
Recognition of Relatively Small Handwritten Characters,
or “Size Matters”

Vadim Mazalov and Stephen M. Watt
Department of Computer Science

University of Western Ontario
London, Canada

{vmazalov, Stephen.Watt}@uwo.ca

Abstract

Shape-based online handwriting recognition suffers
on small characters, in which the distortions and vari-
ations are often commensurate in size with the char-
acters themselves. This problem is emphasized in set-
tings where characters may have widely different sizes
and there is no absolute scale. We propose methods
that use size information to adjust shape-based clas-
sification to take this phenomenon appropriately into
account. These methods may be thought of as a pre-
classification in a size-based feature space and are gen-
eral in nature, avoiding hand-tuned heuristics based on
particular characters.

1 Introduction

Size normalization is usually one of the early steps
in the recognition of both handwritten and typeset char-
acters, but can also be the source of errors. Characters
can have different sizes for two reasons: First, the same
symbol may appear in different sizes. An obvious ex-
ample of this would be footnotes and titles having dif-
ferent sizes from normal text. Other examples would
include: place names in map labels having greatly vary-
ing size, and the symbols of mathematics, which are
smaller when written as superscripts or subscripts or
larger when written as n-ary operators. Secondly, dif-
ferent symbols within the same symbol set may have
different size relative to each other. For example, a pe-
riod will be smaller than a lower case “o”, which will
in turn be smaller than a capital “M”. When these two
situations are combined, size normalization is a double-
edged sword—it is required, but it can also lead to in-
creased ambiguity.

We are motivated by the application of online math-

ematical handwriting recognition, where digital ink
traces are available for symbols that are typically well-
separated. Many alphabets are in use simultaneously
and there is no dictionary of valid words. Characters
will be of greatly varying size and size can vary on a
character-by-character basis, rather than word-by-word
or sentence-by-sentence. In this setting, we have found
it effective to use shape-based classification with or-
thogonal series representation of the curves traced [3].
It was observed, however, that for very small traces the
shape of the curve, when scaled, may be quite arbitrary.
In these cases, the original size of a symbol is of high
importance.

Recognition systems may adopt ad hoc rules to iden-
tify characters of unusual size, e.g. commas, long lines,
arrows, etc. What is lacking in this approach are gen-
eral principles by which such symbols requiring spe-
cial treatment may be determined without any a priori
knowledge of the symbol set, and how special rules to
recognize them may be generated.

We propose a two-step processing method with sam-
ples being first pre-classified by size, and then recog-
nized by shape. We take advantage of the usual clus-
ter analysis techniques on a space of feature vectors
computed from size measures. This may be used in
two ways: first to do absolute classification based on
size, and second, to do a blended classification, weight-
ing unusually sized samples differently than samples
whose size tends to the mean. These ideas can further
be extended to literally any symbol set to identify those
classes that are more easily separated by size measures
than shape measures, e.g. lines, dots, etc.

We present three approaches to classification of
small characters based on the relative size of the sam-
ples with respect to other symbols in the collection. The
size of all samples is expressed in a metric unit, derived
from the dataset. In the first method, that can be re-

garded as a 1-dimensional classifier, a feature is com-
puted from a letter based on its width and height, reg-
ulated by a parameter. Given that the parameter is op-
timized, the method is shown to yield good results for
our purposes. This method can be further extended to
linear characters, such as “–”, “|” with appropriate size
measure. The second method is a generalized version
of the first technique and it suggests to compute several
parameters not only from the size of a letter, but also
from its shape, e.g. the area of the convex hull of trace
points of the character. Then, one-vs-one support vector
machine (SVM) classification becomes a natural way to
differentiate classes, if the number of classes is small.
However, there are some dictionaries with large set of
characters that have identical shape and can only be dis-
tinguished by its size. Examples include some capital
and low-case characters from the Latin and Greek al-
phabets, e.g. Kk, Oo, most of the symbols from the Rus-
sian alphabet, e.g. Vv, Gg, Dd, Ii, musical notation,
and Benesh notation. The third approach is the most
robust and suitable for collections with large number of
small classes. The distance to the convex hull of coef-
ficients of approximation of coordinate functions [4] is
adjusted based on the size of the test sample and the av-
erage size of samples in the candidate class. All of the
methods are shown to improve significantly the current
state of our algorithm with respect to small characters.

The rest of the paper is organized as follows. Some
of the preliminaries are given in Section 2. Descrip-
tion of the size-sensitive classification schemes is given
in Section 3, including the details of the measurement
unit, the 1-dimensional and 3-dimensional classification
algorithms, as well as the weight-based method. Ex-
perimental setting and results are reported in Section 4.
Section 5 concludes the paper.

2 Previous Work

Partially related problems have been studied in the
past. A conventional approach to identification of small
samples is by comparison with a fixed threshold, ex-
pressed in pixels. The adaptive normalization method
developed in [7] adjusts the size of a character based
on its aspect ratio. In [2] it is proposed to estimate the
principal line, and correspondingly the size of symbols,
using the pixel count histogram when projected on the
vertical axis. Recognition rate of handwritten numerals
depending on the size was investigated in [5]. In [10] it
is proposed to perform size normalization with Hough
transform.

These methods are designed for either processing
characters independently or for extraction of informa-
tion from a set of characters. In contrast, we propose

Figure 1. Examples of scaled small char-
acters from the top row to the bottom: pe-
riod, comma, quotes.

to apply special classification rules to relatively small
symbols.

An efficient and accurate technique for online clas-
sification of characters has been developed in [3, 4].
In the approach, the feature vector of a character is
constructed from coefficients of approximation of the
strokes with orthogonal polynomials. Classification is
based on the minimal distance to convex hulls of train-
ing classes, where each character is represented as a
point with coordinates being the coefficients of approx-
imation. Normalization of a sample with respect to size
is achieved by normalizing the coefficients vector so
that its norm is equal to one. The method was tested on
a collection of handwritten samples, and can be as well
used as a general purpose algorithm for recognition of
two-dimensional patterns. The technique is overall ro-
bust, but has a drawback, related to size-normalization
– it does not take into account the initial size of a sam-
ple. As a result, small samples are scaled to the size
of a regular character that leads to incorrect classifica-
tion. Examples of small samples are shown in Figure 1,
where it is easy to observe that, for instance, normal-
ized period can be mis-classified as many other sym-
bols, comma resembles a closing bracket, while quotes
are hard to distinguish from “11”. Thus, the algorithm
requires a robust adaptive size normalization approach.

3 Size-Sensitive Classification Schemes

3.1 The Unit of Measurement

To treat small samples efficiently, one has to identify
what the small character is. The size of a small symbol
should not be dependent on the device, nor identified
as a constant amount of pixels. Instead, the size should
be expressed in terms of some properties of the dataset.
Similar to the notion of Ex-typography, we choose to
take the average height of lower-case x as the unit mea-
sure, and denote this value as ex, analogous to the ex
measure in CSS [1]. In other words, ex can be under-

stood as a metric unit for all characters in a database.
In this setting, we can separate small classes from other
classes based on dynamic size measures.

3.2 1-Dimensional Classification

The algorithm described in this section is the sim-
plest form of a classifier, since only one feature is an-
alyzed – the size of the sample. Despite its simplicity,
in the experimental section we show that this technique
has very low error in recognition of certain classes due
to the dynamic nature of the size measure.

The Size Measure If the size of a character c is an-
alyzed by its bounding box, there are essentially two
types of size measures: perimeter-based and area-based.
The perimeter-based measure is studied in this section
s(c) = αw(c)+h(c) , where α is a parameter, w(c) and
h(c) are width and height of the bounding box of the
character. We empirically find the α that gives the low-
est classification error. The area-based feature is con-
sidered in Section 3.3.

Classification Consider a dataset with only two
classes {◦,×} that are to be classified with respect to
size, and the average size of ◦ is less than the average
size of ×. Let s{◦,×} be the size threshold that sepa-
rates the classes. Then a sample from the class ◦ (×)
is considered to be classified incorrectly, if its size is
greater (smaller) than s{◦,×}. We denote with I◦ (I×)
the set of incorrectly classified samples of ◦ (×). Then,
the overlap of the classes is computed as

D{◦,×,s{◦,×}} =
∑
i∈I◦

(s(i)−s{◦,×})+
∑
i∈I×

(s{◦,×}−s(i))

The threshold s{◦,×} that minimizes the overlap can
be found in O(n) given that sizes have been computed
and stored in a sorted array, where n is the total number
of samples in ◦ and ×, see Algorithm 1 for details. The
algorithm can be easily extended to an arbitrary amount
of classes.

The classification error is measured as described in
Algorithm 2.

3.3 3-Dimensional Classification

In this scheme three features are extracted from char-
acters: the height and the width of the bounding box,
and the area of the convex hull of points of the sam-
ple, see Figure 2. We test whether these indicators are
sufficiently discriminative with an SVM classifier.

Algorithm 1 Find Separating Threshold(S◦, S×, s)
Input: S◦ – the set of samples of the class ◦, S× – the
set of samples of the class ×, s – the array of sizes of
samples from both classes, sorted in ascending order.
Output: s{◦,×}.

Compute differences between consecutive elements
of S as ∆i = s[i]− s[i− 1], i = 1, .., n.
D{◦,s[n]} ← 0
for all i = n− 1 to 0 do

Compute the overlap for samples of the class ◦, if
s[i] is the threshold

D{◦,s[i]} ← k{◦,s[i]}∆i+1 +D{◦,s[i+1]}

where k{◦,s[i]} is the number of incorrectly dis-
criminated samples of ◦ for the threshold s[i].

end for
D{×,s[0]} ← 0
for all i = 1 to n do

Compute the overlap for samples of the class ×, if
s[i] is the threshold

D{×,s[i]} ← k{×,s[i]}∆i +D{×,s[i−1]}

where k{×,s[i]} is the number of incorrectly dis-
criminated samples of × for the threshold s[i].

end for
for all i = 0 to n do

D{◦,×,s[i]} ← D{◦,s[i]} +D{×,s[i]}

end for
return {s[m] | D{◦,×,s[m]} = min

i=0..n
D{◦,×,s[i]}}

Algorithm 2 classificationError(α)
Input: α - the parameter in the size measure.
Output: Classification error.

For the given α: Compute sizes of samples.
{In 10-fold cross-validation over the dataset}
for i = 1 to 10 do

Take the i-th training set and find s{◦,×} with Al-
gorithm 1.
Test s{◦,×} with the i-th test set. The classification
error is reported as the ratio of incorrectly discrim-
inated samples to the total number of samples in
the test set.

end for
return The average discrimination error over the 10
runs.

3.4 Weight-based classification

The letter “.” can usually be classified based on its
size in ex units. By analyzing sizes of characters in a

Figure 2. Convex hull of a sample
Algorithm 3 WeightedClassification(x)
Input: x - a test sample.
Output: The result of classification.

sx ← width(x) + height(x)
{Select k nearest neighbours of candidate classes
C1, ..., CN , as described in [4]}
for i = 1 to N do
di ← D(x,CHNNik)
if Ci is a class of small symbols then
di ← (ω(sx) + β|ω(s̄i)− ω(sx)|) · di

end if
end for
return Cj |dj = min

i=1..N
di

dataset, one can obtain the minimal size threshold of
samples, other than “.”. If the size of a test sample is
smaller than the threshold, then it is automatically clas-
sified as “.”. If the size is greater, the character still can
be “.”. Therefore, the class of “.” is considered in com-
putation of distances, described below.

Unlike “.”, other small symbols, such as “,”, preserve
its initial shape after normalization, even though the let-
ter maybe scaled significantly and appear as a differ-
ent character. Thus, the shape and size should both be
considered in classification. The distance to the small
classes is adjusted based on the average relative size of
samples in the class and the relative size of the test sam-
ple

Dadj = (ω(sx) + β|ω(s̄i)− ω(sx)|) ·D(x,CHNNik)

where sx is the relative size of the test sample x (the
sum of its width and height), s̄i is the average rela-
tive size of samples in the test class i, β is a param-
eter, D/Dadj(x,CHNNik) is the distance/adjusted dis-
tance from the test sample to the convex hull of k near-
est neighbours of the class i [4], where i is one of the
small classes. The distance to regular-size classes is
computed without the weight adjustment. We take the
function ω(s) to have the form sγ where γ is a numeric
parameter to be evaluated. See Figure 3 for examples of
ω(s). This method is illustrated in Algorithm 3.

Besides their size, small characters can usually be

Figure 3. Examples of the weight function
depending on the relative size: ω(s) =
s1/4, ω(s) = s, and ω(s) = s4

Figure 4. Relative frequency vs relative
size for the different classes in the OR-
CCA dataset

differentiated by positioning, relative to the baseline
and mean line. However, we leave that analysis to an-
other recognition layer, responsible for the spatial seg-
mentation of formulas.

4 Experiments

4.1 Experimental Setting

The experimental dataset is based on the database
of handwritten characters, collected at the Ontario Re-
search Centre for Computer Algebra, a subset of the
dataset described in [4]. Since the dataset does not con-
tain classes with small characters, we obtained samples
“.” and “,”/“′” by decomposing the following symbols:
“:”, “ä”, “÷”, “ȧ”, “ .=”,“!”,“. . .”,“i”,“j”,“�”,“?”,“;”.
Visual examination of the small characters written
within the context of another character and the small
letters written independently did not reveal significant
differences. Therefore, we find this setting adequate.

Figure 5. The classification rate depending on α for: “.” and “,” (left), “.” and the rest of the
classes (centre), “,” and the rest of the classes (right)

Overall, we have collected 803 samples of “.” and 315
samples of “,”/“′”.

The physical size of an ex unit is 823. The relative
frequency of sizes of samples, shown in Figure 4, was
computed as follows:

1. Split the range of sizes in k intervals:
(s0, s1), (s1, s2), ..., (sk−1, sk). In the exper-
iments, k = 40.

2. The relative frequency on an interval m is found
as the ratio of the number nm of samples in the
interval to the total number of samples in the class:
nm/

∑i=k
i=1 ni.

3. Sizes are computed as the sum of width and height
with α = 1.

Note, that the most frequent size of “.” is ≈ 0.02ex.
Therefore, the value of 0.01ex may be interpreted as
thickness of digital ink and can be used in calligraphy
of recognized characters or for beautification of scripts.
Another interesting observation is that the frequencies
seem to be centered approximately at ex = 2, which
proves ex being the appropriate unit of measure for this
type of analysis.

The recognition experiments were performed in 10-
fold cross-validation: each collection has been split ran-
domly in 10 approximately equal parts and the classifi-
cation rate has been measured 10 times.

4.2 Performance before the Improvement

To estimate the performance of the methods devel-
oped in this paper, we first measure recognition of
small characters with the algorithm described in [4] and
optimized in [8], where 97.6% classification rate was
achieved. The recognizer is trained with all samples
from our dataset (small and regular) and tested with
small samples. The obtained classification error of the
small samples is≈ 17.5%, which is significantly higher

Figure 6. The recognition error depend-
ing on the size threshold for s{“.”,{...}},
s{“.”,“,”}, and s{“,”,{...}}

than the classification error of regular sized characters
reported in [8].

4.3 1-Dimensional Classification

In this experiment, all characters are divided in three
parts: “.”, “,”, and the rest of the regular size classes in
the dataset, denoted as {...}. The objective is to find op-
timal values of α that allow correct pair-wise discrim-
ination between the parts. The recognition error as a
function of α is shown in Figure 5. The values of α that
yield the lowest classification error between “.” and “,”
(0.6%), “.” and {...} (0.2%), “,” and {...} (0.8%) are re-
spectively 0.1, 1.3, 4.4, and the values of the size thresh-
old s{◦,×} are respectively 0.26ex, 0.34ex and 0.95ex.
The stability of the recognition error depending on the
threshold is shown in Figure 6.

4.4 3-Dimensional Classification

These experiments were performed with the SVM-
Java [6], a Java implementation of SMO [9] technique

Table 1. Classification error, depending
on β and γ

β 0.3 0.6 0.3 0.6 0.9 0.3 0.6 0.9
γ 2.4 2.4 2.7 2.7 2.7 3.0 3.0 3.0
Er.,% 2.75 3.48 2.76 2.94 3.21 2.06 2.23 2.60

for training an SVM. A subset of the collection of reg-
ular classes has been considered in this experiment: we
randomly selected 1000 samples. The classes of “.” and
“,” remained unchanged. The following respective error
rates have been obtained for one-versus-one classifica-
tion with the linear kernel for the classes “.” and “,”, “.”
and {...}, “,” and {...}: 2.38%, 1.44%, 4.92%. These
results can be further improved by considering alterna-
tive kernels.

4.5 Weight-based classification

With optimization of the parameters β and γ, we ob-
tained the classification error, as reported in Table 1.
With the best result of 2.06% error, one can observe sig-
nificant improvement over the original error of 17.5% of
the algorithm on small samples.

5 Conclusions and Future Work

We have presented methods to address the large
shape variations that can occur in small characters in
handwritten samples. When there are only one or two
classes which have much smaller characters than the
rest, we have found that simple discrimination based
on an optimized linear combination of width and height
to be very effective. We have shown this can be com-
bined effectively with shape-based methods by weight-
ing shape and size depending on size of typical charac-
ters in the classes. We have found that using the area of
the convex hull of characters, rather surprisingly, does
not improve the accuracy over using a linear combina-
tion of width and height.

The presented work does not address differentiation
between disconnected segments of a symbol and inde-
pendent small characters. This is the question of recog-
nition of groups of strokes that can be solved by con-
struction of classification theories and computation of
the confidence of each theory. In this paper we have fo-
cused on devising general methods for very small char-
acters. In the future, we wish to examine how these
ideas can be applied to the automatic identification and
pre-classification of very large characters.

References

[1] Cascading style sheets (css) snapshot 2010, May 2011.
W3C Working Group.

[2] H. S. Beigi, K. Nathan, G. J. Clary, and J. Subrahmonia.
Size normalization in on-line unconstrained handwrit-
ing recognition. In Proc. IEEE Int’l Conf. Acoustics,
Speech and Signal Processing, pages 169–172, 1994.

[3] B. W. Char and S. M. Watt. Representing and character-
izing handwritten mathematical symbols through suc-
cinct functional approximation. In Proc. ICDAR, pages
1198–1202. IEEE Computer Society, 2007.

[4] O. Golubitsky and S. M. Watt. Distance-based clas-
sification of handwritten symbols. International Jour-
nal on Document Analysis and Recognition, 13(2):113–
146, 2010.

[5] C. L. He, P. Zhang, J. Dong, C. Y. Suen, and T. D. Bui.
The role of size normalization on the recognition rate
of handwritten numerals. The 1st IAPR TC3 NNLPAR,
1:1–5, 2001.

[6] X. Jiang and H. Yu. SVM-JAVA: A java implementa-
tion of the SMO (sequential minimal optimization) for
training SVM, 2008.

[7] C.-L. Liu, M. Koga, H. Sako, and H. Fujisawa. Aspect
ratio adaptive normalization for handwritten character
recognition. In Proc. of the Third International Confer-
ence on Advances in Multimodal Interfaces, ICMI ’00,
pages 418–425, London, UK, 2000. Springer-Verlag.

[8] V. Mazalov and S. M. Watt. Improving isolated and
in-context classification of handwritten characters. In
Proc. Document Recognition and Retrieval XIX, (DRR
XIX), San Francisco, California, January 2012.

[9] J. Platt. Sequential minimal optimization: A fast algo-
rithm for training support vector machines. Advances in
Kernel Methods-Support Vector Learning, 208:98–112,
1999.

[10] A. Rosenthal, J. Hu, and M. Brown. Size and orienta-
tion normalization of on-line handwriting using hough
transform. In Proc. of the 1997 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP ’97) -Volume 4 - Volume 4, ICASSP ’97, pages
3077–, Washington, DC, USA, 1997. IEEE Computer
Society.

