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Previous TRICS! 

 



And now for something 

completely different…. 
 



Types in Programming Languages  

 Built from some basic types, e.g.  

◦ int, double, char, … 

 

 Composed with some built-in constructors, e.g 

◦ records, unions, functions, enumerations, objects, … 

 

 Different type systems have different properties, e.g. 

◦ Dynamic vs static, opaque vs explicit, … 

 



The Basic Building Blocks 

 Usually the built in constructors are based on 

simple ideas from mathematics. 

 

 Mapping types: 

 A → B 

 

 Cartesian product types: 

 A ×B 

 

 … and combinations:    A1×A2×A3 → R1×R2 



Properties 

 Using these basic mathematical ideas allows one 

to reason about types.   

For example the projections on Cartesian 

products model record selection. 

 

first:  A ×B  →  A 
second:  A ×B  →  B 

 



Types and execution time values 

 A type system may allow type expressions to 

have symbols bound at execution time, e.g. 

arrays of size n. 

 In this situation, we may want a type to depend 

on a run time value, such as an argument to a 

function, e.g. 
 

 (n: int) →  SquareMatrix(n, double) 
 (n: int) ×  SquareMatrix(n, double) 

 

 

 

 



Types and execution time values 

 (n: int) →  SquareMatrix(n, double) 
 (n: int) ×  SquareMatrix(n, double) 

 These are dependent types, which can be very 

powerful and useful. 

 We have given up some useful properties of 

cartesian products though.   

 

 Things get really interesting when the variables 

can themselves be types….. 

 

 

 

 



What would a language based on 

these ideas look like… 
 



Aldor 

 What is Aldor? 

 Aspects of the Aldor language. 

 Some lessons learned. 



What is Aldor? 
IBM Research  

 Initially, extension language for Scratchpad II ( Axiom). 

 First experiments 1984-1990. 

 New implementation 1990-1995. 

 Various early names, first described as A♯  (ISSAC 1994). 

 Several new features back-ported to Scratchpad II/Axiom. 

Numerical Algorithms Group 

 Distributed by NAG with Axiom 2 1995-2000 

 Used in FRISCO 1996-1999. 

Aldor.org 

 Available open source 2002-date 

 



What is Aldor? 

 Want a programming language  

for library development. 

 Programming in the small  

vs programming in the large.  

 Want abstraction, flexibility, safety and efficiency. 

 Want to model rich relations  

among mathematical objects. 



What is Aldor? 

 A higher order language for natural expression 

of mathematical programs. 

 Functional, Object-Oriented, Aspect-Oriented 

characteristics. 

 Types and functions first class values. 

 Efficiency/flexibility tradeoff achieved through 

categories and dependent typing. 

 Optimizing compiler generates intermediate 

code, then LISP or C. 



Why Math in Prog Lang Research? 

 Rich relationships among sophisticated 

abstractions. 

 Well-defined domain. 

 Many programming language ideas originated here:  

algebraic expressions, arrays, big integers, garbage 

collection, pattern matching, parametric 

polymorphism, … 



Aldor Example I 

#include "aldor" 

double(n: Integer): Integer == n + n 



Aldor Example II 

#include "aldor"  
#include "aldorio" 

 

factorial(n: Integer): Integer == { 

 p := 1; 

 for i in 1..n repeat p := p * i; 

 p 

} 

 

import from Integer; 

 

print << "factorial 10 = " << factorial 10 << newline 



Aldor Example III 

#include "aldor" 

MiniList(S: BasicType): LinearAggregate(S) == add { 

 Rep == Union(nil: Pointer,  
                    rec: Record(first: S, rest: Rep)); 

 import from Rep, SingleInteger; 

 local cons (s:S,l:%):% == per(union [s, l]); 

 local first(l: %): S == rep(l).rec.first; 

 local rest (l: %): % == rep(l).rec.rest; 

 empty (): % == per(union nil); 

 empty?(l: %):Boolean == rep(l) case nil; 

 sample: % == empty(); 

 [t: Tuple S]: % == { 

  l := empty(); 

  for i in length t..1 by -1 repeat 

   l := cons(element(t, i), l); 

  l 

 } 
 



       [g: Generator S]: % == { 

            r := empty(); for s in g repeat r := cons(s, r); 

            l := empty(); for s in r repeat l := cons(s, l); 

            l 

       } 

       generator(l: %): Generator S == generate { 

            while not empty? l repeat { 

                  yield first l; l := rest l 

            } 

       } 

       (l1: %) = (l2: %): Boolean == { 

            while not empty? l1 and not empty? l2 repeat { 

                 if first l1 ~= first l2 then return false; 

                 (l1, l2) := (rest l1, rest l2) 

            } 

            empty? l1 and empty? l2 

       } 

       ... 

} 



Aldor and Its Type System 

 Types and functions are values 

◦ May be created dynamically 

◦ Provide representations of mathematical sets and functions 

 The type system has two levels 

◦ Each value belongs to a unique type, its domain, known statically.  

◦ This is an abstract data type that gives the representation. 

◦ The domains are values with domain Domain. 
 

◦ Each value may belong to any number of subtypes of its domain. 

◦ Subtypes of Domain are called categories. 

 Categories 

◦ specify what exports (operations, constants) a domain provides. 

◦ fill the role of OO interfaces or abstract base classes. 



Why Two Levels? 

 OO inheritance pb with multi-argument fns: 

 

 class SG { “*”: (SG, SG) -> SG; } 
DoubleFloat extends SG ... 
Permutation extends SG ... 
 
x, y ∈ DoubleFloat ⊂ SG 
p, q ∈ Permutation ⊂ SG 

 

 x * y  ✓ 
p * q  ✓ 

 p * y  ✓ !!!  



Why Two Levels? 

 OO inheritance pb with multi-argument fns: 

 

 SG == ... { “*”: (%, %) -> %; } 
DoubleFloat: SG ... 
Permutation: SG ... 
 
x, y ∈ DoubleFloat ∈ SG 
p, q ∈ Permutation ∈ SG 

 

 x * y  ✓ 
p * q  ✓ 

 p * y  ✗ 



Parametric Polymorphism 

 PP is via category- and domain-producing functions. 
 

-- A function returning an integer. 

factorial(n: Integer): Integer == {  
    if n = 0 then 1 else n*factorial(n-1)  
} 
 

-- Functions returning a category and a domain. 

define Module(R: Ring): Category == Ring with { *: (R, %) -> % } 
 

Complex(R: Ring): Module(R) with { 

    complex: (%,%)->R;  real: %->R; imag: %->R; conj: % -> %; ... 

} == add { 

    Rep  == Record(real: R, imag: R);  
    0: % == … 
    1: % == … 
    (x: %) + (y: %): % == ... 

} 



Dependent Types 

 Give dynamic typing, e.g. 

 
f: (n: Integer, R: Ring, m: IntegerMod(n)) -> SqMatrix(n, R) 

 

 Recover OO through dependent products: 
 
prodl: List Record(S: Semigroup, s: S) == [ 
 [DoubleFloat, x], 
 [Permutation, p], 
 [DoubleFloat, y] 
] 

 

 With categories, guarantee required operations available: 
  

f(R: Ring)(a: R, b: R): R == a*b + b*a 

 

   



Multi-sorted Algebras 

 Category signature as a dependent product type. 

 

 ArithmeticModel: Category == with { 

  Nat: IntegralDomain; 

  Rat: Field; 

  /:   (Nat, Nat) -> Rat; 
} 



Aldor and Its Type System 

 Type producing expressions may be conditional 
 
UnivariatePolynomial(R: Ring): Module(R) with { 

     coeff: (%, Integer) -> R; 

     monomial: (R, Integer) -> %; 

     if R has Field then EuclideanDomain; 

          ... 

     } == add { 

          ... 

     } 

 

 Post facto extensions allow domains to belong to new 

categories after they have been initially defined. 



Post Facto Extension for 

Structuring Libraries 
 
DirectProduct(n: Integer, S: Set): Set with { 

      component: (Integer, %) -> S; 

      new: Tuple S -> %; 

      if S has Semigroup then Semigroup; 

      if S has Monoid then Monoid; 

      if S has Group then Group; 

      ... 

      if S has Ring then Join(Ring, Module(S)); 

      if S has Field then Join(Ring, VectorField(S)); 

      ... 

      if S has DifferentialRing then DifferentialRing; 

      if S has Ordered then Ordered; 

      ... 

} == add { ... } 



Post Facto Extension for 

Structuring Libraries 
 

DirectProduct(n: Integer, S: Set): Set with { 

    component: (Integer, %) -> S; 

    new: Tuple S -> %; 

} == add { ... } 
 
extend DirectProduct(n: Integer, S: Semigroup): Semigroup == ... 
extend DirectProduct(n: Integer, S: Monoid): Monoid == ... 
extend DirectProduct(n: Integer, S: Group): Group == ... 
... 
extend DirectProduct(n: Integer, S: Ring): Join(Ring, Module(S)) == ... 
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ... 
... 
extend DirectProduct(n: Integer, S: Field): Join(Ring, VectorField(S)) == ... 
extend DirectProduct(n: Integer, S: DifferentialRing): DifferentialRing == ... 
extend DirectProduct(n: Integer, S: Ordered): Ordered == ... 
... 

 Normally these extensions would all be in separate files. 



Higher Order Operations 

 E.g. Reorganizing constructions 

 Polynomial(x) Matrix(n) Complex R ≈ 

Complex Matrix(n) Polynomial(x) R 

 

 Slightly simpler example 

 List Array String R ≈ String Array List R 



Higher Order Operations 

Ag ==> (S: BasicType) -> LinearAggregate S; 

 

swap(X:Ag, Y:Ag)(S:BasicType)(x:X Y S):Y X S ==  
[[s for s in y] for y in x]; 

 

al: Array List Integer :=  
array(list(i+j-1 for i in 1..3) for j in 1..3); 

 

la: List Array Integer :=  
swap(Array, List)(Integer)(al); 

 



Phew! 

 



Using Genericity 

LinearOrdinaryDifferentialOperator( 

     A: DifferentialRing,  

     M: LeftModule(A) with differentiate: % -> % 

) : MonogenicLinearOperator(A) with { 

     D: %; 

     apply: (%, M) -> M; 

     ... 

     if A has Field then { 

         leftDivide: (%, %) -> (quotient: %, remainder: %);        

         rightDivide:(%, %) -> (quotient: %, remainder: %); 

   … // rgcd, lgcd 

        } 

} == ...     

 



Using Genericity 

LinearOrdinaryDifferentialOperator( 

     A: DifferentialRing,  

     M: LeftModule(A) with differentiate: % -> % 

) : ... 

== SUP(A) add { 

        ... 

        if A has Field then { 

            Op    == OppositeOperator(%, A); 

            DOdiv == NonCommutativeOperatorDivision(%, A); 

            OPdiv == NonCommutativeOperatorDivision(Op,A); 

            leftDivide (a,b) == leftDivide(a, b)$DOdiv; 

            rightDivide(a,b) == leftDivide(a, b)$OPdiv; 

        } 

        ... 

} 

 



Design Principles I 

 No compromises on flexibility 

 No compromises on efficiency 

 Use optimization to bridge the gap. 
 

 Compilation.  Separate compilation. 

 Generated intermediate code is platform independent, 

even though word-sizes, etc, vary. 

 Libraries can be distributed, if desired, as binary only. 
 

 Be a good citizen in a multi-language framework. 

◦ Call and be called by C/C++/Fortran/Lisp/Maple 

◦ Functional arguments 

◦ Cooperating memory management 



Design Principles II 

 Language-defined types should have no privilege 

whatsoever over application-defined types. 

◦ Syntax, semantics (e.g. in type exprs),  

optimization (e.g. constant folding) 

 Language semantics should be independent of type. 

◦ E.g. named constants overloaded, not functions 

 Combining libraries should be easy, O(n), not O(n2). 

◦ Should be able to extend existing things with new concepts 

without touching old files or recompiling. 

 Safety through optimization removing run-time checks, 

not by leaving off the checks in the first place. 



The Compiler as an Artefact 

 Written primarily in C (C++ too immature in 1990) 

 1550 files, 295 K loc C + 65 K loc Aldor 

 Intermediate code (FOAM): 

◦ Primitive types: booleans, bytes, chars, numeric, arrays, closures 

◦ Primitive operations: data access, control, data operations 

 Runtime system: 

◦ Memory management 

◦ Big integers 

◦ Stack unwinding 

◦ Export lookup from domains 

◦ Dynamic linking 

◦ Written in C and Aldor 



Example of Optimization 

From the domain Segment(E: OrderedAbelianMonoid) 
generator(seg:Segment E):Generator E == generate { 

    (a, b) := (low seg, hi seg); 

    while a <= b repeat { yield a; a := a + 1 } 

} 

From the domain List(S: Set) 

generator(l: List S): Generator S == generate { 

    while not null? l repeat { yield first l; l := rest l } 

} 

Client code 

client() == { 

    ar := array(...);  li := list(...); 

    s := 0; 

    for i in 1..#ar for e in l repeat { s := s + ar.i + e } 

    stdout << s 

} 



How Generators Work 
generator(seg:Segment Int):Generator Int 
== generate { 

   a := lo seg; 

   b := hi seg; 

   while a <= b repeat {  
    yield a; a := a + 1  
} 

} 

 

client() == { 

    ar := array(...); 

    s  := 0; 

    for i in 1..#ar repeat  
      s := s + a.i; 

    stdout << s 

} 



Example of Optimization (again) 

From the domain Segment(E: OrderedAbelianMonoid) 
generator(seg:Segment E):Generator E == generate { 

    (a, b) := (low seg, hi seg); 

    while a <= b repeat { yield a; a := a + 1 } 

} 

From the domain List(S: Set) 

generator(l: List S): Generator S == generate { 

    while not null? l repeat { yield first l; l := rest l } 

} 

Client code 

client() == { 

    ar := array(...);  li := list(...); 

    s := 0;   -- NOTE PARALLEL TRAVERSAL. 

    for i in 1..#ar for e in l repeat { s := s + ar.i + e } 

    stdout << s 

} 



Inlined 
B0:  ar := array(...); 

     l := list(...); 

     segment := 1..#ar; 

     lab1 := B2; 
     l2 := l; 

     lab2 := B9; 
     s := 0; 

     goto B1; 

B1:  goto @lab1; 
B2:  a := segment.lo; 

     b := segment.hi; 

     goto B3; 

B3:  if a > b then goto B6; else goto B4; 

B4:  lab1 := B5; 
     val1 := a; 

     goto B7; 

B5:  a := a + 1 

     goto B3; 

B6:  lab1 := B7; 
     goto B7; 

B7:  if lab1 == B7 then goto B16; else goto B8 
B8:  i := val1; 

     goto @lab2; 

B9:  goto B10 

B10: if null? l2 then goto B13; else goto B11 

B11: lab2 := B12 
     val2 := first l2; 

     goto B14; 

B12: l2 := rest l2 

     goto B10 

B13: lab2 := B14 
     goto B14 

B14: if lab2 == B14 then goto B16; else goto B15 
B15: e := val2; 

     s := s + ar.i + e 

     goto B1; 

B16: stdout << s 



Clone Blocks for 1st Iterator 



Dataflow 

[lab1 == B2, lab1 == B5, lab1 == B7] 



Resolution of 1st Iterator 



Clone Blocks for 2nd Iterator 



Resolution of 2nd Iterator 

client() == { 

      ar := array(...); 

      l  := list(...); 

      l2 := l; 

      s  := 0; 

      a  := 1; 

      b  := #ar; 

      if a > b then goto L2 

L1:  if null? l2 then goto L2 

      e := first l2; 

      s := s + ar.a + e 

      a := a + 1 

      if a > b then goto L2 

      l2 := rest l2 

      goto L1 

L2:  stdout << s 

} 



Aldor vs C (non-floating pt) 



Aldor vs C (floating point) 



Lessons Learned 

 It is possible to be elegant, abstract and high-level 

without sacrificing significant efficiency.   

 Well-known optimization techniques can be effectively 

adapted to the symbolic setting. 

 Optimization of generated C code is not enough. 

 

 Procedural integration, dataflow analysis, subexpression 

elimination and constant folding are the primary wins. 

 Compile-time memory optimization, including data 

structure elimination, is important. 

◦ Removes boxing/unboxing, closure creation, dynamic allocation 

of local objects, etc.   Can move hot fields into registers. 



Conclusions 

 Language design 20+ years old. 

◦ In the mean time, many of the ideas now mainstream. 

◦ Many still are not. 
 

 Mathematics is a valuable canary  

in the coal mine of general purpose software. 

◦ The general world lags in recognizing needs. 
 

 It has to be free. 

◦ Free1 is the standard price.    

◦ Free2  is required for engagement. 

 



Prospectives 

 New prospects for optimization: 

◦ Allowing opaque types to assert identities – use in  

optimization.  Proof-carrying code should be within.  

◦ Rely more on JIT to optimize composed functors. 
 

 Enhance semantics to support systematic 

parameterization. 

◦ Default views to limit exponential param explosion. 

◦ More operations on multi-sorted algebras. 
 



Prospectives 
 

 Mathematical Interface Definition Language 

◦ To make better sound use of external libraries. 

◦ E.g. BLAS, FLINT, etc with consistent semantics. 
 

 More use of relevant modern standards. 

◦ MathML3, Unicode, HTTP, C1X, Modelica, … 
 

 Support for collaboration. 

◦ Shared spaces, roll backs, etc. 

 

 What kind of free? 




