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Abstract—In handwritten mathematics, it is common to have
characters in various sizes and for writing not to follow sinple
baselines. For example, subscripts and superscripts appeeela-
tively smaller than normal text and are written slightly below or
above it. Rather than use the location, features and size tdéntify
the character, it may be more effective to do the reverse — to
use knowledge about specific characters to determine based,
size, etc. In this approach, it is necessary to find the locain
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of certain expected features that are determined by particlar
points. In earlier work, we have presented a method to derivehe

determining points for a new instance of a symbol from those o
an average model for each symbol type. For those characterhat

are significantly different from the average instance, one&n use a
numerical homotopy between the average instance and the tget
character, and apply the determining point algorithm at ead step.
The present article studies the factors to be taken into acemt

in performing such homotopies. We examine two strategies fo

(d) (e)

©

possible starting points for the homotopy, and we examine th
relation between the distance and the number of steps requad.
The first starting point strategy performs a homotopy from the
average of samples of the same type. The second strategy uses . .
homotopy from the nearest neighbour with known determining Fig. 1: Baselines: (a), (b) dg (c) d? (d) d, (e) dg (f) d*
points. Our experimental results show a useful relation beteen

the homotopy distance and the number of steps usually requéd

and improved strategies to find determining points for poorly

written characters. In earlier work [4] we have explored the idea that it

may be more desirable to identify the possible local basslin
in a formula, as well as other metric lines and sizes, from
. INTRODUCTION features on individual symbols, rather than the other way
around. The features that can be used to do this are typically
Mathematical handwriting recognition differs from natura determined by points appearing at symbol-dependent wtsti
language handwriting recognition in many ways [1], [2]. For example, if a symbol is a lower case “p”, then the baseline
Symbols are taken from many alphabets, for example, antd determined by the lowest point in the bowl (loop), but if it
are written in a two dimensional layout in various sizes withis an upper case “P”, then the baseline is determined by the
layout and size carrying meaning. The vocabulary of difiere lowest point of the stem. In this article, we refer to such a
symbols is larger than in western alphabets, and there amoint, one that determines the height of a metric line, as a
more distinct types of strokes than in East Asian ideographgletermining point. Knowing the locations of the determining
In addition, there is no fixed dictionary of words to help points can help us identify the size and spatial relatiqrsbf
with disambiguation [3]. On the other hand, characters tendymbols and consequently use them in formula recognition.
to be well separated. One of the problems arising from thesBor example, one can use the determining points to help
differences is that baseline estimation is more difficutt amay  resolve the juxtaposition ambiguity problem which comnyonl
not be used reliably to disambiguate characters. Subscripexists in mathematical handwriting recognition. This peoin
and superscripts appear relatively smaller than normal texarises when symbols that are next to each other are written
and are written slightly below or above it. Moreover, thesein different sizes and at different height. Figure 1 shows
subscripts and superscripts may themselves have sulsseript an example. Note that to determine the relative position, it
superscripts. Such notation makes the analysis of theaspatiis definitely not sufficient to compare the baselines of the
relationships between symbols challenging as it introducesymbols’ bounding boxes. This is clearly seen Figure 1(c).
various ambiguities. For example, whether a particulartsyim  Similarly, having an imputed baseline determined by symbol
is a lower case “p” or an upper case “P” makes the differencésuch as at 50% height for “q”) would mis-treat either Figure
between a subscripteg, or the juxtaposed’q. 1(b) or 1(e). We thus find it is important to locate and use the
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Fig. 2: Symbol ambiguity: (a)Pq or p, (b) pg or P9 Fig. 3: Approximation using Legendre-Sobolev series. (a)
Original. (b) Degree 12 approximation with= 1/8.

symbol’'s determining points. Figure 2 shows another exampl Il. RELATED WORK

of the juxtaposition problem caused by variance of bassline Several related problems have been studied in the past. On

We have previously addressed the problem of how tf the early attempts is the projection method [5], [6], Whic
find determining points automatically [4]. Our approach wasaccepted binary images as input and counted the black pixels
to represent symbols as approximating po|yn0mia| Curvei!ne by line. The basellne was then |dentlfled by finding the
(z(s),y(s)), parameterized by arc length and to specify de_!lne with Fhe maximum number of black pixels. The m_ethod
termining points by their type and arc length location on alS not_ennrely rehable._There are cases_w_here the methitsd fa
model character. The determining points on new samples af@ estimate the baseline locations. This is a concern for our
then identified by finding local minimization or maximizatio application where there is often only one or a few characters
of y(s) using the model points’ location as an initial estimate.With the same local baseline.

The previous article showed that, for characters that are A more advanced method was presented by Pechwitz anc
significantly different from the average instance, one csmai Margner [7] in 2002, based on polygonally approximated-sym

numerical homotopy between the model instance and thettarggo| skeleton. The method was able to extract certain festure
character, and apply the local extremum-finding algorithim afom skeletons and then estimate the location of baselines.

each step. However, this method is limited to a specific language and
The present article extends the earlier work by addressin§2NNn0t be used to detect other metric lines.

several questions related to the choice of homotopy methdda  |n 2010, Infante Velazquez [8] developed a tool to locate
the efficiency implications of those choices. We conceatrat determining points in handwritten characters represeitied
on two strategies: The first performs a homotopy from theinkML [9] through manual annotation. This tool allowed
computed and hand-annotated average symbol the class. Th&ording each determining point with absolute coordimate
second uses a homotopy from the nearest neighbour in th&s the sampling rate and resolution vary between different
class with known determining points, the determining point vendors and over generations of technology, such represen

of the nearest neighbour having been derived automaticalliation is, however, not device-independent. Similar peois
from other labelled points of the same class. exist in [10].

The questions we ask are the following: Zanibbiet al. [11] proposed a technique that can gradually
translate and scale individual symbols to closely appratém
e To find the determining points of a new sample, whattheir relative positions and sizes in a corresponding tpfes-
are the differences between starting the homotopynula. As this technique used bounding boxes to detect Inaseli
from the average symbol of the class versus startingocations, it may lead to troubles with vertical placememd a

from the nearest labelled neighbour? scale. For example, it fails to distinguish betweer2™ and
“w _2n

e What is the relationship between the distance from
the new sample to the model point and the number of Hu and Watt [12] later described an algorithm that can find
homotopy steps required? those special points that determine the shape of a charBater
that approach was unable to capture the geometric meaning o
each determining point and therefore did not provide seffici
information to calculate desired symbol metrics, such a&s th
baseline location.

e How can we best use the results to find the determin
ing points in new samples?

The remainder of this article is organized as follows.
Section 1l describes related work. Section IIl recalls haw t Harouniet al. [13] presented a method to find determining
approximate digital ink traces using functional approXim@  points in handwritten Arabic characters. It first dividectlea
and introduces a few types of determining points of interestink stroke into pieces, in each of which the local extremum
Section IV presents the algorithm to identify determiningwas computed. The points that achieved the local extremum
points using homotopy strategies. Section V presents theere later defined as the determining points. However, this
experimental results and suggests improved strategiesido fi method is not suitable for mathematics in that it requirdsaex
determining points in poorly written characters. In Sattid effort to split strokes and may generate undesired detémmin
we conclude the article. points that lack geometric meaning.
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Fig. 4: An example to illustrate the concepts of metric lines Fig. 5: (a) Multiple samples. (b) Average symbol.
[1l.  PRELIMINARIES B. Determining Points
A. Orthogonal Series Approximation We borrow the idea of character metrics from typography,

where a number of determining points are identified to measur

Digital ink curves are typically represented as series othe metrics of different font families. These determiniragrps
points over time, each of which contains and y values  have locations that vary from symbol to symbol, but typigall
in a rectangular coordinate system. The time interval angccur where parts of the symbols touch certain invisible-hor
resolution vary between hardware vendors and devices froontal lines. In this article, we focus on symbols in Eurapea
different hardware will usually produce different serieb 0 alphabets and consider six types of metric lines. Thesehare t
points for the same characters. As technology evolves, thigaseline, x line, mid line, ascender line, cap line anddescender
means that resolution-dependent algorithms cannot §ires¢  |ine, as shown in Figure 4.
archived data. In this case, datasets must be “re-sampled” (
interpolated), which introduces its own problems. IV. ALGORITHM

To make the representation robust against changes in In Section IlIl-A, we have explained how to represent
hardware, we represent handwritten symbols in the space dfandwritten samples using coefficients of a functional ejppr
coefficients of a functional approximation. This approaels h imation. This representation is device-independentwatig
been used in earlier work [14]-[17]. Following this appreac Us to focus on finding determining points without worrying
we consider an ink trace as a segment of a plane curv@bout device-dependency. It also enables various symbolic
(z(s),y(s)), parameterized by Euclidean arc length numeric polynomial algorithms to conduct useful analysis o

the handwritten mathematical samples [14].
ds? = dz? + dy?. o . , - .
ur algorithm to find determining points on a sample

The arc length has been found to be the most robust pararf'ir':i basltedhon tt?]e obser\;atiton tha\}vsamples of t?he Ta”;fﬁ clas
eterization in most cases. It also makes intuitive senseesin WYPically have the same features. We can specify the lacafio
; : -Oehdetermlnmg point by the value of the normalized arc length

[14]. Given a digital ink trace, we represent it using anParameter at which it occurs on a model symbol. Although the

approximation in a finite dimensional function space precise locations of the determining points on a new sample
will be different, we expect them to occur near these paramet

d d values. To find precise locations of the determining poimts o
z(s) ~ ZmiBi(S) y(s) ~ Z%Bi(s)a the new sample, we can fqllow the inI_< trace, starting from the
=0 e approximate locations, until local vertical extrema of tight

type (minimum or maximum) is found.
where B;(s) are orthogonal basis polynomials, e.g. Cheby-
shev, Legendre or Legendre-Sobolev polynomials. By cimgosi
appropriate degred and basis polynomial®;, i = 0, ...,d,
the approximating curve can, under some modest assumptior{
be made as close as desired to the original trace. We fin
Legendre-Sobolev polynomials, orthogonal with respet¢héo
inner product

More specifically, to detect the determining points of
samples, we first choose a reference symbol for each class. W
en annotate the reference symbol, identifying the looatof
etermining points of interest. As the computation is based
curves(z(s)), y(s)) parameterized by normalized arc length
the locations of the determining points are recorded by thei
values in the interval0, 1]. We can then compute determining
L points in target samples, starting from the location of the
(f,9) = /f(S)g(S)dS+N/f (s)g'(s)ds, corresponding determining points in the reference symbol.
Each determining point of the sample can then be identified
to be well suited since they also keep the derivatives closéby finding the extremum of the polynomial(s) near the
An example of using these polynomials in approximation isstarting point. This can be achieved using any one of a number
shown in Figure 3. If a symbol has multiple strokes, weof numerical methods. In our implementation, we applied
join consecutive strokes by concatenating the point seriefNewtons method to solvg (s) = 0. These steps are shown in
After arc-length normalization, we may represent the digit Algorithm 1, which is similar to that of [4]. The difference i
ink trace, or symbol, as the vector of coefficients of thethat article always uses the average instance of each ddise a
approximation(zg, ..., £4, Yo, ---, y4)- We may standardize the reference symbol, but here we allow other suitable referenc
location and size of the character by setting yo to 0 and  symbols. This allows us to investigate the effect of chogsin
the norm of the vector to 1. different starting points.



Algorithm 1: LocateDeterminingPoints
Input : A, the coefficient vector of a reference symbol.

Dy =1(s1,T1,K1),...(sn,Tn, Ky)], @ vector
of determining points. For each, the position is i

given as arc |en9t|_9i on the curve _OfA’ th_e (a) reference symbol (b) target with misplaced point
value T; states which type of metric line is
being defined, and the valug; states whether Fig. 6: Failure example.

the metric line is given by a local minimum or
local maximum aty4(s;).

S, the coefficient vector for the input sample
whose determining points are to be found.
Output: Dg = [(¢1,T1, K1), ..., (bn, Tn, K,)], giving
the locations/;, and types of the determining / 1 ]
points of S. (a) reference symbol (b) step 1 (c) step 2

§ Cap-
] X

1. Letza(s), ya(s), zs(s), ys(s) be the coordinate i
functions of the symbols given by and S. :

2.for i € 1..n do i
if K; = max then -
]
1

L f+— —ys _ i i
if K; = min then (d) step 3 (e) step 4 () step 5 = target
L f+— +ys

¢; «+— s such thatf(s) is minimized neas;. Fig. 7: Success in 5 steps.

Note this is the local minimum of a real univariate
polynomial and any standard method may be used.

For example, we use Newton's method to solve Nearest Neighbour: Another choice of starting point for
f'(s) = 0 with initial point s = s;.

L the homotopy is the nearest neighbour in the class of the
3. Retur(¢1, Ty, K1), . .., (n, T, K,n)] new symbol. This has the advantage that it should resemble
the new symbol more closely than the average symbol. We
would therefore suspect this starting point might requéneer
homotopy steps. This choice of starting point is not as smpl
A. The Reference Symbol as the average symbol, however, because all of the symbols ir
the database must be labelled with their determining points

We examine two types of reference symbols as the choicgor 5 database of any size, this is not something that can be
of starting point for the homotopy: traverage symbol and the  gone by hand.

nearest neighbour.

Average Symbol: The functional representation of digital ink B. Homotopy
traces has the advantage that the curves become points in a
linear space. It therefore makes sense to talk about thageer
of several points. Our first choice for reference symbol & th
average symbol of a class, computed@as, = >, Ci/n,

For those samples that are significantly different from the
reference symbol, we use a humerical homotopy between the
reference symbol and the target sample and trace the movemer

wheren is the number of the samples a6t is the coefficient  Of tN€ determining points. Because the classes are linsaply
vector for thei** sample. Note that this computed average isarable in the funcﬂon space a Ilne_ fr_om the fefefeﬂ‘?e symbol
in general not actually one of the sample points. Figure 5(a§° th_e target sample lies entirely within the class._ Dividthis
shows a small set of samples provided by different writecs an '€ Into several equal steps, we may apply Algorithm 1 aheac
Figure 5(b) shows the average symbol. step to follow the determining points through the homptopy.
If Cyey is the reference symbol for the class a6,  is
Choosing the average symbol as the reference symbdhe new sample target, then the line joining the two points in
for a class is an intuitive choice because presumably it haghe function space is given b(¢t) = (1 — t)Cres + tClarg,
little deformation compared to other samples in the classwith ¢ ranging from 0 to 1. The determining points should
Moreover, it will lie within the convex hull of the set of move smoothly as the character is deformed continuously by
points being averaged. Earlier work has shown [18] thath wit the homotopy. By taking discrete steps between the soukte an
this representation at relatively low approximation degtée the target, we can choose a sequence of intermediary point:
symbol classes are almost completely pairwise separable hyith each consecutive pair close enough for Algorithm 1 to
single hyperplanes. We may therefore take the volume esxtlos apply. Figure 6 shows an example where Algorithm 1 failed
by the convex hull of points as being properly included withi to identify one of the determining points when applied nigive
the class. Finally, the choice of average symbol is atiradgti ~ However, when applied in a 5-step homotopy, it succeeds, as
that only one symbol per class need be annotated. shown in Figure 7.
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Fig. 8: Distance taverage symbolsthe number of homotopy Fig. 9: Distance t@verage symbolsthe number of homotopy
steps requiredAs = 0.02, Ay = 1%. The overall success rate steps requiredAs = 0.02, Ay = 3%. The overall success rate
was 99.57% (45,440 out of 45,637). Each distance interval invas 99.63% (45,470 out of 45,637). Each distance interval in
the dense area (< 0.59) contains 2800 samples while each the dense area (< 0.59) contains 2800 samples while each
interval in the sparse area ¢ 0.59) contains 1500 samples, interval in the sparse area & 0.59) contains 1500 samples,
except the last one, which contains 1340 samples. except the last one, which contains 1370 samples.

V. EXPERIMENTS AND RESULTS samples as different parameter values may result in the sam

To evaluate the characteristics of the homotopy methodg‘elght 9f metric lines. For example, given an upper case T,
we have run tests with a moderately large dataset of han(ﬁ-ny point located on the top bar can be used to determine the

written mathematical characters. The dataset consistatt@mf ellght of the Cta]P I:met' btﬁt t,['he dlﬁfekgancle n tr;]ew parameter
gether 45,637 samples from 240 different symbol types.é’hesva ues may not fall into the threshots. In such cases, we

samples included Latin and Greek letters, digits, opesatord compared the normaliz_ed heights of the metric Ii_nes with th_e
other mathematical characters, collected from variousevai ground truth. We considered a result as correct if and only if
All of these samples had been classified in advance. As son{ge difference was within a particular threshald.

equivalent symbols were written in different styles, sush a  \We have investigated the relation between the distance to
completely different forms, different numbers of strokes, the reference point and the number of steps required unaer tw
strokes in different orders, the symbols were grouped intal to homotopy strategies. The first strategy performs a homotopy
of 388 classes. from the average symbol. The second strategy uses a homotop

We started the experiments by computing the average Syrﬁ[om the nearest neighbour with known determining points.

bol of each class, and manually annotating this averagesymb  rigyres 8 to 10 show, for different thresholds, the number
with its determining points. We then used this informationof steps required to correctly identify the determiningnisi

to try to_flnd the correspondln_g determining points on a”using a homotopy from the average symbol. The figures show
samples in the dataset. We applied a 4-step homotopy sfrategontours for the number of steps required to obtain certain
as this had achieved a high success rate in earlier work [4]ccess rates (90%, 95%, 99%) at varying distances to the
and required a reasonable amount of time to compute. Thepference symbol. Figures 11 and 12 show the results ofagimil

we visually inspected the determining points in each of thesxperiments, but where the reference symbol was the neares
samples and manually adjusted the few incorrect ones. Th'ﬁeighbour in the class.

collection of samples with corrected determining pointsnth
served as the ground truth. This information may be used to tell how many steps
. are required to find the determining points in a new sample.
We then went back and tested the data by forgetting the\ier calculating the distance from the new sample to the

_determining point annotations and seeing how many step. erage symbol, we can read off how many homotopy steps
it took to recover them. We adopted the average symbol . required for the desired success rate.
e

and the nearest neighbour as the reference symbols in th

experiments and evaluated the number of homotopy steps Figure 8 shows the relation when the tolerances/ase=
required, respectively. As the locations of determiningnt®  0.02 and Ay = 1%. The overall success rate with no limit
were recorded as locations given by the arc length parametesn the number of steps was 99.57% (45,440 out of 45,637
we compared the values with the ground truth. If the diffeeen samples). We divided the set of samples into groups, basec
was within a particular thresholds, we considered it to be on distance intervals to the average symbol. The size of eact
correct. Note that this threshold may not work for all theinterval depended on the density of samples at that distance
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Fig. 10: Distance toaverage symbolvs the number of ho- Fig. 11: Distance tonearest neighbour vs the number of
motopy steps requiredds = 0.02, Ay = 7%. The overall homotopy steps required\s = 0.02, Ay = 1%. The overall
success rate is 99.69% (45,496 out of 45,637). Each distanseiccess rate is 98.86% (45,116 out of 45,637). Each distance
interval in the dense area K 0.59) contains 2800 samples interval in the dense area K 0.32) contains 2800 samples
while each interval in the sparse areax 0.59) contains 1500 while each interval in the sparse areax 0.32) contains 1500
samples, except the last one, which contains 1396 samples.samples, except the last one, which contains 1016 samples.

There were more samples near the average symbol. In th
dense regionr( < 0.59) the intervals were chosen to contain
2800 samples each. In the sparse region, further from th
average symbolr( > 0.59), each interval contained 1500 ==90th Percentile
samples, except the last one contained 1340 samples. Hor e: -a 95th Percentile
interval we determined thg0'", 95, and99*" percentiles of 99th Percentile
the number of homotopy steps required to correctly identify
the determining points. Given the number of samples in eac z
interval, the margin of error is 2% at a confidence level of 2
95%. As shown in the graph, as the distance to the avera¢ 22
symbol increases, the number of required steps to achieve tt
90", 95", and 99" percentiles increases. Figures 9 and 10
show the relation between the distance to the average symb 1 | #—#iammmsssmes-f—i-—e
and the number of homotopy steps needed with laryer
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nearest neighbour and the number of homotopy steps need Distance to Nearest Neighbour

where As = 0.02 and Ay = 1%. The overall success rate _. A ;
was 98.86% (45,116 out of 45,637 samples). We divided thg?n'1 22 D'S?eanscfetﬁ’ifé‘qfslnoeghbg“rfsgf.?eTr;]“emo?/eerr;;r
distances into a number of intervals, as before. In the dens py step d § 7 204 BY = 970

! 0 ;
area ¢ < 0.32) the intervals were chosen to contain 2800 SUCCess rate is 99.45% (45,384 out of 45,637). Each distance

samples each. In the sparse area>( 0.32), each interval interval in the dense area K 0.32) contains 2800 samples

; : ._while each interval in the sparse areax 0.32) contains 1500
contained 1500 samples, except the last one, which coxltain X ;
1016 samples. For egch interv:fl we determinedtie. 95th Samples, except the last one, which contains 1284 samples.
and99'" percentiles of the number of homotopy steps required.
The margin of error is 2% at confidence level of 95%. As ) , . )
before, the number of required steps generally increastid wi MOtopy steps increases with the distance. Comparing the
the distance. Figure 12 shows the results wien = 0.02 results, we also see that for a given distance the number of
and Ay = 3%. When As = 0.02 and Ay = 7%, the graph required steps is about the same for both strategies. As is
looks identical to Figure 12 except the overall successigate Completely expected, the distance to the reference synsbol i

99.68% (45,490 out of 45,637). In that experiment, the lastSually smaller when the nearest neighbour strategy is. used
interval contained 1390 samples. Therefore with nearest neighbour we have on average a smalle

number of required steps. The tradeoff is that we must retain
We have seen that with both types of reference symbol—annotations for all symbols in the classifier, rather thast ju
average and nearest neighbour—the number of required héer the average symbol.



VI.

We have evaluated different strategies to locate special
points on handwriting samples by deforming a known instanceis;
using linear homotopy on polynomial models.

CONCLUSION [4]

We have evaluated two strategies for choice of starting (6]
point for the homotopy: to use the average symbol of the
class and to use the nearest neighbour within the class. Wey,
have found that the number of homotopy steps required as a
function of distance is about the same with the two strategie
The variance in the number of steps is also similar, but, is[8]
perhaps somewhat lower with the nearest neighbour strategy
suggesting a slightly better predictability. At any giveret-
ance level, the overall success rate was slightly highemwhe ]
starting with the average symbol than when starting with the
nearest neighbour. This does not appear to be significant. [10]

We have also evaluated the number of homotopy steps
required as a function of the distance between the new symbé&ill
and the starting point in the function space. For the regions
where we have sufficient data, we have found a clear relatiogl !
between the distance in the function space and the requir d2
number of steps with both starting point strategies.

In previous work [4], we had used a highly conservative'®!
number of homotopy steps (10 to 20) in order to obtain an
error rate of 0.25%. The present results allow the choice of
an appropriate and much reduced number of steps depending]
on the homotopy distance (to 1 to 5 steps). In all cases the
success rate at correctly locating the determining poimts o
test symbols was greater than 98.8%, so these exploratiofis]
improve the efficiency of a useful algorithm.
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