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Abstract

Digital ink curves are typically represented as series
of points sampled at certain time intervals. We are in-
terested in the problem of how to select a minimal sub-
set of sample points to approximate a digital ink curve
within a given error bound. We present an algorithm to
find an approximation with a specified number of points
and providing the minimum cumulative error. Alterna-
tively, it may be used to select the minimum number of
points required to satisfy an error bound. The method
uses dynamic programming and has a cost linear in the
number of points.

1. Introduction

Pen input is one of the more convenient and natural
forms of entry for several kinds of input, and has there-
fore been adopted for a variety of electronic devices
such as tablets, PDAs, touch sensitive whiteboards, and
cell phones. Tied to the pen input is the notion of digital
ink. Digital ink is generated by sampling points from a
traced curve at a certain rate, and thus is typically pre-
sented in the form of a series of points, each of which
containsx andy values in a rectangular coordinate sys-
tem at a particular timet. Recognition software applica-
tions take these sequences as input. In order to accom-
modate the need of detailed analysis and high definition
rendering, higher sampling rate are used, allowing more
points to be collected within an interval of time. How-
ever, this creates more work for recognition software
applications and demands more resources for storage.
We are therefore interested in how to select a subset of
these sampled points that retain a desired degree of ac-
curacy.

We are motivated by the problem of how to precisely
approximate a digital ink curve through selecting a sub-
set of points from the original trace. We wish to reduce
the size of the subset while bounding the approxima-
tion’s error. In other words, we would like to save the

critical points that determine the shape of the curve (e.g.
turning points) and remove those which have little im-
pact (e.g. middle points on a straight line).

This is a problem for which there has been con-
siderable previous work, some of which we highlight
here. In 1986, Dunham [2] proposed an optimal al-
gorithm to find a piecewise linear approximation with
fixed initial and final points by selecting a subset of
points from the original set. The approximation is op-
timal in the sense that it contains the minimum number
of segments such that the error on each is below a uni-
form threshold. The error on each segment was taken
to be the maximal distance from the curve segment to
the line segment. In 1996, Horst and Beichl [3] intro-
duced an algorithm which used arc-chord length dif-
ference as the error. Compared to [2], this algorithm
achieved lower complexity but cannot guarantee global
optimality. In 2007, another algorithm was presented in
[5], which iteratively computes chordal deviation—the
distance between the original curve and its approxima-
tion. Points with the minimal distance are removed until
the distance becomes larger than a threshold. In 2012,
Mazalov and Watt [6] described a piecewise linear ap-
proximation algorithm to compress digital ink. That al-
gorithm is fast but suboptimal and selects points using
a combination of two error functions. All of these al-
gorithms compute the error on each curve segment and
attempt to minimize the maximum error. They do not
minimize the cumulative error which reflects the ap-
proximation’s global deviation from the original curve.
Sometimes the maximum error on each curve segment
can be small but the cumulative error large, which can
produce global distortion.

Our method is based on the observation that,
for piecewise linear approximation, removing sample
points gives approximating curves of shorter arc length.
Arc length discrepancy is additive and may be used as
a proxy for other error measures. A continuous curve
may be approximated by a piecewise linear function



with vertices on the curve. Decreasing the arc length
discrepancy by adding points to a piecewise linear ap-
proximation decreases all the usual error measures and
cannot increase them.

We present an algorithm to find an optimal point se-
lection to approximate a piecewise linear curve. It can
be used in two ways:

• Given a digital ink curve consisting ofn ≥ 2
points and a specified number of points2 ≤ k ≤ n,
the algorithm selects a subset ofk points such that
the arc length discrepancy between the approxima-
tion and the original curve is minimized.

• Given a digital ink curve and a bound on arc
length discrepancy, the algorithm selects a subset
of points of minimum number required to approx-
imate the curve to within that bound. That is, no
smaller subset of the original points can achieve
the bound.

Both uses are globally optimal and can be applied to
both open and closed, planar and space curves.

The method can be applied when other error mea-
sures are of interest. In this case, though fast and good,
the point selection is not guaranteed to be optimal. We
have used this method with a variety of error types used
in prior work, including the arc-chord length difference,
maximal height, average height, which in turn measure
the difference between the curve length and the chord
length, the maximal height from the curve to the chord,
and the average height from the curve to the chord. All
of these errors are computed on each curve segment.

The remainder of the article is organized as follows.
In section 2, we present the algorithm, its correctnes
and complexity. Section 3 reports on experiments con-
ducted to evaluate the performance of with several error
functions. Section 4 concludes the article.

2 The Approximation Algorithm

2.1 Problem Definition

We consider a digital ink curve to be a two dimen-
sional curve made up of a series of points. Our objec-
tive is to find an acceptable approximation by select-
ing a subset of points from the original ones. We have
two problems: 1) Given a digital ink curve consisting
of n ≥ 2 points and a specified number of pointsk,
2 ≤ k ≤ n, how can we select thek points such that
the cumulative error between the approximation and the
original curve is minimized? 2) Given a digital ink
curve consisting ofn ≥ 2 points and a cumulative error
thresholdǫ ≥ 0, how can we select the minimum num-
ber of points required to approximate the curve such
that the cumulative error is less than or equal toǫ?

Algorithm 1 : Approximation byk points
Input : A digital ink curve ofn points,n ≥ 2
Input : The specified numberk, 2 ≤ k ≤ n

Output : The indices of the k points
begin

// The indices of the k points
S ← {};
// The minimum weight table
D ← (k + 1)× n matrix;
// Path
P ← (k + 1)× n matrix;
// Initialization
for j ← 1 to n− 1 do

D2,j ← w(v0, vj);
P2,j ← 0;

// Compute the rest ofD
for m← 3 to k do

for j ← m− 1 to n− 1 do
min weight←∞;
for i← m− 2 to j − 1 do

weight← Dm−1,i + w(vi, vj);
prior vertex index← 0;
if weight < min weight then

min weight← weight;
prior vertex index← i;

Dm,j ← min weight;
Pm,j ← prior vertex index;

// Restore the path
vertex index← n− 1;
for i← 0 to k − 1 do

S ← S ∪ {vertex index};
vertex index← Pk−i,vertex index

return S
end

Both problems can be seen as graph problems. Given
a digital ink curve consisting ofn points, we first as-
sign an index to each point. A weighted DAG (directed
acyclic graph)G(V,E) can be constructed from these
points, where

{

V = {vi | 0 ≤ i ≤ n− 1}
E = {(vi, vj) | 0 ≤ i < j ≤ n− 1}

(1)

The setV containsn vertices, withvi corresponding
to thei-th pointpi on the digital ink curve. The DAG
will be constructed to have a unique source (vertex with
no inbound edge) and a unique sink (vertex with no out-
bound edge). The source corresponds to the initial point
p0 and the sink corresponds to the final pointpn−1. The
weight of each edge is defined as:

w(vi, vj) = errorFn(pi, pj) (2)



The error functionerrorFn(pi, pj) is given before-
hand. It measures the approximation error on the curve
segment determined bypi andpj. Different error func-
tions can be applied to compute for different error types.
Section 2.3 will explain the error types in detail.

The first problem is now equivalent to finding a path
from the source to the sink consisting ofk vertices with
minimum total weight. The second problem is equiva-
lent to finding the shortest path from the source to the
sink such that the total weight is less or equal to the
given threshold.

2.2 Algorithm

Both paths are guaranteed to exist and can be found
using dynamic programming. Given a graphG(V,E),
we define a matrixD, whereDm,j represents the min-
imum total weight of the path from the source,v0, to
vertexvj includingm vertices. Initially, we assign

D2,j =

{

∞ if j = 0
w(v0, vj) if 0 < j ≤ n− 1

Form ≥ 3, Dm,j can be computed as:

Dm,j =

{

min
m−2≤i<j

{Dm−1,i + w(vi, vj)} if j ≥ m− 1

∞ otherwise

Therefore, finding the minimum cumulative error of
a k-point approximation is simply to computeDk,n−1,
wherek is the specified number of points andn − 1 is
the index of the final point on the original curve. The
complete algorithm to select thek points is shown in
Algorithm 1.

Similar to Algorithm 1, finding an approximation
consisting of the minimum number of points such that
the cumulative error is within a given threshold,ǫ, is
achieved by exiting the loop with abreak statement.
We keep computingDm,n−1 for m = 2 . . . n until we
find the firstm that makesDm,n−1 ≤ ǫ. For additive er-
rors, them is guaranteed to exist as the cumulative error
decreases when more points are selected and reaches0
when all points are selected. The complete algorithm is
laid out in Algorithm 2.

2.3 Error Types

We construct digital ink curves using linear and cu-
bic spline interpolation methods since they are com-
monly used in the area of digital ink rendering, hand-
writing recognition, and handwriting neatening. By se-
lecting a subset of points, the approximation algorithm
introduces differences between the approximation and
the original curve. These differences introduce error.
The error is measured on each segment (i.e. the inter-
val between each pair of points on the curve), and we
assign zero to the error on the segment formed by any

two consecutive points. Errors can be cumulated along
the approximated curve, which reflects the global devi-
ation from the original one. As digital ink curves may
be generated in different scales, we normalize each by
its arc length in order to evaluate the error fairly.

Algorithm 2 : Approximation by error threshold
Input : A digital ink curve ofn points,n ≥ 2
Input : The error thresholdǫ, ǫ ≥ 0
Output : The indices of the selected points
begin

// The selected points
S ← {};
// The minimum weight table
D ← (n+ 1)× n matrix;
// Path
P ← (n+ 1)× n matrix;
// The smallest m that makesDm,n−1 ≤ ǫ

m∗ = 2;
// Initialization
for j ← 1 to n− 1 do

D2,j ← w(v0, vj);
P2,j ← 0;

if D2,n−1 > ǫ then
// Compute the rest ofD
for m← 3 to n do

for j ← m− 1 to n− 1 do
min weight←∞;
for i← m− 2 to j − 1 do

weight←
Dm−1,i + w(vi, vj);
prior vertex index← 0;
if weight < min weight

then
min weight← weight;
prior vertex index← i;

Dm,j ← min weight;
Pm,j ← prior vertex index;

if Dm,n−1 ≤ ǫ then
m∗ ← m;
break;

// Restore the path
vertex index← n− 1;
for i← 0 to m∗ − 1 do

S ← S ∪ {vertex index};
vertex index← Pm∗−i,vertex index

return S
end

As we are interested in minimizing the global devi-
ation error, we choose error types based on three crite-
ria. A good type of error should be computationally



(a)

(b)

(c)

Figure 1. Error types: (a) Arc-Chord
Length Error, (b) Maximal Height Error,
and (c) Average Height Error. The curve
is constructed using cubic spline interpo-
lation.

efficient, additive, and has a natural meaning in ge-
ometry. In this article, we consider three types: Arc-
Chord Length Error, Maximal Height Error, and Aver-
age Height Error.

• Arc-Chord Length Error measures the differ-
ence between the sum of the arc length of each
curve piece and the length of the chord. An ex-
ample is shown in Figure 1(a). The error on the
segment(pi, pi+3) is computed asSi + Si+1 +
Si+2 + Si+3 − Ci,i+3, whereS is the arc length
of the curve piece andC is the chord length.

• Maximal Height Error measures the maximal
distance between the curve segment and the line
segment. An example is shown in Figure 1(b).

• Average Height Error measures the average dis-
tance between the curve segment and the line seg-
ment. An example is shown in Figure 1(c).

2.4 Correctness

Selecting them-th point is a process of computing
Dm,n−1, wheren − 1 is the index of the final point on
the original digital ink curve. Since

Dm,n−1 = min
m−2≤i<n−1

{Dm−1,i + w(vi, vn−1)},

we can recursively computeDm,n−1,m = 3 . . . n using
dynamic programming with the given initial condition
D2,i = w(v0, vi), 0 < i ≤ n − 1. This is a partic-
ular application of the Principle of Optimality [1] and
Dm,n−1 will be the minimum cumulative error of the
approximation consisting ofm points.

Since the Arc-Chord Length error is additive, the
matrixD has the following properties: with the increase
of m, Dm,n−1 decreases and reaches0 whenm = n.
But for the other two types errors, the matrixD may
not have the property thatDm,n−1 ≤ Dm′,n−1 when
m′ ≥ m. However, sinceDn,n−1 is 0 in either case, we
can always use the algorithm to find the solution.

2.5 Complexity

The complexity to find thek-point approximation
is O(kn2). To see this, note we are computing a ma-
trix. To selectk poitns, it is necessary to computek
rows. Since each row hasn entries, we have a total cost
of O(kn2). Finding an approximation within a given
cumulative error thresholdǫ, in the worst case that all
points on the original digital curve need to be selected,
giving complexityO(n3).

The both complexities can be reduced if we look
at only a fixed number of prior vertices in computing
Dm,j , but the approximation result may no longer be
globally optimal.

3 Experiments

Figure 2 shows an example of applying Algorithm 1
to a digital ink curve. The digital ink curve consists
of 55 points which are marked as black dots. The red
dots are the selected points in the approximation. The
error adopted here is the Arc-Chord Length Error. In-
creasing the number of selected points from 5 to 20, the
approximation approaches the original digital ink curve
quickly.

Figure 3 shows an example of applying Algorithm 2.
The digital ink curve consists of 51 points which are
marked as black dots. The red dots are the selected
points in the approximation. The error adopted here is
the Arc-Chord Length Error. As we decrease the error
thresholdǫ, more points are selected in order to restrict
the cumulative error withinǫ. When the error thresh-
old drops to 0.001, the approximation is almost as the
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Figure 2. Approximation of symbol “6”
by specified number of points k. The
black points are the points on the origi-
nal curve. The red points are the approx-
imation. The error is the arc-chord length
error. We use e to denote the cumulative
error. (a) k = 5, e = 0.052. (b) k = 10,
e = 0.013. (c) k = 15, e = 0.005. (d) k = 20,
e = 0.002.

same as the original digital ink curve. But the number
of points selected in the approximation is only half of
the size of the original.

We have discussed three types of error in Section 2.3.
To give a general idea of the performance for each error
type, we have tested our algorithms against a handwrit-
ing dataset. The handwriting dataset we used is that of
LaViola [4], containing 10665 symbols, mostly Latin
letters and digits. Altogether there are 13203 strokes in
these symbols. We constructed digital ink curves from
these strokes using linear and cubic spline interpola-
tion since they are commonly used in the area of digital
ink rendering, handwriting recognition, and handwrit-
ing neatening. All of the curves were normalized by arc
length in advance. We measured the average time cost
in milliseconds and average cumulative error (relative
to the trace length) on each digital ink curve. Figure 4
shows the average time cost of applying different er-
ror types in Algorithm 1. We see that the Arc-Chord
Length Error outperforms the others in both linear and
cubic spline cases. Figure 5 shows the average cumu-
lative error of applying different error types in Algo-
rithm 1. With the increase of the specified number of
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Figure 3. Approximation of symbol “n”
by cumulative error threshold ǫ. The
black points are the points on the original
curve. The red points are the approxima-
tion. The error is the Arc-Chord Length
Error. We use s and e to denote the num-
ber of selected points and the cumulative
error, respectively. (a) ǫ = 0.05, s = 6,
e = 0.0459. (b) ǫ = 0.02, s = 9, e = 0.0182.
(c) ǫ = 0.01, s = 12, e = 0.0093. (d) ǫ = 0.005,
s = 16, e = 0.004. (e) ǫ = 0.002, s = 19,
e = 0.0018. (f)ǫ = 0.001, s = 23, e = 0.0009.

points, the average cumulative errors of all types drop
dramatically, but takes longer to compute.

Evaluation of these error types can be conducted in
different ways. Since the approximated curve and origi-
nal curve share the same initial and final points, one can
compare the area enclosed by the two curves. A smaller
area indicates that the approximated curve in general
looks more similar to the original one, which suggests a
better approximation. When the enclosed area becomes
0, the approximated curve will overlap the original one
and both curves will look exactly same. An alterna-
tive way to evaluate these error types is to compare the
arc length between the approximated curve and origi-
nal one. Since the two curves share the same initial and
final points and our point selection is a subset of the en-
tire point set, one can compute the difference between
the arc length of the approximated curve and of the orig-
inal curve. A smaller difference suggests a higher sim-
ilarity and a better approximation. Figure 6 shows the
average similarity which is defined as the arc length of
the approximated curve divided by the arc length of the
original curve. With the increase of the specified num-



Figure 4. The average time cost of using
different error types in Algorithm 1.

Figure 5. The average cumulative error of
using different error types in Algorithm 1.

ber of points, the arc length of the approximated curves
approaches the arc length of original curve quickly.

4 Conclusion

We have presented an algorithm to select a subset
of points to optimally approximate a digital ink curve.
In particular, it is able to find an approximation with
a specified number of points and providing the mini-
mum cumulative error or to select the minimum num-
ber of points required to satisfy a given error threshold.
The algorithm is based on dynamic programming and
has a cost linear in the number of points selected. The
algorithm is independent of the choice of error func-
tion, and we have examined its performance with three:
the Arc-Chord Length Error, the Maximal Height Er-
ror, and the Average Height Error. These were chosen
for their computational efficiency and natural geomet-
ric meaning. Our experiments have shown that the Arc-
Chord Length Error outperforms the others in terms of
average time cost in both linear and cubic spline cases.

There are a few interesting directions we would like

Figure 6. The average similarity be-
tween the approximated curve and origi-
nal curve.

to pursue in the future. First, in addition to the cumu-
lative error, we would like to restrict the error on each
segment. This would allow control of the local devia-
tion as well as the global deviation. Second, we wish to
perform measurements with more types of error, includ-
ing those involving differences in the spatial derivatives.

We would like to thank Enxin Wu, a Ph.D. candidate
in the Department of Mathematics at the University of
Western Ontario, for several useful discussions.
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