
Determining Points on Handwritten

Mathematical Symbols

Rui Hu and Stephen M. Watt

The University of Western Ontario
London Ontario, Canada N6A 5B7
{rhu8,Stephen.Watt}@uwo.ca

Abstract. In a variety of applications, such as handwritten mathemat-
ics and diagram labelling, it is common to have symbols of many different
sizes in use and for the writing not to follow simple baselines. In order to
understand the scale and relative positioning of individual characters, it
is necessary to identify the location of certain expected features. These
are typically identified by particular points in the symbols, for example,
the baseline of a lower case “p” would be identified by the lowest part
of the bowl, ignoring the descender. We investigate how to find these
special points automatically so they may be used in a number of prob-
lems, such as improving two-dimensional mathematical recognition and
in handwriting neatening, while preserving the original style.

Keywords: Handwriting analysis, Handwriting neatening, Mathemati-
cal handwriting recognition, Pen computing

1 Introduction

Many digital ink applications allow handwritten characters in various sizes and
in different locations. For example, in mathematics, subscripts and superscripts
appear relatively smaller than normal text and are written slightly below or
above it. Moreover, these subscripts and superscripts may themselves have sub-
scripts or superscripts. Such notation is easily read and understood. This involves
determining the relative baselines and sizes of symbols. This process may present
various ambiguities, for example whether a particular symbol is a lower case “p”
or an upper case “P” giving the subscripted pq or the juxtaposed Pq.

In order to find the scale and offset of individual characters, it is necessary to
identify the location of certain expected features which are typically defined by
particular points. These particular points occur at different locations in different
symbols, and the precise location can vary in different handwriting samples of
the same symbol. For example, the baseline of lowercase “p” would be identified
by the lowest part of the bowl, ignoring the descender. In contrast, the baseline
of lowercase “k”, would be identified by the toes. In this article we refer to a
point such as this, that determines the height of a metric line, as a determining

point. Knowing the determining points of each symbol can help us solve a num-
ber of problems. For example, one can use the determining points to improve



2 Determining Points on Handwritten Mathematical Symbols

two-dimensional mathematical recognition. By comparing the baseline locations
and the sizes of adjacent symbols, one can identify superscripts and subscripts
(e.g. S2, S2, S

2) with more confidence. Another application is in handwriting
neatening. Since handwritten symbols often come with variations in alignment
and size, certain transformations based on determining points can be applied to
obtain normalized samples while preserving the original writing style.

Recording determining points for an individual handwritten symbol is easy.
One can manually annotate the symbol with the positions of all its determin-
ing points. However, finding determining points for all symbols in a collection is
much more challenging. First, with a large database the labour for manual anno-
tation would be prohibitively costly. Secondly, applications such as mathematics
involve a large variety of symbols derived from a range of alphabets and other
sources. In practice, many of them are often poorly written and there is no fixed
dictionary of words to aid in disambiguation [1]. This increases the difficulty to
find determining points reliably. Meanwhile, each person’s handwriting is unique
— even identical twins write differently [2]. Even if a training database were to
be fully annotated, it is not entirely clear how this should best be used to iden-
tify the points of interest in new input. Last, but not least, the usual methods
for detecting determining points depend on device resolution significantly. With
rapidly evolving technology, this means that new algorithms cannot use archival
data directly and therefore must be “re-sampled” (interpolated).

We are interested in the problem of how to automatically find determining
points of handwritten mathematical symbols and to use them in a variety of prob-
lems. Considerable related work has been conducted, some of which we highlight
here. Pechwitz and Märgner [3] proposed an algorithm that can find determining
points from symbol skeleton approximated by piecewise linear curve. However,
these determining points are only useful in detecting baseline locations. In 2010,
Infante Velázquez [4] developed an annotation tool to record determining points
manually for handwritten characters represented in InkML [5]. The determining
points were later used to neaten new handwriting, making it uniform in size,
alignment and slant while preserving writers’ particular writing styles. However,
this tool recorded each determining point with absolute coordinates and was
therefore subject to device resolution and variations in style. As device resolu-
tion may vary among different vendors and over generations of technology, this
approach is not device-independent. Similar problems exist in [6]. In addition,
Zanibbi et al. [7] proposed a technique to automatically improve the legibility
of handwriting by gradually translating and scaling individual symbol to closely
approximate their relative positions and sizes in a corresponding typeset ver-
sion. This technique detects baseline locations by comparing symbols’ bounding
boxes, which leads to troubles with vertical placement and scale. For example, it
fails to distinguish between “x2” and “x2”. In 2012, Hu and Watt [8] presented
an algorithm to find turning points that determine the shape of characters, but
that approach lacked the ability to capture the geometric meaning of each deter-
mining point and therefore does not provide sufficient information to calculate
certain desired symbol metrics, such as the location of baseline. Harouni et al.



Determining Points on Handwritten Mathematical Symbols 3

Fig. 1: An example to illustrate the concepts of metric lines.

[9] later proposed a method to find determining points in handwritten Arabic
characters. The method consisted of two stages. In the first stage, the raw input
data were converted to a standard format using smoothing, normalization and
interpolation techniques. In the second stage, each stroke of input characters
was split into several pieces. The method calculated the local maximum and
minimum of each piece and recorded them as determining points. However, this
method is not optimal as it requires extra effort to split strokes and may generate
undesired determining points that lack meaning.

In this article, we present an algorithm to find determining points auto-
matically and suggest how they may be used in areas such as improving two-
dimensional mathematical recognition and in neatening handwriting. The basic
approach is to identify the points of interest on one average instance of each
type of symbol, and to use this information to find the corresponding points on
newly written symbols. We borrow ideas from typography, where a number of
determining points are identified to measure the metrics of different font fami-
lies, and apply these to handwriting. We consider several types of determining
points, which, in turn, determine certain metrics. These include the locations
of the five main metric lines, i.e. the baseline, x line, ascender line, cap line,
and descender line, as shown in Figure 1, as well as symbol width and slant. To
make the determining points device-independent, the algorithm first converts all
handwritten symbols into parametric curves approximated by truncated orthog-
onal series, mapping each symbol to a single point in a low dimensional vector
space of series coefficients. We then compute the average symbol for each class
by computing the average of the points for the class in the vector space. The de-
termining points of interest are identified on these average symbols. From these,
the algorithm can derive corresponding determining points in samples automat-
ically. The beauty of this algorithm is that it is writer-independent. We only
need to annotate once, on the average symbols. This reduces cost significantly.
Furthermore, the algorithm is device-independent as all symbols are represented
in the functional space, which is robust against changes in device resolution.

The remainder of this article is organized as follows. In Section 2, we recall
how to represent digital ink using functional approximation. Section 3 discusses
several types of determining points that are useful in finding symbol alignment
lines. In Section 4, we present the algorithm that can identify determining points
in handwritten mathematical symbols automatically. Section 5 evaluates the per-
formance of the algorithm. We then investigate the possible use of the algorithm
in a number of problems in Section 6. Section 7 concludes the article.



4 Determining Points on Handwritten Mathematical Symbols

2 Functional Approximation for Digital Ink

Digital ink is generated by sampling points from a traced curve at a certain rate,
and thus is typically given in the form of a series of points, each of which contains
x and y values in a rectangular coordinate system at a sequence of times. Since
the sampling rate and resolution typically depend on the hardware type, different
devices usually result in different numerical point values for the same character.
In order to take device differences into account, various ad hoc treatments have
been developed, such as size normalization and “re-sampling” (interpolation). To
make the representation more robust under changes in hardware, we represent
handwritten symbols as coefficients for an approximating basis in a function
space. This approach has been used in earlier work [10–13].

We consider an ink trace as a segment of a plane curve (x(s), y(s)), param-
eterized by Euclidean arc length

s =

∫

√

dx2 + dy2.

This parameterization has been found to lead to good recognition and is intuitive
sense, since it gives curves that look the same the same parameterization [10].
Given a digital ink trace (x(s), y(s)) and an approximating basis {Bi(s)}i=0,...,d,
we represent the trace using the coefficients xi and yi from

x(s) ≈

d
∑

i=0

xiBi(s) y(s) ≈

d
∑

i=0

yiBi(s)

It is convenient to choose the functions Bi(s) to be orthogonal polynomials, e.g.
Chebyshev, Legendre or some other polynomials. By choosing an appropriate
family of basis polynomials to high enough degree, the approximating curve can
be made arbitrarily close to the original trace.

We have found a Legendre-Sobolev basis allows approximating curves to
have the desired shape for relatively low degrees. These may be computed by
Gram-Schmidt orthogonalization of the monomials {si} with respect to the inner
product

〈f, g〉 =

∫ b

a

f(s)g(s)ds+ µ

∫ b

a

f ′(s)g′(s)ds.

If a symbol has multiple strokes, we join consecutive strokes by concatenating
the point series, which yields a single curve. For more details see [13]. An example
of using Legendre-Sobolev polynomials in approximation is shown in Figure 2.
After approximation, we may now represent the digital ink trace, or symbol, as
the coefficient vector (x0, ..., xd, y0, ..., yd). We may standardize the location and
size of the character by setting x0, y0 to 0 and the norm of the vector to 1.



Determining Points on Handwritten Mathematical Symbols 5

(a) (b)

Fig. 2: Approximation using Legendre-Sobolev series. (a) Original.
(b) Approximated using series of degree 12 with µ = 1/8.

3 Handwriting Metrics

In order to understand the scale of individual symbols, it is necessary to identify
the location of certain expected features which are typically defined by a number
of determining points. These determining points have locations that vary from
symbol to symbol, but typically occur where parts of the symbols touch certain
invisible horizontal lines. To discuss this, we adopt concepts from typeface design.
In this article, we consider several types of determining points related to the
following metrics. We concentrate on symbols used in European alphabets. Many
other writing systems would have other metric lines determined in a similar way.

Baseline Most scripts share the notion of baseline. It is a guide line for writing
so that adjacent symbols can retain their horizontal alignment. It is also used as
the reference to obtain other metrics such as x height, ascender height, etc. While
some symbols such as lower case “p” may extend below the baseline, it serves as
the imaginary base for most symbols. Figure 3 shows examples of baselines and
their determining points. As shown in Figure 3(b), the three legs of the lowercase
“m” are not completely aligned. In such case, multiple determining points are
identified and the location of the baseline may be determined by the average y
value of all the determining points.

X Line and Height The x line falls at the top of most lowercase symbols, such
as “a” and “y”, and is located over the baseline. Some symbols may extend above
the x line, such as “h” where the x line is located at the top of the shoulder.
The x height is the distance between the baseline and the x line. Figure 4 shows
an example of x line and associated determining points. Certain symbols, such
as lowercase “x”, may have multiple determining points to define the x line. In
such a case, the location of the x line is determined by the average of their y
values.

Ascender Line and Height The part of a lowercase symbol, such as “h” and
“k”, that extends above the x line is known as an ascender. The ascender line

is located above the x line and is determined by the height of the ascenders.
The ascender height is the distance between the baseline and the ascender line.
Figure 5 shows an example of an ascender line and ascender height. The location



6 Determining Points on Handwritten Mathematical Symbols

(a) (b)

Fig. 3: Baseline with (a) one, and (b) multiple determining points.

(a) (b)

Fig. 4: x line and x height with (a) one, and (b) multiple determining points.

of the ascender line is determined by the determining point shown in red. In the
case that there are multiple determining points, the location of the ascender line
is given by the average y value of all the relevant determining points.

Cap Line and Height The cap line is used to align uppercase symbols and
is usually located below the ascender line, although it is not limited to that
position. Indeed, in handwriting it often coincides with the ascender line. The
cap height is the distance between the baseline and the cap line. Figure 6 shows an
example of a cap line and cap height. The location of the cap line is determined
by the determining point shown in red. In the case that there are multiple
determining points, the location of the cap line may be taken as the average y
value of all the determining points.

Descender Line and Height The descender line is located below the baseline.
It is used to align descenders, which are the parts of symbols that extend below
the baseline. Figure 7 shows an example of a descender line and descender height.
If there are multiple determining points, the location of the descender line is given
by the average y value of all the determining points.

Slant and Width In some handwriting styles, symbols are written with incli-
nation either to the left or to the right. The degree of inclination is referred to
as the slant. The width of a symbol is given by the horizontal distance from the
left-bounding and right-bounding lines with the given slant. Figure 8 shows an
example of symbol width and slant.



Determining Points on Handwritten Mathematical Symbols 7

Fig. 5: Ascender line and height Fig. 6: Cap line and height

Fig. 7: Descender line and height Fig. 8: Slant (θ) and width

4 Algorithm

In this section, we present an algorithm to find automatically the determining
points for newly written symbols. The algorithm derives determining points for a
new symbol from the known determining points of an annotated average symbol
of the same type.

Average Symbols

We classify symbols so that symbols that are written the same way and could be
interpreted the same way are in the same class. So, for example, there may be
several classes for the numeral “8”, depending on whether the symbol is written
with one continuous stroke or two separate strokes, which stroke is written first
and the direction of writing. On the other hand, a Latin letter “O” and the
numeral “0” could belong to the same class.

Taking each sample as a point in the functional approximation space, it has
been found in earlier work that classes of points are almost completely pair-
wise separable by single hyperplanes. Thus the convex hulls of the class point
sets are to a good approximation non-intersecting. Any point on a line segment
between two sample points of the same class falls within that class. It is therefore



8 Determining Points on Handwritten Mathematical Symbols

(a) (b)

Fig. 9: (a) Samples provided by different writers. (b) The average symbol.

meaningful to compute the average of a set of known samples for a class as the
average point in the function space

C̄ =

n
∑

i=1

Ci/n,

where n is the number of the samples and Ci is the coefficient vector for the
ith sample. Figure 9(a) shows a set of samples provided by different writers and
Figure 9(b) shows the average symbol.

Deriving Determining Points from Average Symbols

Our algorithm is based on the observation that the average symbols typically look
similar to the samples of the same class. Within a given class, the features present
in one sample should be present in other samples and at a similar location. We
can take the location to be the arc length along the ink trace to the defining
point of the feature. We assume that, if two symbols are sufficiently similar, the
locations of corresponding determining points will be similar (given by distance
along the curve).

This suggests that we can find the determining points of a new symbol by
taking the known locations on an annotated symbol and making an adjustment.
In more detail, to detect the determining points in a sample, we start with an
annotated sample in the same class. For now, this will be the average of the
training samples, annotated with its determining points. Each annotation con-
sists of the location (as arc length), the type of determining point (e.g. baseline,
x line, etc) and whether it is located at a local minimum or local maximum of y
value.

For each determining point of the annotated sample, we guess that the corre-
sponding determining point on the new sample will be near the same arc length
location. So we take the point at that location in the new sample and follow
the trace upward or downward, depending on whether that determining point
is supposed to be at a local minimum or local maximum. This can be easily
done using a number of numerical methods. In our implementation, we applied
Newton’s method to solve y′(s) = 0. A formal algorithm is given in Algorithm 1.



Determining Points on Handwritten Mathematical Symbols 9

Algorithm 1: LocateDeterminingPoints

Input : A, the coefficient vector for a reference symbol.

DA = [(s1, T1,K1), . . . (sn, Tn,Kn)], a vector of determining points.
For each, the position is given as arc length si on the curve of A, the
value Ti states which type of metric line is being defined, and the
value Ki states whether the metric line is given by a local minimum
or local maximum at yA(si).

S, the coefficient vector for the input sample whose determining
points are to be found.

Output: DS = [(ℓ1, T1,K1), . . . , (ℓn, Tn,Kn)], giving the locations, ℓi, and
types of the determining points of S.
The value of ℓi along S corresponds to the value si along A.

1. Let xA(s), yA(s), xS(s), yS(s) be the coordinate functions defined by the
coefficient vectors A and S.
2. for i ∈ 1..n do

if Ki = max then
f ←− −yS

else if Ki = min then
f ←− yS

ℓi ←− s such that f(s) is minimized near si.
∗

Note this local minimum or maximum is of a real univariate polynomial and

any standard method may be used. For example, we use Newton’s method to

solve f ′(s) = 0 with initial point s = si.

3. Return[(ℓ1, T1,K1), . . . , (ℓn, Tn,Kn)]

Figure 10 shows examples of using Algorithm 1. Figure 10(a) shows the de-
termining points annotated on the average symbol “η”. This is the reference
symbol A in the algorithm. Figures 10(b1) and 10(c1) show two example in-
put samples S with initial approximate locations si for the determining points.
Figures 10(b2) and 10(c2) show the determining points found at locations ℓi.
Figure 11 shows several examples of determining points found for samples of
“π”.

5 Experiments and Testing

We developed a software tool to annotate handwriting samples with their deter-
mining points. Figure 12 shows the user interface. By selecting a nearby location,
the tool is able to find the target determining point automatically. The locations
of all the metric lines discussed in Section 3 can be detected. Multiple deter-
mining points may exist for certain metrics lines. In such circumstances, the
location of the corresponding metric line is determined by the average of the

∗Erratum As originally published in Springer LNAI 7961, this line was misstated as
“ℓi ←− local minimum of f(s) nearest s = si”.



10 Determining Points on Handwritten Mathematical Symbols

(a) (b1) (b2) (c1) (c2)

Fig. 10: Automatically finding determining points. (a) Average symbol “η”.
(b1) Sample 1 initial approximations and (b2) with determining points found.
(c1) Sample 2 initial approximations and (c2) with determining points found.

(a) (b) (c) (d) (e)

Fig. 11: Automatically finding determining points. (a) Average symbol “π”.
(b-e) Determining points derived from the average symbol.

values given by all the determining points of that kind. Symbol slant can also be
recorded by adjusting a spinner. Symbol width is automatically detected with
slant considered.

To evaluate the performance, we have tested the algorithm against a large
handwriting dataset. The handwriting dataset we used contained altogether
64944 samples of 240 different symbols. Most of the samples are Latin and Greek
letters, digits, operators, or other mathematical symbols provided by various
writers. All of these samples had been classified in advance. As some symbols
were written in different styles (e.g. completely different forms, different numbers
of strokes, or strokes in different orders), a total of 382 classes were examined. We
first computed the average symbol for each class, in which determining points
were identified using the software tool shown in Figure 12.

We then computed determining points for all the samples using Algorithm 1.
The number of determining points varied from 2 to 5, according to the sample.
If any of the determining points were mis-positioned, we considered it as incor-
rect. We chose up to 30 samples randomly from each class and examined their
correctness visually. In total, we examined 8119 samples, of which 421 samples
have at least one mis-positioned determining point. This gave a measured error
rate of 5.2%.



Determining Points on Handwritten Mathematical Symbols 11

Fig. 12: Software tool to identify determining points.

We found the error was introduced mainly from two sources. The first was
mis-classified samples in the original data set. These were either mis-labelled (e.g.
“e” of style 1, instead of “e” of style 2), or had strokes given in a different order
from the usual. In this latter case, we have the option of defining a new style or
normalizing the order of the strokes. The second source was that some samples
are significantly different from the average symbol. As a result, the determining
points in the average symbol may not be mapped correctly to those dissimilar
samples.

As misclassified samples were errors in the training data, rather than errors
by the algorithm, we excluded those samples from the experiment. We further
added 39 new classes (giving 421 classes in total) to split out those samples
with different stroke orders. After these corrections, the measured error rate
decreased to 2.0% (9593 samples reviewed, of which 189 samples had at least
one mis-positioned determining point).

To address the second issue, that of points mis-positioned because the sample
was far from the average shape, we used a homotopy between the average and
the test sample in a multi-step method. Recall that, in the function space, a
line from the average symbol to the test sample lies entirely within the class.



12 Determining Points on Handwritten Mathematical Symbols

(a) (b)

Fig. 13: Failure example: (a) average symbol, (b) target with one point misplaced.

(a) (b) (c) (d)

Fig. 14: Success in 3 steps: (a) average (b) step 1 (c) step 2 (d) step 3 = target.

Steps 1 2 3 4 6 8 10 20

Failed Samples 189 69 36 28 25 25 24 24

Error Rates 2.0% 0.72% 0.38% 0.29% 0.26% 0.26% 0.25% 0.25%

Table 1: Error rates of the multi-step method on 9593 samples.

By dividing this line into several equal steps, we may apply Algorithm 1 several
times to follow the determining points through the homotopy. If C̄ is the average
symbol for the class and Ctarg is the input sample, then the line joining the two
points in the function space is given by C(t) = (1− t)C̄ + tCtarg, with t ranging
from 0 to 1. The determining points should move smoothly as the character is
deformed by the homotopy, and we can choose a step size. Figure 13 shows an
example where Algorithm 1 fails to identify one of the determining points when
applied naively. However, when applied in a 3 step homotopy, it succeeded, as
shown in Figure 14.

We have tested the multi-step method against the same handwriting dataset.
We chose up to 30 samples randomly from each class and examined their cor-
rectness visually. The measured error rates are reported in Table 1. The samples
that failed in the 10-Step and 20-Step methods typically either had slants that
interfered with the strategy of using local minimum or maximum y value to
find determining points or that were very badly written. For these samples, our
algorithm was able to identify some determining points correctly but not all of
them, as shown in Figure 15. Note that the points found would in any case be
sufficient for most applications.



Determining Points on Handwritten Mathematical Symbols 13

(a) (b) (c) (d)

Fig. 15: Multi-step failures: (a) Average, (b) target. (c) Average, (d) target.

6 Use Cases

Determining points can be used in a variety of digital ink applications to solve
different problems. Here we describe two scenarios in which determining points
have been found useful.

Handwriting Recognition

Juxtaposition ambiguity is common in mathematical handwriting recognition.
This is usually caused by symbols that are next to each other are written in
different sizes and at different heights. Figure 16 shows an example with several
relative positionings of two characters. The first character can in each case be a
“P” or “p” and the second can be interpreted as a “q” or “9”. Together there
could be a variety of possible interpretations:

P 9 P9 P9 p9 p9 p9
P q Pq Pq pq pq pq

However, by comparing symbols’ baseline locations and sizes, we can predict each
expression with more confidence. This is because the baselines of subscripts and
superscripts are typically placed slightly below or above the normal line of text
and their sizes are relatively smaller. Note that to determine the relative position,
it is definitely not sufficient to compare the baselines of the symbol bounding
boxes. This is seen in Figure 17(d). Similarly, having an imputed baseline deter-
mined by symbol class (such as at 50% height for “q”) is insufficient. We thus
find it is important to find and use the symbol’s determining points.

Handwriting Neatening

Handwriting neatening is becoming possible in some digital ink applications.
It is used to transform handwriting to obtain visually appealing output while
preserving the original writing style. Figure 18 shows an example. By identifying
the determining points of each character, we can shift and scale these characters



14 Determining Points on Handwritten Mathematical Symbols

(a) (b) (c) (d) (e) (f)

Fig. 16: Juxtaposition ambiguity.

(a) (b) (c) (d)

Fig. 17: Disambiguation by baselines. (a) P9 (b) Pq (c) pq (d) p9

to make corresponding metrics lines aligned properly, as shown in Figure 18(b).
Figure 19 shows a second example. In this case, all characters including the
superscripts and subscripts were adjusted in order to obtain a normalized output.
Transforming the function y(s) for each symbol is the simplest approach to
neatening. A more aggressive approach is to replace each input symbol with the
appropriately scaled version of the average of like symbols seen by the same
writer, and further transformations can be employed. However, this is beyond
the scope of the present article.

7 Conclusion and Future Work

We have presented an algorithm to identify automatically the determining points
in handwritten symbols. Identifying these determining points helps us better
understand the scale of individual characters as well as find the locations of
certain desired features. In contrast to existing methods, which treat digital ink
traces as a collection of discrete points, this algorithm relies on interpreting ink
traces as single points in a functional space. This allows device independence,
on one hand, and a simple formulation of homotopic deformation, on the other.

Various features can be recorded by using the determining point algorithm.
The nature of the determining points depends on the symbol set used. In our
case, the symbols were based mostly on those of European languages and math-
ematical operators, so the baseline, x line, ascender line, descender line and cap
line were used.



Determining Points on Handwritten Mathematical Symbols 15

(a) (b)

Fig. 18: Neatening using determining points. (a) original, (b) neatened.

(a) (b)

Fig. 19: Neatening using determining points. (a) original, (b) neatened.

To evaluate the performance of the algorithm, we have tested it against
a database of handwritten mathematical characters. The experiments showed
promising results. To demonstrate possible use of determining points, we have
described two scenarios: handwriting recognition and handwriting neatening, in
both of which determining points have been found useful.

There are a few directions we would like to pursue in the future. First, we wish
to include determining points in our handwriting recognizer. It is expected that,
combined with ambient baseline information, this will improve the recognition
rate. Secondly, we would like to investigate using rotation- and slant-invariant
techniques [14, 15] in conjunction with the present methods. At a more detailed-
level, we would like to annotate all samples in our database using a supervised
multi-step method. This will allow us to perform a more satisfying statistical
analysis of the effectiveness of our method. Finally, before incorporating these
techniques in our recognition framework, we would like to investigate the corre-
lation between the model-sample distance and the number of steps required for
low error rates, and how the number of required steps varies by class.

We would like to thank Isaac Watt for helping to organize the handwriting
dataset used in the experiments.



16 Determining Points on Handwritten Mathematical Symbols

References

1. Smirnova, E., Watt, S.M.: A context for pen-based mathematical computing. In:
Proceedings of the 2005 Maple Summer Workshop, Waterloo, Canada (2005) 409–
422

2. Srihari, S., Huang, C., Srinivasan, H., Srihari, S., Huang, C., Srinivasan, H.: On
the discriminability of the handwriting of twins. J. For. Sci. Journal of Forensic
Identification 126 53 (2008) 430–446

3. Pechwitz, M., Margner, V.: Baseline estimation for arabic handwritten words.
In: Proceedings of Eighth International Workshop on Frontiers in Handwriting
Recognition. (2002) 479–484

4. Infante Velázquez, M.T.: Metrics and neatening of handwritten characters. Mas-
ter’s thesis, The University of Western Ontario, Canada (2010)

5. Watt, Stephen M. and Underhill, Tom (Editors): Ink Markup Language (InkML)
W3C Recommendation. http://www.w3.org/TR/InkML/ (September 2011)

6. Connell, S.D., Jain, A.K.: Template-based online character recognition. Pattern
Recognition 34 (1999) 1–14

7. Zanibbi, R., Novins, K., Arvo, J., Zanibbi, K.: Aiding manipulation of handwritten
mathematical expressions through style-preserving morphs. In: Proceedings of
Graphics Interface 2001. (2001) 127–134

8. Hu, R., Watt, S.: Optimization of point selection on digital ink curves. In: Pro-
ceedings of 2012 International Conference on Frontiers in Handwriting Recognition
(ICFHR). (Sept. 2012) 527–532

9. Harouni, M., Mohamad, D., Rasouli, A.: Deductive method for recognition of
on-line handwritten persian/arabic characters. In: Proceedings of Computer and
Automation Engineering (ICCAE), 2010 The 2nd International Conference on.
Volume 5. (Feb. 2010) 791–795

10. Watt, S.M.: Polynomial approximation in handwriting recognition. In: Proceedings
of the 2011 International Workshop on Symbolic-Numeric Computation. SNC ’11,
ACM (2011) 3–7

11. Golubitsky, O., Watt, S.M.: Online stroke modeling for handwriting recognition.
In: Proceedings of the 2008 conference of the center for advanced studies on col-
laborative research: meeting of minds. CASCON ’08, ACM (2008) 6:72–6:80

12. Char, B.W., Watt, S.M.: Representing and characterizing handwritten mathemat-
ical symbols through succinct functional approximation. In: Proceedings of the
Ninth International Conference on Document Analysis and Recognition - Volume
02. ICDAR ’07, IEEE Computer Society (2007) 1198–1202

13. Golubitsky, O., Watt, S.M.: Distance-based classification of handwritten symbols.
Int. J. Doc. Anal. Recognit. 13(2) (June 2010) 133–146

14. Golubitsky, O., Mazalov, V., Watt, S.M.: Orientation-independent recognition of
handwritten characters with integral invariants. In: Proceedings of Joint Confer-
ence of ASCM 2009 and MACIS 2009: Asian Symposium of Computer Mathemat-
ics and Mathematical Aspects of Computer and Information Sciences. ASCM 2009
(2009) 252–261

15. Golubitsky, O., Mazalov, V., Watt, S.M.: Toward affine recognition of handwritten
mathematical characters. In: Proceedings of the 9th IAPR International Workshop
on Document Analysis Systems. DAS ’10, ACM (2010) 35–42


