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What This Talk Is About 
� Computers and mathematics 

� Computer algebra and symbolic computation 

� What computer algebra systems can do 

� What computer algebra systems cannot do 

� How to get them to do it 



Warning! 
This talk is X-rated. 

It is intended for a mathematically  
mature audience. 

 
X, other variables and graphical content 

may appear. 
 
Viewer discretion is advised. 



Computers doing mathematics 

�  Numerical computing   sin(1.02)**2 

�  Symbolic computing   diff(sin(x^n)^m, x) 

�  Math communication 
 
�  Automated theorem proving,  

conjecture generation, ... 

 



Mathematics extending computing 

�  Algebraic notation   a*d – b*c 

�  Arrays 

�  Garbage collection 

�  Operator overloading 

�  Templates and generic programming 

�  Functional programming, ... 



Some of the things I do 
�  Develop algorithms 
◦  Algebraic algorithms 
◦  Symbolic-numeric algorithms 

 gcd(x + 1, x^2 + 2.01*x + .99) 

�  Study how to build computer algebra systems 
◦  Memory management 
◦  Higher-order type systems 
◦  Optimizing compilers 

�  Mathematical knowledge management 
◦  Representation of mathematical objects 
◦  Mathematical handwriting recognition 



What do computer algebra systems do? 

Choose the best answer: 
(a)  Manipulate expressions and equations. 
(b)  Do calculus homework. 
(c)  Give general formulas as answers. 
(d)  Model industrial mathematical problems. 
(e)  All of the above. 



A Maple session 



Another session (Be careful what you ask!) 



Computer Algebra vs  
Symbolic Computation 

�  Computer Algebra 
◦  Arithmetic on defined algebraic structures 
◦  Polynomials, matrices, algebraic functions,... 
◦  May involve symbols parameters, indeterminates 

�  Symbolic computation 
◦  Transformation of expression trees 
◦  Symbols for opns (“+”,  “sin”), variables, consts 
◦  Simplification, expression equivalence 



Computer Algebra vs  
Symbolic Computation 

�  Computer Algebra 
◦  Well-defined semantics 
◦  Compose constructions 
◦  Algebraic algorithms 

�  Symbolic computation 
◦  Alternative forms (factored, expanded, Horner...) 
◦  Working in partially-specified domains 
◦  Working symbolically 



Computer Algebra 



Symbolic Computation 



Dirty Little Secret 1 
�  Symbolic mathematics systems have become 

increasingly “algebratized” over the past 20 years. 

�  This is good:   
Spectacular algorithmic advances allow us to solve 
problems not even dreamed of in the 80s. 

�  This is bad:   
We are no closer to handling simple problems that are 
outside the classical algebraic domains. 



Algebraic Algorithms 
�  Problems are solved using methods vastly 

different than the ones you learned in school or 
university. 

�  Examples: 
◦  Polynomial multiplication:  DFT 
◦  Integration: Risch algorithm 
◦  Factorization: Cantor-Zassenhaus 



Polynomial Multiplication  
�  Two polynomials 

�  School method 

�  Multiplication costs O(d 2 ) 



Polynomial Multiplication  
�  Point-wise  Value Method 

�  DFT trick:  evaluate at “roots of unity” 

 
�  Multiplication now O(d log d ) 



Dirty Little Secret 2 
�  Computer math systems are presently very bad 

at computing with symbolic values. 

�  Polynomial of degree d. 
�  Field of characteristic p. 
�  Space of dimension n. 

�  Computer algebra has a hard time representing. 
�  Symbolic computation has few algorithms. 



What we have 



What we want 



Bringing Approaches Together 

�  Can algebratize symbolic computation 
(initial algebras, free algebras, adjoint functors) 

�  Can symbolicize algebraic computation 
(more varied algebraic structures) 

�  Amount to the same thing 
�  Need algorithms for these formal structures. 



Two Steps 
�  Symbolic polynomials: 

“polynomials” in which the exponents are  
integer-valued functions. 

�  Symbolic matrices: 
“matrices” in which the internal structure are of 

symbolic size. 
 

�  We work with these easily 
by hand but CAS fail. 



Symbolic Polynomials 
�  Arise frequently in practice. 

�  Wish to perform as many of the usual polynomial 
operations as possible. 

�  Model as  
◦  monomials with integer-valued polynomials as 

exponents, and  
◦  finite combinations of “+” and “×”. 



Symbolic Polynomials 



Integer-Valued Polynomials 
(OK to ignore if you don’t like math) 



Symbolic Polynomials 
(also ok to ignore if you don’t like math – you’ve got the idea already) 



Why Insist on Integer-Valued Exponents? 



Symbolic Polynomials 
�  Algorithms for arithmetic (+, ×) straightforward. 

�  Q: Can we do more interesting things like 
factorize or take GCDs of symbolic 
polynomials? 

�  A:  Yes! 



Multiplicative Structure 



Multiplicative Structure 



Integer-valued Polynomials and 
Fixed Divisors 



Algorithm Family 1: 
The Extension Method 

“Solve problem”  might be “compute GCD” , “factorize”, etc. 



Example 

GCD will have exponents of x as polynomials in m and n of maximum degree 2. 

GCD will have exponents of y as polynomials in n of maximum degree 2. 



Example (continued) 
Make the change of variables: 
 
 
 
 
 
 
GCD(p, q) and factorization of p are: 



Example (continued) 
Apply the inverse substitution: 
 
 
 
 
 
 



A Problem: 



Other Symbolic Polynomial Algorithms 

�  Algorithm Family 2:   
Evaluation/interpolation of exponents. 
(Interpolate symmetric polynomials.) 
 

�  Sparse evaluation/interpolation of exponents. 

�  Exponents on coefficients. 

�  Exponent variables as base variables. 

�  Functional decomposition of symbolic polynomials.    
If  f = g o h, find g and h. 



Symbolic Matrix Arithmetic 



The usual problem with piecewise fns 



Use Basis Functions 



Then Add General Terms 



Conclusions  
�  Computer algebra researchers should realize that their 

spectacular success hides an equally spectacular failure. 

�  There is a practically important,  
and theoretically rich middle ground between  
“computer algebra” and “symbolic computation.” 

�  We can and should explore this by 
◦  1. Creating new usefull well-defined structures. 
◦  2. Inventing algorithms for these structures. 
◦  3. Getting our math software to handle them. 


