
Identifying Features via Homotopy on
Handwritten Mathematical Symbols

Rui Hu and Stephen M. Watt
Computer Science Department
University of Western Ontario

London, Canada N6A 5B7
rhu8@uwo.ca, Stephen.Watt@uwo.ca

Abstract—In handwritten mathematics, it is common to have
characters in various sizes and for writing not to follow simple
baselines. For example, subscripts and superscripts appear rela-
tively smaller than normal text and are written slightly below or
above it. Rather than use the location, features and size to identify
the character, it may be more effective to do the reverse — to
use knowledge about specific characters to determine baseline,
size, etc. In this approach, it is necessary to find the location
of certain expected features that are determined by particular
points. In earlier work, we have presented a method to derivethe
determining points for a new instance of a symbol from those on
an average model for each symbol type. For those characters that
are significantly different from the average instance, one can use a
numerical homotopy between the average instance and the target
character, and apply the determining point algorithm at each step.
The present article studies the factors to be taken into account
in performing such homotopies. We examine two strategies for
possible starting points for the homotopy, and we examine the
relation between the distance and the number of steps required.
The first starting point strategy performs a homotopy from the
average of samples of the same type. The second strategy usesa
homotopy from the nearest neighbour with known determining
points. Our experimental results show a useful relation between
the homotopy distance and the number of steps usually required
and improved strategies to find determining points for poorly
written characters.

I. I NTRODUCTION

Mathematical handwriting recognition differs from natural
language handwriting recognition in many ways [1], [2].
Symbols are taken from many alphabets, for example, and
are written in a two dimensional layout in various sizes with
layout and size carrying meaning. The vocabulary of different
symbols is larger than in western alphabets, and there are
more distinct types of strokes than in East Asian ideographs.
In addition, there is no fixed dictionary of words to help
with disambiguation [3]. On the other hand, characters tend
to be well separated. One of the problems arising from these
differences is that baseline estimation is more difficult and may
not be used reliably to disambiguate characters. Subscripts
and superscripts appear relatively smaller than normal text
and are written slightly below or above it. Moreover, these
subscripts and superscripts may themselves have subscripts or
superscripts. Such notation makes the analysis of the spatial
relationships between symbols challenging as it introduces
various ambiguities. For example, whether a particular symbol
is a lower case “p” or an upper case “P” makes the difference
between a subscriptedpq or the juxtaposedPq.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Baselines: (a)dq (b) dq (c) dq (d) dq (e) dq (f) dq

In earlier work [4] we have explored the idea that it
may be more desirable to identify the possible local baselines
in a formula, as well as other metric lines and sizes, from
features on individual symbols, rather than the other way
around. The features that can be used to do this are typically
determined by points appearing at symbol-dependent locations.
For example, if a symbol is a lower case “p”, then the baseline
is determined by the lowest point in the bowl (loop), but if it
is an upper case “P”, then the baseline is determined by the
lowest point of the stem. In this article, we refer to such a
point, one that determines the height of a metric line, as a
determining point. Knowing the locations of the determining
points can help us identify the size and spatial relationships of
symbols and consequently use them in formula recognition.
For example, one can use the determining points to help
resolve the juxtaposition ambiguity problem which commonly
exists in mathematical handwriting recognition. This problem
arises when symbols that are next to each other are written
in different sizes and at different height. Figure 1 shows
an example. Note that to determine the relative position, it
is definitely not sufficient to compare the baselines of the
symbols’ bounding boxes. This is clearly seen Figure 1(c).
Similarly, having an imputed baseline determined by symbols
(such as at 50% height for “q”) would mis-treat either Figure
1(b) or 1(e). We thus find it is important to locate and use the



(a) (b)

Fig. 2: Symbol ambiguity: (a)Pq or pq (b) pq or P9

symbol’s determining points. Figure 2 shows another example
of the juxtaposition problem caused by variance of baselines.

We have previously addressed the problem of how to
find determining points automatically [4]. Our approach was
to represent symbols as approximating polynomial curves,
(x(s), y(s)), parameterized by arc length and to specify de-
termining points by their type and arc length location on a
model character. The determining points on new samples are
then identified by finding local minimization or maximization
of y(s) using the model points’ location as an initial estimate.
The previous article showed that, for characters that are
significantly different from the average instance, one can use a
numerical homotopy between the model instance and the target
character, and apply the local extremum-finding algorithm at
each step.

The present article extends the earlier work by addressing
several questions related to the choice of homotopy method and
the efficiency implications of those choices. We concentrate
on two strategies: The first performs a homotopy from the
computed and hand-annotated average symbol the class. The
second uses a homotopy from the nearest neighbour in the
class with known determining points, the determining points
of the nearest neighbour having been derived automatically
from other labelled points of the same class.

The questions we ask are the following:

• To find the determining points of a new sample, what
are the differences between starting the homotopy
from the average symbol of the class versus starting
from the nearest labelled neighbour?

• What is the relationship between the distance from
the new sample to the model point and the number of
homotopy steps required?

• How can we best use the results to find the determin-
ing points in new samples?

The remainder of this article is organized as follows.
Section II describes related work. Section III recalls how to
approximate digital ink traces using functional approximation
and introduces a few types of determining points of interest.
Section IV presents the algorithm to identify determining
points using homotopy strategies. Section V presents the
experimental results and suggests improved strategies to find
determining points in poorly written characters. In Section VI
we conclude the article.

(a) (b)

Fig. 3: Approximation using Legendre-Sobolev series. (a)
Original. (b) Degree 12 approximation withµ = 1/8.

II. RELATED WORK

Several related problems have been studied in the past. One
of the early attempts is the projection method [5], [6], which
accepted binary images as input and counted the black pixels
line by line. The baseline was then identified by finding the
line with the maximum number of black pixels. The method
is not entirely reliable. There are cases where the method fails
to estimate the baseline locations. This is a concern for our
application where there is often only one or a few characters
with the same local baseline.

A more advanced method was presented by Pechwitz and
Märgner [7] in 2002, based on polygonally approximated sym-
bol skeleton. The method was able to extract certain features
from skeletons and then estimate the location of baselines.
However, this method is limited to a specific language and
cannot be used to detect other metric lines.

In 2010, Infante Velázquez [8] developed a tool to locate
determining points in handwritten characters representedin
InkML [9] through manual annotation. This tool allowed
recording each determining point with absolute coordinates.
As the sampling rate and resolution vary between different
vendors and over generations of technology, such represen-
tation is, however, not device-independent. Similar problems
exist in [10].

Zanibbiet al. [11] proposed a technique that can gradually
translate and scale individual symbols to closely approximate
their relative positions and sizes in a corresponding typeset for-
mula. As this technique used bounding boxes to detect baseline
locations, it may lead to troubles with vertical placement and
scale. For example, it fails to distinguish between “x2” and
“x2”.

Hu and Watt [12] later described an algorithm that can find
those special points that determine the shape of a character. But
that approach was unable to capture the geometric meaning of
each determining point and therefore did not provide sufficient
information to calculate desired symbol metrics, such as the
baseline location.

Harouniet al. [13] presented a method to find determining
points in handwritten Arabic characters. It first divided each
ink stroke into pieces, in each of which the local extremum
was computed. The points that achieved the local extremum
were later defined as the determining points. However, this
method is not suitable for mathematics in that it requires extra
effort to split strokes and may generate undesired determining
points that lack geometric meaning.



Fig. 4: An example to illustrate the concepts of metric lines.

III. PRELIMINARIES

A. Orthogonal Series Approximation

Digital ink curves are typically represented as series of
points over time, each of which containsx and y values
in a rectangular coordinate system. The time interval and
resolution vary between hardware vendors and devices from
different hardware will usually produce different series of
points for the same characters. As technology evolves, this
means that resolution-dependent algorithms cannot directly use
archived data. In this case, datasets must be “re-sampled” (i.e.
interpolated), which introduces its own problems.

To make the representation robust against changes in
hardware, we represent handwritten symbols in the space of
coefficients of a functional approximation. This approach has
been used in earlier work [14]–[17]. Following this approach,
we consider an ink trace as a segment of a plane curve
(x(s), y(s)), parameterized by Euclidean arc length

ds2 = dx2 + dy2.

The arc length has been found to be the most robust param-
eterization in most cases. It also makes intuitive sense since
it gives curves that look the same the same parameterization
[14]. Given a digital ink trace, we represent it using an
approximation in a finite dimensional function space

x(s) ≈

d∑
i=0

xiBi(s) y(s) ≈

d∑
i=0

yiBi(s),

whereBi(s) are orthogonal basis polynomials, e.g. Cheby-
shev, Legendre or Legendre-Sobolev polynomials. By choosing
appropriate degreed and basis polynomialsBi, i = 0, ..., d,
the approximating curve can, under some modest assumptions,
be made as close as desired to the original trace. We find
Legendre-Sobolev polynomials, orthogonal with respect tothe
inner product

〈f, g〉 =

∫
f(s)g(s)ds+ µ

∫
f ′(s)g′(s)ds,

to be well suited since they also keep the derivatives close.
An example of using these polynomials in approximation is
shown in Figure 3. If a symbol has multiple strokes, we
join consecutive strokes by concatenating the point series.
After arc-length normalization, we may represent the digital
ink trace, or symbol, as the vector of coefficients of the
approximation(x0, ..., xd, y0, ..., yd). We may standardize the
location and size of the character by settingx0, y0 to 0 and
the norm of the vector to 1.

(a) (b)

Fig. 5: (a) Multiple samples. (b) Average symbol.

B. Determining Points

We borrow the idea of character metrics from typography,
where a number of determining points are identified to measure
the metrics of different font families. These determining points
have locations that vary from symbol to symbol, but typically
occur where parts of the symbols touch certain invisible hori-
zontal lines. In this article, we focus on symbols in European
alphabets and consider six types of metric lines. These are the
baseline, x line, mid line, ascender line, cap line anddescender
line, as shown in Figure 4.

IV. A LGORITHM

In Section III-A, we have explained how to represent
handwritten samples using coefficients of a functional approx-
imation. This representation is device-independent, allowing
us to focus on finding determining points without worrying
about device-dependency. It also enables various symbolic-
numeric polynomial algorithms to conduct useful analysis on
the handwritten mathematical samples [14].

Our algorithm to find determining points on a sample
is based on the observation that samples of the same class
typically have the same features. We can specify the location of
a determining point by the value of the normalized arc length
parameter at which it occurs on a model symbol. Although the
precise locations of the determining points on a new sample
will be different, we expect them to occur near these parameter
values. To find precise locations of the determining points on
the new sample, we can follow the ink trace, starting from the
approximate locations, until local vertical extrema of theright
type (minimum or maximum) is found.

More specifically, to detect the determining points of
samples, we first choose a reference symbol for each class. We
then annotate the reference symbol, identifying the locations of
determining points of interest. As the computation is basedon
curves(x(s)), y(s)) parameterized by normalized arc lengths,
the locations of the determining points are recorded by their s
values in the interval[0, 1]. We can then compute determining
points in target samples, starting from the location of the
corresponding determining points in the reference symbol.
Each determining point of the sample can then be identified
by finding the extremum of the polynomialy(s) near the
starting point. This can be achieved using any one of a number
of numerical methods. In our implementation, we applied
Newtons method to solvey′(s) = 0. These steps are shown in
Algorithm 1, which is similar to that of [4]. The difference is
that article always uses the average instance of each class as the
reference symbol, but here we allow other suitable reference
symbols. This allows us to investigate the effect of choosing
different starting points.



Algorithm 1: LocateDeterminingPoints
Input : A, the coefficient vector of a reference symbol.

DA = [(s1, T1,K1), . . . (sn, Tn,Kn)], a vector
of determining points. For each, the position is
given as arc lengthsi on the curve ofA, the
valueTi states which type of metric line is
being defined, and the valueKi states whether
the metric line is given by a local minimum or
local maximum atyA(si).

S, the coefficient vector for the input sample
whose determining points are to be found.

Output : DS = [(ℓ1, T1,K1), . . . , (ℓn, Tn,Kn)], giving
the locations,ℓi, and types of the determining
points ofS.

1. Let xA(s), yA(s), xS(s), yS(s) be the coordinate
functions of the symbols given byA andS.

2. for i ∈ 1..n do
if Ki = max then

f ←− −yS
if Ki = min then

f ←− +yS
ℓi ←− s such thatf(s) is minimized nearsi.

Note this is the local minimum of a real univariate
polynomial and any standard method may be used.
For example, we use Newton’s method to solve
f ′(s) = 0 with initial point s = si.

3. Return[(ℓ1, T1,K1), . . . , (ℓn, Tn,Kn)]

A. The Reference Symbol

We examine two types of reference symbols as the choice
of starting point for the homotopy: theaverage symbol and the
nearest neighbour.

Average Symbol: The functional representation of digital ink
traces has the advantage that the curves become points in a
linear space. It therefore makes sense to talk about the average
of several points. Our first choice for reference symbol is the
average symbol of a class, computed asCavg =

∑n

i=1
Ci/n,

wheren is the number of the samples andCi is the coefficient
vector for theith sample. Note that this computed average is
in general not actually one of the sample points. Figure 5(a)
shows a small set of samples provided by different writers and
Figure 5(b) shows the average symbol.

Choosing the average symbol as the reference symbol
for a class is an intuitive choice because presumably it has
little deformation compared to other samples in the class.
Moreover, it will lie within the convex hull of the set of
points being averaged. Earlier work has shown [18] that, with
this representation at relatively low approximation degree, the
symbol classes are almost completely pairwise separable by
single hyperplanes. We may therefore take the volume enclosed
by the convex hull of points as being properly included within
the class. Finally, the choice of average symbol is attractive in
that only one symbol per class need be annotated.

(a) reference symbol (b) target with misplaced point

Fig. 6: Failure example.

(a) reference symbol (b) step 1 (c) step 2

(d) step 3 (e) step 4 (f) step 5 = target

Fig. 7: Success in 5 steps.

Nearest Neighbour: Another choice of starting point for
the homotopy is the nearest neighbour in the class of the
new symbol. This has the advantage that it should resemble
the new symbol more closely than the average symbol. We
would therefore suspect this starting point might require fewer
homotopy steps. This choice of starting point is not as simple
as the average symbol, however, because all of the symbols in
the database must be labelled with their determining points.
For a database of any size, this is not something that can be
done by hand.

B. Homotopy

For those samples that are significantly different from the
reference symbol, we use a numerical homotopy between the
reference symbol and the target sample and trace the movement
of the determining points. Because the classes are linearlysep-
arable in the function space a line from the reference symbol
to the target sample lies entirely within the class. Dividing this
line into several equal steps, we may apply Algorithm 1 at each
step to follow the determining points through the homotopy.
If Cref is the reference symbol for the class andCtarg is
the new sample target, then the line joining the two points in
the function space is given byC(t) = (1 − t)Cref + tCtarg,
with t ranging from 0 to 1. The determining points should
move smoothly as the character is deformed continuously by
the homotopy. By taking discrete steps between the source and
the target, we can choose a sequence of intermediary points
with each consecutive pair close enough for Algorithm 1 to
apply. Figure 6 shows an example where Algorithm 1 failed
to identify one of the determining points when applied naively.
However, when applied in a 5-step homotopy, it succeeds, as
shown in Figure 7.



Fig. 8: Distance toaverage symbolvs the number of homotopy
steps required.∆s = 0.02, ∆y = 1%. The overall success rate
was 99.57% (45,440 out of 45,637). Each distance interval in
the dense area (r ≤ 0.59) contains 2800 samples while each
interval in the sparse area (r > 0.59) contains 1500 samples,
except the last one, which contains 1340 samples.

V. EXPERIMENTS AND RESULTS

To evaluate the characteristics of the homotopy methods,
we have run tests with a moderately large dataset of hand-
written mathematical characters. The dataset consisted ofalto-
gether 45,637 samples from 240 different symbol types. These
samples included Latin and Greek letters, digits, operators, and
other mathematical characters, collected from various writers.
All of these samples had been classified in advance. As some
equivalent symbols were written in different styles, such as
completely different forms, different numbers of strokes,or
strokes in different orders, the symbols were grouped in a total
of 388 classes.

We started the experiments by computing the average sym-
bol of each class, and manually annotating this average symbol
with its determining points. We then used this information
to try to find the corresponding determining points on all
samples in the dataset. We applied a 4-step homotopy strategy
as this had achieved a high success rate in earlier work [4]
and required a reasonable amount of time to compute. Then
we visually inspected the determining points in each of the
samples and manually adjusted the few incorrect ones. This
collection of samples with corrected determining points then
served as the ground truth.

We then went back and tested the data by forgetting the
determining point annotations and seeing how many steps
it took to recover them. We adopted the average symbol
and the nearest neighbour as the reference symbols in the
experiments and evaluated the number of homotopy steps
required, respectively. As the locations of determining points
were recorded as locations given by the arc length parameter,
we compared the values with the ground truth. If the difference
was within a particular threshold∆s, we considered it to be
correct. Note that this threshold may not work for all the

Fig. 9: Distance toaverage symbolvs the number of homotopy
steps required.∆s = 0.02, ∆y = 3%. The overall success rate
was 99.63% (45,470 out of 45,637). Each distance interval in
the dense area (r ≤ 0.59) contains 2800 samples while each
interval in the sparse area (r > 0.59) contains 1500 samples,
except the last one, which contains 1370 samples.

samples as different parameter values may result in the same
height of metric lines. For example, given an upper case “T”,
any point located on the top bar can be used to determine the
height of the cap line, but the difference in their parameter
values may not fall into the threshold∆s. In such cases, we
compared the normalized heights of the metric lines with the
ground truth. We considered a result as correct if and only if
the difference was within a particular threshold∆y.

We have investigated the relation between the distance to
the reference point and the number of steps required under two
homotopy strategies. The first strategy performs a homotopy
from the average symbol. The second strategy uses a homotopy
from the nearest neighbour with known determining points.

Figures 8 to 10 show, for different thresholds, the number
of steps required to correctly identify the determining points
using a homotopy from the average symbol. The figures show
contours for the number of steps required to obtain certain
success rates (90%, 95%, 99%) at varying distances to the
reference symbol. Figures 11 and 12 show the results of similar
experiments, but where the reference symbol was the nearest
neighbour in the class.

This information may be used to tell how many steps
are required to find the determining points in a new sample.
After calculating the distance from the new sample to the
average symbol, we can read off how many homotopy steps
are required for the desired success rate.

Figure 8 shows the relation when the tolerances are∆s =
0.02 and ∆y = 1%. The overall success rate with no limit
on the number of steps was 99.57% (45,440 out of 45,637
samples). We divided the set of samples into groups, based
on distance intervals to the average symbol. The size of each
interval depended on the density of samples at that distance.



Fig. 10: Distance toaverage symbolvs the number of ho-
motopy steps required.∆s = 0.02, ∆y = 7%. The overall
success rate is 99.69% (45,496 out of 45,637). Each distance
interval in the dense area (r ≤ 0.59) contains 2800 samples
while each interval in the sparse area (r > 0.59) contains 1500
samples, except the last one, which contains 1396 samples.

There were more samples near the average symbol. In this
dense region (r ≤ 0.59) the intervals were chosen to contain
2800 samples each. In the sparse region, further from the
average symbol (r > 0.59), each interval contained 1500
samples, except the last one contained 1340 samples. For each
interval we determined the90th, 95th, and99th percentiles of
the number of homotopy steps required to correctly identify
the determining points. Given the number of samples in each
interval, the margin of error is 2% at a confidence level of
95%. As shown in the graph, as the distance to the average
symbol increases, the number of required steps to achieve the
90th, 95th, and 99th percentiles increases. Figures 9 and 10
show the relation between the distance to the average symbol
and the number of homotopy steps needed with larger∆y
tolerances.

Figure 11 shows the relation between the distance to the
nearest neighbour and the number of homotopy steps needed
where∆s = 0.02 and ∆y = 1%. The overall success rate
was 98.86% (45,116 out of 45,637 samples). We divided the
distances into a number of intervals, as before. In the dense
area (r ≤ 0.32) the intervals were chosen to contain 2800
samples each. In the sparse area (r > 0.32), each interval
contained 1500 samples, except the last one, which contained
1016 samples. For each interval we determined the90th, 95th,
and99th percentiles of the number of homotopy steps required.
The margin of error is 2% at confidence level of 95%. As
before, the number of required steps generally increased with
the distance. Figure 12 shows the results when∆s = 0.02
and∆y = 3%. When∆s = 0.02 and∆y = 7%, the graph
looks identical to Figure 12 except the overall success rateis
99.68% (45,490 out of 45,637). In that experiment, the last
interval contained 1390 samples.

We have seen that with both types of reference symbol—
average and nearest neighbour—the number of required ho-

Fig. 11: Distance tonearest neighbour vs the number of
homotopy steps required.∆s = 0.02, ∆y = 1%. The overall
success rate is 98.86% (45,116 out of 45,637). Each distance
interval in the dense area (r ≤ 0.32) contains 2800 samples
while each interval in the sparse area (r > 0.32) contains 1500
samples, except the last one, which contains 1016 samples.

Fig. 12: Distance tonearest neighbour vs the number of
homotopy steps required.∆s = 0.02, ∆y = 3%. The overall
success rate is 99.45% (45,384 out of 45,637). Each distance
interval in the dense area (r ≤ 0.32) contains 2800 samples
while each interval in the sparse area (r > 0.32) contains 1500
samples, except the last one, which contains 1284 samples.

motopy steps increases with the distance. Comparing the
results, we also see that for a given distance the number of
required steps is about the same for both strategies. As is
completely expected, the distance to the reference symbol is
usually smaller when the nearest neighbour strategy is used.
Therefore with nearest neighbour we have on average a smaller
number of required steps. The tradeoff is that we must retain
annotations for all symbols in the classifier, rather than just
for the average symbol.



VI. CONCLUSION

We have evaluated different strategies to locate special
points on handwriting samples by deforming a known instance
using linear homotopy on polynomial models.

We have evaluated two strategies for choice of starting
point for the homotopy: to use the average symbol of the
class and to use the nearest neighbour within the class. We
have found that the number of homotopy steps required as a
function of distance is about the same with the two strategies.
The variance in the number of steps is also similar, but, is
perhaps somewhat lower with the nearest neighbour strategy,
suggesting a slightly better predictability. At any given toler-
ance level, the overall success rate was slightly higher when
starting with the average symbol than when starting with the
nearest neighbour. This does not appear to be significant.

We have also evaluated the number of homotopy steps
required as a function of the distance between the new symbol
and the starting point in the function space. For the regions
where we have sufficient data, we have found a clear relation
between the distance in the function space and the required
number of steps with both starting point strategies.

In previous work [4], we had used a highly conservative
number of homotopy steps (10 to 20) in order to obtain an
error rate of 0.25%. The present results allow the choice of
an appropriate and much reduced number of steps depending
on the homotopy distance (to 1 to 5 steps). In all cases the
success rate at correctly locating the determining points on
test symbols was greater than 98.8%, so these explorations
improve the efficiency of a useful algorithm.

REFERENCES

[1] M. Koschinski, H.-J. Winkler, and M. Lang, “Segmentation and Recog-
nition of Symbols within Handwritten Mathematical Expressions,” in
Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, vol. 4, Detroit, USA, 1995, pp. 2439–2442.

[2] E. Smirnova and S. M. Watt, “Aspects of Mathematical Expression
Analysis in Arabic Handwriting,” inProceedings of the International
Conference on Document Analysis and Recognition, vol. 2, Curitiba,
Brazil, 2007, pp. 1183–1187.

[3] E. Smirnova and S. M. Watt, “A Context for Pen-Based Mathematical
Computing,” in Proceedings of the 2005 Maple Summer Workshop,
Waterloo, Canada, 2005, pp. 409–422.

[4] R. Hu and S. M. Watt, “Determining Points on Handwritten Mathemat-
ical Symbols,” inProceedings of the 2013 Conferences on Intelligent
Computer Mathematics, Bath, UK, 2013, pp. 168–183.

[5] B. Al-Badr and S. A. Mahmoud, “Survey and Bibliography ofArabic
Optical Text Recognition,”Signal Processing, vol. 41, no. 1, pp. 49–77,
1995.

[6] A. Amin, “Off-Line Arabic Character Recognition: the State of the Art,”
Pattern Recognition, vol. 31, no. 5, pp. 517–530, 1998.

[7] M. Pechwitz and V. Märgner, “Baseline Estimation for Arabic Hand-
written Words,” in Proceedings of the 8th International Workshop on
Frontiers in Handwriting Recognition, 2002, pp. 479–484.

[8] M. T. Infante Velázquez, “Metrics and Neatening of Handwritten Char-
acters,” Master’s thesis, The University of Western Ontario, London,
Canada, 2010.

[9] S. M. Watt and T. Underhill (Editors), “Ink Markup Language (InkML)
W3C Recommendation,” http://www.w3.org/TR/InkML/, September
2011.

[10] S. D. Connell and A. K. Jain, “Template-Based Online Character
Recognition,”Pattern Recognition, vol. 34, pp. 1–14, 1999.

[11] R. Zanibbi, K. Novins, J. Arvo, and K. Zanibbi, “Aiding Manipulation
of Handwritten Mathematical Expressions through Style-Preserving
Morphs,” in Proceedings of Graphics Interface, 2001, pp. 127–134.

[12] R. Hu and S. M. Watt, “Optimization of Point Selection onDigital
Ink Curves,” in Proceedings of the 2012 International Conference on
Frontiers in Handwriting Recognition, September 2012, pp. 527–532.

[13] M. Harouni, D. Mohamad, and A. Rasouli, “Deductive Method for
Recognition of On-Line Handwritten Persian/Arabic Characters,” in
Proceedings of the 2nd International Conference on Computer and
Automation Engineering, vol. 5, February 2010, pp. 791–795.

[14] S. M. Watt, “Polynomial Approximation in Handwriting Recognition,”
in Proceedings of the 2011 International Workshop on Symbolic-
Numeric Computation. ACM, 2011, pp. 3–7.

[15] O. Golubitsky and S. M. Watt, “Online Stroke Modeling for Handwrit-
ing Recognition,” inProceedings of the 2008 Conference of the Center
for Advanced Studies on Collaborative Research: Meeting of Minds.
ACM, 2008, pp. 72–80.

[16] B. W. Char and S. M. Watt, “Representing and Characterizing Hand-
written Mathematical Symbols through Succinct FunctionalApprox-
imation,” in Proceedings of the Ninth International Conference on
Document Analysis and Recognition. IEEE Computer Society, 2007,
pp. 1198–1202.

[17] O. Golubitsky and S. M. Watt, “Distance-Based Classification of
Handwritten Symbols,”International Journal on Document Analysis
and Recognition, vol. 13, no. 2, pp. 133–146, June 2010.

[18] O. Golubitsky and S. M. Watt, “Online Recognition of Multi-Stroke
Symbols with Orthogonal Series,” inProceedings of the 10th Interna-
tional Conference on Document Analysis and Recognition, Barcelona,
Spain, 2009, pp. 1265–1269.


