, 48, 56, 64, ... until all the training
points were used. The number of training points ranged
from 10 to 2048, depending on the class. This whole
process was repeated ten times, and the recognition rate
recorded for a class after a particular number of points
was reported as the average of these ten measurements.
The testing sets were selected randomly, but disjoint.
The set of classes is denoted as Ω. The outline of exper-
iments is given in Algorithm 2.

Some of the samples have several class labels.
Therefore, the recognition error can be less than 100%,
even if the class has zero training samples in it. Results

Algorithm 2 Outline of the experimental setting
for Each class ω in the set of classes Ω do

Split samples in the class for 10-fold cross-
validation.
for i = 1 to 10 do

Take the i-th part Pi for testing and the rest Pr
for training.
{Introduce integer variables used in splitting the
training set.}
s← 0, k ← 3
while s ≤ |Pr| do

Clear the training set for the class ω.
Conduct training with the first s samples from
Pr.
Conduct testing with samples from Pi.
if s = 2k then
k ← k + 1

end if
{Increase the amount of training samples}
s← s+ 2k−3

{where 2k−3 was selected heuristically, based
on the observation that adding samples to a
small training set has bigger impact than to a
larger set}

end while
end for

end for

of recognition for all classes, depending on n, are given
in Figure 1.

We make a few observations: First, we see that for all
classes the recognition rate improves dramatically with
each of the first few symbols added. Most of the func-
tions have shape that can be modelled with (1). For ap-
proximation, we used the Nonlinearfit Maple [5] com-
mand to evaluateA,B andC. In classes with more than
a few dozen samples, the error rate appeared to drop off
similarly to a negative exponential function (2). In (2),
f(n) =

√
n was found to perform well. By taking the

logarithm of both sides, the parameters can be evalu-
ated as a linear regression between log(ε(n)) and

√
n.

We used the LeastSquares Maple command to compute
the least squares approximation.

We tested both models (1) and (2) and computed the
average root mean square error (RMSE) among classes,
obtaining respectively 0.03 and 0.87. Model (1) per-
formed the better of the two, and so this is the one upon
which we have concentrated. Examples of approxima-
tion with (1) for different values of N and the average
model are given in Figure 2. We observed that classes
of smaller size, with N < 64, are approximated not as
good as larger classes, partially due to non-stable be-

Figure 1. Recognition error for all classes,
depending on n, the number of training
samples in a class

A B C
Mean -0.007 11.718 23.398
σ 0.054 9.805 9.805

Table 1. The mean and the standard devi-
ation of the parameters

haviour of the error function on the small testing set.
Therefore, the mean parameters A,B and C were com-
puted among classes with ≥ 64 training samples. The
mean and the standard deviation of the variables are
shown in Table 1. The small mean value of parame-
ter A can be considered as an argument that the error
model (1) can be simplified to ε(n) = B

n+C . On the
other hand, such simplification will make the model less
robust and may have negative effect on the approxima-
tion accuracy. Therefore, we decided to keep the pa-
rameter.

The average RMSE between the modelled recogni-
tion rate and the actual recognition rate for classes of
certain size is presented in Figure 3(a). Figure 3(b)
shows the percentage of classes that are approximated
with RMSE less or equal a given value.

5.2 Correlation between class measurements
and A,B and C

We question whether parameters A,B and C are re-
lated to spatial characteristics of the class, such as posi-
tioning of points within the class and distance to neigh-
boring classes. For each class i, the following measure-
ments are considered (in Euclidean distance)

• Ri1 - the maximal distance from the class center to

8 16 32 64 128 512 Average

Figure 2. Examples of approximation of error for classes of different size N

(a) (b)

Figure 3. RMSE results: (a) Average RMSE for classes of different N , (b) Percentage of classes
that are approximated with RMSE less or equal given RMSE

any point in the class.

• Ri.75 - the minimum radius of a ball centered at
the class center that encloses 75% of points in the
class.

• Ria - the average of radii from all points in the class
to the class center.

• Riσ = Ria + σi, where σi is the standard deviation
of the radii from points in the class to the class
center.

• Di
F - the minimum distance between points of the

class to the closest neighboring class.

In addition, we study the measurements

Ďi
L = min

j 6=i
(dij −RiL −R

j
L),

D̄i
L = avg

j 6=i
(dij −RiL −R

j
L)

where L is any of the labels 1, .75, a, σ and dij is the
distance between centers of classes i and j.

Measurement Spearman Kendal tau-a
A Ď1 -0.29 -0.19
B Ďσ -0.55 -0.39
C Ďσ -0.59 -0.42

Table 2. The measurements with the
largest absolute values of the correlation
coefficients for each approximation vari-
able

Spearman and Kendall tau-a tests did not demon-
strate sufficient correlation of these measures with the
model parameters. The largest absolute values of sta-
tistically significant correlation coefficients for corre-
sponding class measurements are presented in Table 2.

5.3 Adaptive Recognition

For this experiment, each character in the collec-
tion is assigned to the author who provided the symbol.

(a) (b)

Figure 4. Adaptive recognition error of the (N + 1)-th sample in a class: (a) For each author, (b)
Average among the authors

Then for each author, the dataset is split in two parts:
samples provided by the author (used in testing) and the
rest of the dataset. During the training phase, for each
class, we randomly select K samples and form the de-
fault training set. The value of K, the initial size of a
training class, can be determined from the error mod-
elling, and for this experiment we take K = 30. Dur-
ing the testing phase, a test sample is extracted from a
randomly chosen class among those written by the test
author and recognized. The recognition error of the N -
th sample by the author is computed as the ratio of the
number of misrecognitions of theN -th sample to the to-
tal number of N -th samples tested. This run is repeated
200 times and the average for each author is reported in
Figure 4(a). Figure 4(b) shows the average error among
all the writers. We observe that the adaptive algorithm
on average results in a rapid decrease of error and con-
verges to ≈ 99% accuracy.

6 Conclusion

We have shown how handwriting recognition tech-
niques based on functional approximation methods are
well suited to adaptive setting. Rather than organiz-
ing the workflow as a training phase followed by a use
phase, we see continuous improvement of recognition
results taking advantage of correction history. In our
setting, based on convex hulls of classes in the coeffi-
cient space, adaptation consists of weight-based evolve-
ment of the shape of the class envelopes. The exper-
iments have shown that the error rate drops approxi-
mately as (An+B)/(n+ C) as samples are seen, and

thatA,B andC slightly vary by class and correlate with
class measurements to a minor degree. The average val-
ues of the parameters can be used to determine the size
of each class in a default training dataset. The initial
set assembled this way serves as an input to a weight-
based adaptive classifier. The weight of an exemplar is
computed from the distance to the test sample. With
each recognition, the symbol with the minimal average
weight gets deleted from the collection. Experiments
show that the model allows rapid adjustment to the style
of a particular writer and converges to approximately
99% accuracy.

References

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based
learning algorithms. In Machine Learning, pages 37–66,
1991.

[2] O. Golubitsky and S. M. Watt. Distance-based classifica-
tion of handwritten symbols. International J. Document
Analysis and Recognition, 13(2):113–146, 2010.

[3] P. Hart. The condensed nearest neighbor rule (corresp.).
Information Theory, IEEE Transactions on, 14(3):515 –
516, may 1968.

[4] T. Kohonen. Self-organization and associative memory.
Springer-Verlag New York, Inc. New York, NY, USA,
1989.

[5] Maplesoft. Maple 13 user manual, 2009.
[6] D. R. Wilson and T. R. Martinez. Reduction tech-

niques for instance-based learning algorithms. In Ma-
chine Learning, pages 257–286, 2000.

