
Dependent Types

and Categorical Programming

or What can we learn from Aldor?

Stephen M. Watt

University of Western Ontario

TRICS, University of Western Onatrio, 18 January 2012

based on a talk given at École Polytechnique, Palaiseau, 23 September 2011

Previous TRICS!

And now for something

completely different….

Types in Programming Languages

 Built from some basic types, e.g.

◦ int, double, char, …

 Composed with some built-in constructors, e.g

◦ records, unions, functions, enumerations, objects, …

 Different type systems have different properties, e.g.

◦ Dynamic vs static, opaque vs explicit, …

The Basic Building Blocks

 Usually the built in constructors are based on

simple ideas from mathematics.

 Mapping types:

 A → B

 Cartesian product types:

 A ×B

 … and combinations: A1×A2×A3 → R1×R2

Properties

 Using these basic mathematical ideas allows one

to reason about types.

For example the projections on Cartesian

products model record selection.

first: A ×B → A
second: A ×B → B

Types and execution time values

 A type system may allow type expressions to

have symbols bound at execution time, e.g.

arrays of size n.

 In this situation, we may want a type to depend

on a run time value, such as an argument to a

function, e.g.

 (n: int) → SquareMatrix(n, double)
 (n: int) × SquareMatrix(n, double)

Types and execution time values

 (n: int) → SquareMatrix(n, double)
 (n: int) × SquareMatrix(n, double)

 These are dependent types, which can be very

powerful and useful.

 We have given up some useful properties of

cartesian products though.

 Things get really interesting when the variables

can themselves be types…..

What would a language based on

these ideas look like…

Aldor

 What is Aldor?

 Aspects of the Aldor language.

 Some lessons learned.

What is Aldor?
IBM Research

 Initially, extension language for Scratchpad II ( Axiom).

 First experiments 1984-1990.

 New implementation 1990-1995.

 Various early names, first described as A♯ (ISSAC 1994).

 Several new features back-ported to Scratchpad II/Axiom.

Numerical Algorithms Group

 Distributed by NAG with Axiom 2 1995-2000

 Used in FRISCO 1996-1999.

Aldor.org

 Available open source 2002-date

What is Aldor?

 Want a programming language

for library development.

 Programming in the small

vs programming in the large.

 Want abstraction, flexibility, safety and efficiency.

 Want to model rich relations

among mathematical objects.

What is Aldor?

 A higher order language for natural expression

of mathematical programs.

 Functional, Object-Oriented, Aspect-Oriented

characteristics.

 Types and functions first class values.

 Efficiency/flexibility tradeoff achieved through

categories and dependent typing.

 Optimizing compiler generates intermediate

code, then LISP or C.

Why Math in Prog Lang Research?

 Rich relationships among sophisticated

abstractions.

 Well-defined domain.

 Many programming language ideas originated here:

algebraic expressions, arrays, big integers, garbage

collection, pattern matching, parametric

polymorphism, …

Aldor Example I

#include "aldor"

double(n: Integer): Integer == n + n

Aldor Example II

#include "aldor"
#include "aldorio"

factorial(n: Integer): Integer == {

 p := 1;

 for i in 1..n repeat p := p * i;

 p

}

import from Integer;

print << "factorial 10 = " << factorial 10 << newline

Aldor Example III

#include "aldor"

MiniList(S: BasicType): LinearAggregate(S) == add {

 Rep == Union(nil: Pointer,
 rec: Record(first: S, rest: Rep));

 import from Rep, SingleInteger;

 local cons (s:S,l:%):% == per(union [s, l]);

 local first(l: %): S == rep(l).rec.first;

 local rest (l: %): % == rep(l).rec.rest;

 empty (): % == per(union nil);

 empty?(l: %):Boolean == rep(l) case nil;

 sample: % == empty();

 [t: Tuple S]: % == {

 l := empty();

 for i in length t..1 by -1 repeat

 l := cons(element(t, i), l);

 l

 }

 [g: Generator S]: % == {

 r := empty(); for s in g repeat r := cons(s, r);

 l := empty(); for s in r repeat l := cons(s, l);

 l

 }

 generator(l: %): Generator S == generate {

 while not empty? l repeat {

 yield first l; l := rest l

 }

 }

 (l1: %) = (l2: %): Boolean == {

 while not empty? l1 and not empty? l2 repeat {

 if first l1 ~= first l2 then return false;

 (l1, l2) := (rest l1, rest l2)

 }

 empty? l1 and empty? l2

 }

 ...

}

Aldor and Its Type System

 Types and functions are values

◦ May be created dynamically

◦ Provide representations of mathematical sets and functions

 The type system has two levels

◦ Each value belongs to a unique type, its domain, known statically.

◦ This is an abstract data type that gives the representation.

◦ The domains are values with domain Domain.

◦ Each value may belong to any number of subtypes of its domain.

◦ Subtypes of Domain are called categories.

 Categories

◦ specify what exports (operations, constants) a domain provides.

◦ fill the role of OO interfaces or abstract base classes.

Why Two Levels?

 OO inheritance pb with multi-argument fns:

 class SG { “*”: (SG, SG) -> SG; }
DoubleFloat extends SG ...
Permutation extends SG ...

x, y ∈ DoubleFloat ⊂ SG
p, q ∈ Permutation ⊂ SG

 x * y ✓
p * q ✓

 p * y ✓ !!!

Why Two Levels?

 OO inheritance pb with multi-argument fns:

 SG == ... { “*”: (%, %) -> %; }
DoubleFloat: SG ...
Permutation: SG ...

x, y ∈ DoubleFloat ∈ SG
p, q ∈ Permutation ∈ SG

 x * y ✓
p * q ✓

 p * y ✗

Parametric Polymorphism

 PP is via category- and domain-producing functions.

-- A function returning an integer.

factorial(n: Integer): Integer == {
 if n = 0 then 1 else n*factorial(n-1)
}

-- Functions returning a category and a domain.

define Module(R: Ring): Category == Ring with { *: (R, %) -> % }

Complex(R: Ring): Module(R) with {

 complex: (%,%)->R; real: %->R; imag: %->R; conj: % -> %; ...

} == add {

 Rep == Record(real: R, imag: R);
 0: % == …
 1: % == …
 (x: %) + (y: %): % == ...

}

Dependent Types

 Give dynamic typing, e.g.

f: (n: Integer, R: Ring, m: IntegerMod(n)) -> SqMatrix(n, R)

 Recover OO through dependent products:

prodl: List Record(S: Semigroup, s: S) == [
 [DoubleFloat, x],
 [Permutation, p],
 [DoubleFloat, y]
]

 With categories, guarantee required operations available:

f(R: Ring)(a: R, b: R): R == a*b + b*a

Multi-sorted Algebras

 Category signature as a dependent product type.

 ArithmeticModel: Category == with {

 Nat: IntegralDomain;

 Rat: Field;

 /: (Nat, Nat) -> Rat;
}

Aldor and Its Type System

 Type producing expressions may be conditional

UnivariatePolynomial(R: Ring): Module(R) with {

 coeff: (%, Integer) -> R;

 monomial: (R, Integer) -> %;

 if R has Field then EuclideanDomain;

 ...

 } == add {

 ...

 }

 Post facto extensions allow domains to belong to new

categories after they have been initially defined.

Post Facto Extension for

Structuring Libraries

DirectProduct(n: Integer, S: Set): Set with {

 component: (Integer, %) -> S;

 new: Tuple S -> %;

 if S has Semigroup then Semigroup;

 if S has Monoid then Monoid;

 if S has Group then Group;

 ...

 if S has Ring then Join(Ring, Module(S));

 if S has Field then Join(Ring, VectorField(S));

 ...

 if S has DifferentialRing then DifferentialRing;

 if S has Ordered then Ordered;

 ...

} == add { ... }

Post Facto Extension for

Structuring Libraries

DirectProduct(n: Integer, S: Set): Set with {

 component: (Integer, %) -> S;

 new: Tuple S -> %;

} == add { ... }

extend DirectProduct(n: Integer, S: Semigroup): Semigroup == ...
extend DirectProduct(n: Integer, S: Monoid): Monoid == ...
extend DirectProduct(n: Integer, S: Group): Group == ...
...
extend DirectProduct(n: Integer, S: Ring): Join(Ring, Module(S)) == ...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
...
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ...
extend DirectProduct(n: Integer, S: DifferentialRing): DifferentialRing == ...
extend DirectProduct(n: Integer, S: Ordered): Ordered == ...
...

 Normally these extensions would all be in separate files.

Higher Order Operations

 E.g. Reorganizing constructions

 Polynomial(x) Matrix(n) Complex R ≈

Complex Matrix(n) Polynomial(x) R

 Slightly simpler example

 List Array String R ≈ String Array List R

Higher Order Operations

Ag ==> (S: BasicType) -> LinearAggregate S;

swap(X:Ag, Y:Ag)(S:BasicType)(x:X Y S):Y X S ==
[[s for s in y] for y in x];

al: Array List Integer :=
array(list(i+j-1 for i in 1..3) for j in 1..3);

la: List Array Integer :=
swap(Array, List)(Integer)(al);

Phew!

Using Genericity

LinearOrdinaryDifferentialOperator(

 A: DifferentialRing,

 M: LeftModule(A) with differentiate: % -> %

) : MonogenicLinearOperator(A) with {

 D: %;

 apply: (%, M) -> M;

 ...

 if A has Field then {

 leftDivide: (%, %) -> (quotient: %, remainder: %);

 rightDivide:(%, %) -> (quotient: %, remainder: %);

 … // rgcd, lgcd

 }

} == ...

Using Genericity

LinearOrdinaryDifferentialOperator(

 A: DifferentialRing,

 M: LeftModule(A) with differentiate: % -> %

) : ...

== SUP(A) add {

 ...

 if A has Field then {

 Op == OppositeOperator(%, A);

 DOdiv == NonCommutativeOperatorDivision(%, A);

 OPdiv == NonCommutativeOperatorDivision(Op,A);

 leftDivide (a,b) == leftDivide(a, b)$DOdiv;

 rightDivide(a,b) == leftDivide(a, b)$OPdiv;

 }

 ...

}

Design Principles I

 No compromises on flexibility

 No compromises on efficiency

 Use optimization to bridge the gap.

 Compilation. Separate compilation.

 Generated intermediate code is platform independent,

even though word-sizes, etc, vary.

 Libraries can be distributed, if desired, as binary only.

 Be a good citizen in a multi-language framework.

◦ Call and be called by C/C++/Fortran/Lisp/Maple

◦ Functional arguments

◦ Cooperating memory management

Design Principles II

 Language-defined types should have no privilege

whatsoever over application-defined types.

◦ Syntax, semantics (e.g. in type exprs),

optimization (e.g. constant folding)

 Language semantics should be independent of type.

◦ E.g. named constants overloaded, not functions

 Combining libraries should be easy, O(n), not O(n2).

◦ Should be able to extend existing things with new concepts

without touching old files or recompiling.

 Safety through optimization removing run-time checks,

not by leaving off the checks in the first place.

The Compiler as an Artefact

 Written primarily in C (C++ too immature in 1990)

 1550 files, 295 K loc C + 65 K loc Aldor

 Intermediate code (FOAM):

◦ Primitive types: booleans, bytes, chars, numeric, arrays, closures

◦ Primitive operations: data access, control, data operations

 Runtime system:

◦ Memory management

◦ Big integers

◦ Stack unwinding

◦ Export lookup from domains

◦ Dynamic linking

◦ Written in C and Aldor

Example of Optimization

From the domain Segment(E: OrderedAbelianMonoid)
generator(seg:Segment E):Generator E == generate {

 (a, b) := (low seg, hi seg);

 while a <= b repeat { yield a; a := a + 1 }

}

From the domain List(S: Set)

generator(l: List S): Generator S == generate {

 while not null? l repeat { yield first l; l := rest l }

}

Client code

client() == {

 ar := array(...); li := list(...);

 s := 0;

 for i in 1..#ar for e in l repeat { s := s + ar.i + e }

 stdout << s

}

How Generators Work
generator(seg:Segment Int):Generator Int
== generate {

 a := lo seg;

 b := hi seg;

 while a <= b repeat {
 yield a; a := a + 1
}

}

client() == {

 ar := array(...);

 s := 0;

 for i in 1..#ar repeat
 s := s + a.i;

 stdout << s

}

Example of Optimization (again)

From the domain Segment(E: OrderedAbelianMonoid)
generator(seg:Segment E):Generator E == generate {

 (a, b) := (low seg, hi seg);

 while a <= b repeat { yield a; a := a + 1 }

}

From the domain List(S: Set)

generator(l: List S): Generator S == generate {

 while not null? l repeat { yield first l; l := rest l }

}

Client code

client() == {

 ar := array(...); li := list(...);

 s := 0; -- NOTE PARALLEL TRAVERSAL.

 for i in 1..#ar for e in l repeat { s := s + ar.i + e }

 stdout << s

}

Inlined
B0: ar := array(...);

 l := list(...);

 segment := 1..#ar;

 lab1 := B2;
 l2 := l;

 lab2 := B9;
 s := 0;

 goto B1;

B1: goto @lab1;
B2: a := segment.lo;

 b := segment.hi;

 goto B3;

B3: if a > b then goto B6; else goto B4;

B4: lab1 := B5;
 val1 := a;

 goto B7;

B5: a := a + 1

 goto B3;

B6: lab1 := B7;
 goto B7;

B7: if lab1 == B7 then goto B16; else goto B8
B8: i := val1;

 goto @lab2;

B9: goto B10

B10: if null? l2 then goto B13; else goto B11

B11: lab2 := B12
 val2 := first l2;

 goto B14;

B12: l2 := rest l2

 goto B10

B13: lab2 := B14
 goto B14

B14: if lab2 == B14 then goto B16; else goto B15
B15: e := val2;

 s := s + ar.i + e

 goto B1;

B16: stdout << s

Clone Blocks for 1st Iterator

Dataflow

[lab1 == B2, lab1 == B5, lab1 == B7]

Resolution of 1st Iterator

Clone Blocks for 2nd Iterator

Resolution of 2nd Iterator

client() == {

 ar := array(...);

 l := list(...);

 l2 := l;

 s := 0;

 a := 1;

 b := #ar;

 if a > b then goto L2

L1: if null? l2 then goto L2

 e := first l2;

 s := s + ar.a + e

 a := a + 1

 if a > b then goto L2

 l2 := rest l2

 goto L1

L2: stdout << s

}

Aldor vs C (non-floating pt)

Aldor vs C (floating point)

Lessons Learned

 It is possible to be elegant, abstract and high-level

without sacrificing significant efficiency.

 Well-known optimization techniques can be effectively

adapted to the symbolic setting.

 Optimization of generated C code is not enough.

 Procedural integration, dataflow analysis, subexpression

elimination and constant folding are the primary wins.

 Compile-time memory optimization, including data

structure elimination, is important.

◦ Removes boxing/unboxing, closure creation, dynamic allocation

of local objects, etc. Can move hot fields into registers.

Conclusions

 Language design 20+ years old.

◦ In the mean time, many of the ideas now mainstream.

◦ Many still are not.

 Mathematics is a valuable canary

in the coal mine of general purpose software.

◦ The general world lags in recognizing needs.

 It has to be free.

◦ Free1 is the standard price.

◦ Free2 is required for engagement.

Prospectives

 New prospects for optimization:

◦ Allowing opaque types to assert identities – use in

optimization. Proof-carrying code should be within.

◦ Rely more on JIT to optimize composed functors.

 Enhance semantics to support systematic

parameterization.

◦ Default views to limit exponential param explosion.

◦ More operations on multi-sorted algebras.

Prospectives

 Mathematical Interface Definition Language

◦ To make better sound use of external libraries.

◦ E.g. BLAS, FLINT, etc with consistent semantics.

 More use of relevant modern standards.

◦ MathML3, Unicode, HTTP, C1X, Modelica, …

 Support for collaboration.

◦ Shared spaces, roll backs, etc.

 What kind of free?

