
Computer Algebra’s
Dirty Little Secret
Stephen M. Watt
University of Western Ontario

TRICS Seminar, UWO CSD, 5 November 2008

What This Talk Is About
� Computers and mathematics

� Computer algebra and symbolic computation

� What computer algebra systems can do

� What computer algebra systems cannot do

� How to get them to do it

Warning!
This talk is X-rated.

It is intended for a mathematically
mature audience.

X, other variables and graphical content

may appear.

Viewer discretion is advised.

Computers doing mathematics

�  Numerical computing sin(1.02)**2

�  Symbolic computing diff(sin(x^n)^m, x)

�  Math communication

�  Automated theorem proving,

conjecture generation, ...

Mathematics extending computing

�  Algebraic notation a*d – b*c

�  Arrays

�  Garbage collection

�  Operator overloading

�  Templates and generic programming

�  Functional programming, ...

Some of the things I do
�  Develop algorithms
◦  Algebraic algorithms
◦  Symbolic-numeric algorithms

 gcd(x + 1, x^2 + 2.01*x + .99)

�  Study how to build computer algebra systems
◦  Memory management
◦  Higher-order type systems
◦  Optimizing compilers

�  Mathematical knowledge management
◦  Representation of mathematical objects
◦  Mathematical handwriting recognition

What do computer algebra systems do?

Choose the best answer:
(a)  Manipulate expressions and equations.
(b)  Do calculus homework.
(c)  Give general formulas as answers.
(d)  Model industrial mathematical problems.
(e)  All of the above.

A Maple session

Another session (Be careful what you ask!)

Computer Algebra vs
Symbolic Computation

�  Computer Algebra
◦  Arithmetic on defined algebraic structures
◦  Polynomials, matrices, algebraic functions,...
◦  May involve symbols parameters, indeterminates

�  Symbolic computation
◦  Transformation of expression trees
◦  Symbols for opns (“+”, “sin”), variables, consts
◦  Simplification, expression equivalence

Computer Algebra vs
Symbolic Computation

�  Computer Algebra
◦  Well-defined semantics
◦  Compose constructions
◦  Algebraic algorithms

�  Symbolic computation
◦  Alternative forms (factored, expanded, Horner...)
◦  Working in partially-specified domains
◦  Working symbolically

Computer Algebra

Symbolic Computation

Dirty Little Secret 1
�  Symbolic mathematics systems have become

increasingly “algebratized” over the past 20 years.

�  This is good:
Spectacular algorithmic advances allow us to solve
problems not even dreamed of in the 80s.

�  This is bad:
We are no closer to handling simple problems that are
outside the classical algebraic domains.

Algebraic Algorithms
�  Problems are solved using methods vastly

different than the ones you learned in school or
university.

�  Examples:
◦  Polynomial multiplication: DFT
◦  Integration: Risch algorithm
◦  Factorization: Cantor-Zassenhaus

Polynomial Multiplication
�  Two polynomials

�  School method

�  Multiplication costs O(d 2)

Polynomial Multiplication
�  Point-wise Value Method

�  DFT trick: evaluate at “roots of unity”

�  Multiplication now O(d log d)

Dirty Little Secret 2
�  Computer math systems are presently very bad

at computing with symbolic values.

�  Polynomial of degree d.
�  Field of characteristic p.
�  Space of dimension n.

�  Computer algebra has a hard time representing.
�  Symbolic computation has few algorithms.

What we have

What we want

Bringing Approaches Together

�  Can algebratize symbolic computation
(initial algebras, free algebras, adjoint functors)

�  Can symbolicize algebraic computation
(more varied algebraic structures)

�  Amount to the same thing
�  Need algorithms for these formal structures.

Two Steps
�  Symbolic polynomials:

“polynomials” in which the exponents are
integer-valued functions.

�  Symbolic matrices:
“matrices” in which the internal structure are of

symbolic size.

�  We work with these easily
by hand but CAS fail.

Symbolic Polynomials
�  Arise frequently in practice.

�  Wish to perform as many of the usual polynomial
operations as possible.

�  Model as
◦  monomials with integer-valued polynomials as

exponents, and
◦  finite combinations of “+” and “×”.

Symbolic Polynomials

Integer-Valued Polynomials
(OK to ignore if you don’t like math)

Symbolic Polynomials
(also ok to ignore if you don’t like math – you’ve got the idea already)

Why Insist on Integer-Valued Exponents?

Symbolic Polynomials
�  Algorithms for arithmetic (+, ×) straightforward.

�  Q: Can we do more interesting things like
factorize or take GCDs of symbolic
polynomials?

�  A: Yes!

Multiplicative Structure

Multiplicative Structure

Integer-valued Polynomials and
Fixed Divisors

Algorithm Family 1:
The Extension Method

“Solve problem” might be “compute GCD” , “factorize”, etc.

Example

GCD will have exponents of x as polynomials in m and n of maximum degree 2.

GCD will have exponents of y as polynomials in n of maximum degree 2.

Example (continued)
Make the change of variables:

GCD(p, q) and factorization of p are:

Example (continued)
Apply the inverse substitution:

A Problem:

Other Symbolic Polynomial Algorithms

�  Algorithm Family 2:
Evaluation/interpolation of exponents.
(Interpolate symmetric polynomials.)

�  Sparse evaluation/interpolation of exponents.

�  Exponents on coefficients.

�  Exponent variables as base variables.

�  Functional decomposition of symbolic polynomials.
If f = g o h, find g and h.

Symbolic Matrix Arithmetic

The usual problem with piecewise fns

Use Basis Functions

Then Add General Terms

Conclusions
�  Computer algebra researchers should realize that their

spectacular success hides an equally spectacular failure.

�  There is a practically important,
and theoretically rich middle ground between
“computer algebra” and “symbolic computation.”

�  We can and should explore this by
◦  1. Creating new usefull well-defined structures.
◦  2. Inventing algorithms for these structures.
◦  3. Getting our math software to handle them.

