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Collaboration



Collaborative Software



Lots of Collaborative Software



Common Features

• Slide shows
• Whiteboarding
• Voice chat
• Video chat
• Image capture





Technical Collaboration



Technical Collaboration

Missing:
• Mathematics
• Diagrams, graphs
• Geometric figures
• Technical knowledge base
• Document markup

• Scientific software connections 
(Maple, Mathematica, GeoGebra, R,…)



Technical Collaboration

Isn’t a shared 
whiteboard, with the 
ability to save images 
enough????



Technical Collaboration



The Treachery of Images
(La trahison des images)





Einstein’s Blackboard

• Einstein to receive honorary doctorate 
at Oxford, May 1931.

• Lecture at Rhodes House.

• Board retrieved and preserved 
by Edmund (“Ted”) Bowen.

• Nice to look at, but content is trapped.



Digital Ink

• Location, time information, sometimes also pressure 
and angles.    

• Capture online pen strokes, not images.

• Suitable for
• Recognition algorithms
• Semantic grouping 
• Annotation
• Manipulation: search, transformation, archival.

• Problem: Multiple vendor-specific formats.





Pen-Based Math

• Input for CAS and document processing.
• 2D editing.
• Computer-assisted collaboration.



Pen-Based Math
•Different than natural language recognition:

• 2-D layout is a combination of writing and drawing.
• Many similar few-stroke characters.
• Many alphabets, used idiosyncratically.
• Many symbols, each person uses a subset.
• No fixed dictionary for disambiguation.



Character Recognition
• A story about a UI proposal
• A story about three statisticians
• Concentrate on character recognition
• Several projects ignore this problem



Usual Character Reco. Methods
• Smooth and re-sample data   THEN

• Match against N models by sequence alignment 
OR

• Identify “features”, such as
• Coordinate values of sample points, number of loops, 

cusps, writing direction at selected points, etc
Use a classification method, such as

• Nearest neighbour, Subspace projection,  
Cluster analysis, Support Vector Machine

THEN

• Rank choices by consulting dictionary



Difficulties
• Having many similar characters (e.g. for math) means 

comparison against all possible symbol models is slow.

• Determining features from points
• Requires many ad hoc parameters.
• Replaces measured points with interpolations
• It is not clear how many points to keep, 

and most methods depend on number of points
• Device dependent

• What to do since there is no dictionary?

• New ideas are needed!



What the Computer Sees



What the Computer Sees



Orthogonal Series Representation
• Main idea: 

Represent traces as curves, not discrete points and 
coordinate curves as truncated orthogonal series.



Orthogonal Series
• Start with inner product on a space of functions, e.g.

𝑓𝑓,𝑔𝑔 = �
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑡𝑡 𝑔𝑔 𝑡𝑡 𝑤𝑤 𝑡𝑡 𝑑𝑑𝑑𝑑

• Functions 𝜙𝜙𝑖𝑖(𝑡𝑡) give an orthogonal basis if we can write

𝑓𝑓(𝑡𝑡) = �
𝑖𝑖=0

∞

𝑓𝑓𝑖𝑖 𝜙𝜙𝑖𝑖 𝑡𝑡 and 𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑗𝑗 = 0 if 𝑖𝑖 ≠ 𝑗𝑗

Then 𝑓𝑓𝑖𝑖 = ⁄〈𝑓𝑓,𝜙𝜙𝑖𝑖〉 〈𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑖𝑖〉.    

• If sum is truncated, 𝑓𝑓 is approximated.

• Obtain orthogonal basis from any basis set, e.g. {1, 𝑡𝑡, 𝑡𝑡2, … }, 
by Gram-Schmidt process.



Orthogonal Series Representation
• Main idea: 

Represent traces as curves, not discrete points and 
coordinate curves as truncated orthogonal series.

• Advantages:
• Compact – few coefficients needed
• Geometric

– the truncation order is a property of the character set
– gives a natural metric on the space of characters

• Algebraic 
– properties of curves can be computed algebraically

(instead of numerically using heuristic parameters) 
• Device independent 

– resolution of the device is not important



Distance Between Curves
• Elastic matching:
• Approximate the variation between curves

by some fn of  distances between sample points.
• May be coordinate curves

or curves in a jet space.

• Sequence alignment
• Interpolation (“resampling”)

• Why not just calculate the area?
• This is very fast in ortho. series representation.



Distance Between Curves
𝑥̅𝑥 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 + 𝜉𝜉 𝑡𝑡 𝜉𝜉 𝑡𝑡 = �

𝑖𝑖=0

∞

𝜉𝜉𝑖𝑖𝜙𝜙𝑖𝑖(𝑡𝑡) , 𝜙𝜙𝑖𝑖 ortho on 𝑎𝑎, 𝑏𝑏 with 𝑤𝑤 𝑡𝑡 = 1.

�𝑦𝑦 𝑡𝑡 = 𝑦𝑦 𝑡𝑡 + 𝜂𝜂 𝑡𝑡 𝜂𝜂 𝑡𝑡 = �
𝑖𝑖=0

∞

𝜂𝜂𝑖𝑖𝜙𝜙𝑖𝑖(𝑡𝑡)

𝜌𝜌2 𝐶𝐶, 𝐶̅𝐶 = �
𝑎𝑎

𝑏𝑏
𝑥𝑥 𝑡𝑡 − �𝑥𝑥 𝑡𝑡 2 + 𝑦𝑦 𝑡𝑡 − �𝑦𝑦 𝑡𝑡 2 𝑑𝑑𝑑𝑑 = �

𝑎𝑎

𝑏𝑏
𝜉𝜉 𝑡𝑡 2 + 𝜂𝜂 𝑡𝑡 2 𝑑𝑑𝑑𝑑

≈ �
𝑎𝑎

𝑏𝑏
�
𝑖𝑖=0

𝑑𝑑

𝜉𝜉𝑖𝑖2𝜙𝜙𝑖𝑖2 𝑡𝑡 + cross terms + �
𝑖𝑖=0

𝑑𝑑

𝜂𝜂𝑖𝑖2𝜙𝜙𝑖𝑖2 𝑡𝑡 + cross terms 𝑑𝑑𝑑𝑑

= �
𝑖𝑖=0

𝑑𝑑

𝜉𝜉𝑖𝑖2 + �
𝑖𝑖=0

𝑑𝑑

𝜂𝜂𝑖𝑖2

• Just as accurate as elastic matching.   Much less expensive.

• Linear in d, the degree of the approximation. < 3 d  machine instructions (30ns) vs several thousand!



Problems
• Want fast response –

how to work while trace is being captured.

• Low RMS does not mean similar shape.



Problem 1. On-Line Coefficients
• The main problem:  

In handwriting recognition, the human and the 
computer take turns thinking and sitting idle.

• We ask:
Can we do useful work while the user is writing 
and thereby 
get the answer faster after the user stops writing?

• The answer is “Yes”! 



Problem 1. On-Line Coefficients

• Use modified Legendre polynomials 𝑃𝑃𝑖𝑖 as basis 
on the interval [0, 1] , with weight function 1.

• Collect numerical values for 𝑓𝑓(𝜆𝜆) on [0, 𝐿𝐿].
𝜆𝜆 = arc length.
𝐿𝐿 is not known until the pen is lifted.

• As the sample points are collected, numerically integrate the 
moments ∫ 𝜆𝜆𝑖𝑖𝑓𝑓 𝜆𝜆 𝑑𝑑𝑑𝑑.

• After last point, compute series coefficients for 𝑓𝑓
with domain and range scaled to [0,1].
This uses a single linear transformation of the moments.



Problem 1. On-Line Coefficients

• Approach works for any inner product with linear 
weighting.

• This is the Hausdorff moment problem (1921),
shown to be unstable by Talenti (1987).

• It is just fine, however, for the dimensions we need.



Problem 2.  Shape vs Variation

• The corners are not in the right places.

• Work in jet space to force coords & derivs  to be close.

• Legendre-Sobolev inner product.

𝑓𝑓,𝑔𝑔 𝐿𝐿𝐿𝐿 = �
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑡𝑡 𝑔𝑔 𝑡𝑡 𝑑𝑑𝑑𝑑 + 𝜇𝜇1 �

𝑎𝑎

𝑏𝑏
𝑓𝑓′ 𝑡𝑡 𝑔𝑔′ 𝑡𝑡 𝑑𝑑𝑑𝑑 + 𝜇𝜇2 �

𝑎𝑎

𝑏𝑏
𝑓𝑓′′ 𝑡𝑡 𝑔𝑔′′ 𝑡𝑡 𝑑𝑑𝑑𝑑 + ⋯

• 1st jet space sufficient.
• Choose 𝜇𝜇1 experimentally to maximize reco rate.
• Can be also done on-line.   [Golubitsky + SMW 2008, 2009]



Legendre-Sobolev Basis



Life in an Inner Product Space

• With the Legendre-Sobolev inner product we have
• Low dimensional rep for curves (10 + 10 + 1)
• Compact rep of samples ~ 160 bits [G+W 2009]
• >99% linear separability => convexity of classes
• A useful notion of distance between curves 

that is very fast to compute 



Linear Separability



Linear Separability



Comparison of Sample to Models

• Use Euclidean distance in the coefficient space.

• Can trace through SVM-induced cells incrementally. 

• Normed space for characters gives other advantages. 



The Joy of Convexity

𝐶𝐶 = (1‒ 𝑡𝑡) 𝐴𝐴 + 𝑡𝑡 𝐵𝐵

• Can compute distance of a sample to this line

• Distance to convex hull of nearest neighbors in class
gives best recognition [Golubitsky+SMW 2009,2010]

• Convexity ⇒ Linear homotopies stay within a class



Choosing between Alternatives

Red class or blue class?



Choosing between Alternatives

The nearest 𝑘𝑘 samples are blue.



Choosing between Alternatives

The nearest convex hull 
of neighbors is red. 



Training

• Using CHKNN allows training with relatively few samples. (Dozens vs
Thousands per class)



Error Rates as Fn of Distance

SVM                      Convex Hull

• Error rate as fn of distance gives confidence measure for 
classifiers [MKM – Golubitsky + SMW 2009]



Combining with Statistical Info

• Empirical confidence on classifiers allows geometric 
recognition of isolated symbols 
to be combined with statistical methods.

• Domain-specific n-gram information:
• Research mathematics –

20,000 articles from arXiv
[MKM -- So+SMW 2005]

• 2nd year engineering math –
most popular textbooks
[DAS -- SMW 2008]

• Inverse problem –
identifying area via n-gram freq!  [DML -- SMW 2008]



Baseline Estimation
• Figure out baseline from the characters,
rather than the other way around, which is more ususal.

• We can locate some important features by identifying 
special points.

We refer to a point such as this, that determines the height of a 
metric line, as a determining point.

48



Baseline Estimation

• Juxtaposition ambiguity

• Handwriting neatening

P9               Pq              pq                p9
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Average Symbol

• The average symbol of a set of known samples for a 
class can be computed as the average point in the 
functional space,

50



Deriving from a Reference Symbol

Average
Symbol

Sample-1-Initial Sample-1-Derived

Sample-2-Initial Sample-2-Derived

Optimization

Optimization

51



Using Homotopy
• Some samples are far away from the reference symbol.

• We use a homotopy between the reference symbol and 
the target sample in a multi-step method.

Average                                         Target  

Average                   Step-1                      Step-2                      Target  
52



Prior Generations of Software

• 2000 Cross Pad:



Prior Generations of Software

• 2002 Pocket PC:



Prior Generations of Software

• 2002-2008 Tablet PC: 



Prior Generations of Software

• 2008-2013 Java Application: 



InkChat (Java Version)

• Skype and GTalk add-on to the Java application.



Problems

•Requires installation:
• Big hassle for someone to use only once in a while or on all their 

machines.

•Limited portability:
• Users expect versions on Android, iOS, Windows, 

Mac OSX, Linux, etc…  
• Incompatible software bases
• Flakey, moving APIs

•Need to support multiple devices.
• Nowadays a single user will want to work across many devices.



Solution

•Use browser infrastructure.



Solution

•Use browser infrastructure.

• JavaScript is not a great language for large projects, 
but…..
• It is ubiquitous:  Telephones, tablets, laptops, …
• Libraries for many UI elements
• Our new recognition algorithms are fast enough 

• Rapid development:
• Prototype developed in 3 months by 3 students.



Current Generation

Desktop Telephone



Current Generation

Tablet



Simple Interface 
with device-adapted menus



Simple Interface 
with device-adapted menus



Ink Controls



Collaboration:
Multiple Users Connected to Same URI



Collaboration:
Different Viewports from Different Devices



Collaboration:
Pointers for Discussions



Collaboration:
Document Annotation



Collaboration:
Google Hangout Embedding





Cloud Integration

• Save or load files to cloud storage
• DropBox
• Google Keep
• Others possible

• Previous work to store user profiles
• Save cloud of ground-truth labelled symbols

(corrected/accepted)

• Future work to store user-defined brushes



Architectural Direction



Architectural Direction



Architectural Direction



Architectural Direction



Architectural Direction



Application Web Site

http://inkchat.org/
http://inkchat.org/


Conclusions

• Technical collaboration requires tools not found in the business setting.
• Drawing, mathematics and scientific documents are in the work flow.
• The treachery of images.
• Needed:

• Math handwriting recognition.
• Easy geometry and diagrams.

• Even a little goes a long way….
• … there is a lot of opportunity for future development.

• Document mark up.
• APIs to scientific software.
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