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Abstract. In recent years, interactive methods for segmentation are in-
creasing in popularity due to their success in different domains such as
medical image processing, photo editing, etc. In this paper we discuss
a challenging industrial application of transistor gate segmentation in
the images of integrated chips, which is essential for reverse engineering
tasks. Segmentation in the domain of integrated chips is very difficult
due to large variations in contrast and noise type and also due to ex-
treme variation in the size of the transistor gates, which can range from
a few pixels to a few thousands of pixels in length, and from one to sev-
eral hundred pixels in width. We present a semiautomatic segmentation
algorithm that produces reliable and accurate segmentation of a transis-
tor gate from its background with the minimum guidance from the user,
who just has to click on one pixel inside the transistor gate of interest.
The algorithm is based on the powerful graph-cut interactive segmenta-
tion technique of Boykov and Jolly [1]. In order to obtain accurate and
robust segmentation with such low user interaction, we make several as-
sumptions based on our observations of the transistor gate images. The
main assumption is that the transistor gates are approximately compact
in shape, or can be approximated by several roughly collinear compact
parts. To achieve robustness in segmentation, we incorporate the com-
pact shape prior into the framework of [1]. The use of the compact shape
prior allows us to introduce a parameter bias to bias the segmentation to-
wards larger object boundaries, which counteracts the general tendency
of the algorithm in [1] to produce smaller segments. In order to accom-
modate large variation in the quality of the images, most parameters in
the algorithm are selected automatically to adapt to the current image.
An application developed on the basis of our algorithm runs in real-time
and is being used by Semiconductor Insight Inc.



1 Introduction

Segmentation is an important problem in computer vision and is often required
as a preliminary step to solving various image analysis tasks. Segmentation is
subjective, and thus it is ill-posed in a general setting. However for a particular
application segmentation can become tractable, provided that enough problem
specific assumptions can be made to simplify the problem.

In this paper, we describe a segmentation application for Semiconductor In-
sight, which is an engineering consultancy company specializing in intellectual
property protection in the integrated circuit domain. To obtain images, the in-
tegrated circuit is delayered and SEM micro-photographed. The upper layers of
the chip, that contain metal wiring, are typically high quality and can be seg-
mented by automated means. The lower levels, that contain the actual dopant
silicon implementation of transistors, are typically low quality, and could have
substantial variation in brightness and contrast. Two of the most important pa-
rameters in IC circuitry are the length and the width of the transistors. They
determine the circuitry power characteristics and are crucial for proper modeling
and understanding of the functionality. Prior to the development of the applica-
tion described in the paper, the width and length measurements were done by
a human operator, boxing the actual gate in a computer application, which also
involved time consuming panning and zooming across the image. We developed
an interactive segmentation system for determining the length and the width of
the transistor gates. The system requires the minimum possible user interaction
and produces accurate and robust segmentation. The user just has to choose the
target transistor by clicking inside it only once. Hence we refer to our application
as semiautomatic segmentation.

We chose the graph-cut segmentation algorithm proposed by Boykov and
Jolly in [1] as a basic framework for our application. The interactive graph
cut [1] is one of the state-of-the-art methods for interactive segmentation. Unlike
local methods like region growing or thresholding [2], algorithm in [1] is able
to produce globally optimal segments. The global methods typically solve the
problem by defining an objective function and optimizing it. Except the graph-
cut based method of [1], none of the other optimization based methods like active
contour (snake) [3,4], level sets [5], normalized cut [6] guarantees a globally
optimal solution.

The framework in [1] was proposed for a general segmentation and requires
the user to mark a few object seeds and a few background seeds. In addition, if
segmentation results are not satisfactory, the user has to correct them by adding
more object and background seeds. We seek to reduce the interaction to the
minimum, the user just needs to choose the transistor gate to be segmented by
marking a single seed pixel inside it. The algorithm in [1] is not directly applicable
with such a low user interaction. In order to make the graph cut framework ap-
plicable, we make several simplifying assumptions based on the observed images.
Consider the sample images in the Fig.1. The common property of the transis-
tor gates is that they are nearly rectangular in shape. Hence, we incorporate the
compact shape prior in the framework of [1] which constrains the segmentation



Fig. 1. Sample of the images provided by Semiconductor Insight Inc.

to follow the compact shape®. Another observation is that the transistor gates
appear brighter than their background. Incorporating these assumptions into
the framework of [1] helps achieve robust and accurate segmentation.

A major difficulty in our application arises from the large variability in the
sizes of the transistor gates. They can range from 2 to 200 pixels in width
and from 10 to a few thousands of pixels in length. In addition, there is a
large variation in quality of the images. The contrast between the transistor
gate and its background is frequently poor, and the intensity within a single
transistor gate may vary significantly. Moreover, the noise level varies from image
to image. Fig.1 shows some of the images. Accurate estimation and adaptation
of the algorithm’s parameters to a specific image is hence essential for robust
segmentation.

In [1], the user is required to decide upon the quality of the segment and, if
necessary, correct it by repeatedly adding new seeds and rerunning the graph-cut
step. However the algorithm in [1] is sensitive to the choice of parameters, and
if they are far from optimal, significant interaction may be required from the
user to obtain the desired segmentation. Unfortunately, automatic parameter
estimation for [1] is not a solved problem yet. In our application, we solve the
parameter selection issue as follows. We devise a simple yet intuitive test for
automatically checking the quality of the segment. If the current segment does
not pass the quality check, we readjust the parameters and rerun the graph cut
segmentation. We iterate this step using a search over parameter space until the
resulting segment passes the quality check.

Another issue with [1] is its tendency to produce objects with shorter bound-
aries. For technical reasons, due to the compact shape prior, we can introduce a
new parameter bias into the framework of [1] to bias segmentation towards larger

3 We explain in section 3.4 what we mean by the word compact.



objects. The value of this parameter has a large influence on the segmentation
results, and we choose it automatically as described in the previous paragraph.

The semiautomatic segmentation system developed on the basis of our al-
gorithm for Semiconductor Insight Inc. has successfully replaced their existing
time-consuming and tedious manual segmentation system. This paper is orga-
nized as follows. In Sec. 2 we review the graph cut segmentation framework of
[1], in Sec. 3 we give the details of our algorithm for transistor segmentation, in
Sec. 4 we present results.

2 Segmentation with Graph Cuts

In [1] segmentation of an object from its background is stated as a binary labeling
problem. Given a set of pixels P and a set labels L = {0, 1}, where labels 0 and
1 represent the background and the object, respectively, the goal is to find an
assignment of labels to pixels S = {S1,...,Sp,...,8p|} that minimizes the

energy function:
E(S) =« Z Dp(Sy) + Z Vpa(Sp, Sq), (1)

pEP {p,q}eN
p<gq

N is the neighborhood system, which is often chosen as the standard 4-
connected grid, and p and ¢ are pixels. D,(S,) is the penalty for assigning label
S, to the pixel p, and should be small if label S, is likely for a pixel p. V,,q(Sp, Syq)
is the pairwise penalty for assigning labels S,, S, to neighboring pixels p and
g, and should be large if S, # S, and an object border is unlikely between p
and ¢. D, is called the regional term and it encodes the regional properties of
the segment, while V}, is called the boundary term and it encodes the boundary
properties of a segment. The parameter o decides the relative importance be-
tween the regional and the boundary properties of the segment. In [1] it is shown
how to find the global minimum of the energy in equation (1) using the min-
cut/max-flow algorithm. We use the fast max-flow algorithm developed in [7].

3 Transistor Gate Segmentation

Our goal is to develop a semiautomatic segmentation system that segments a
transistor gate in an IC image accurately with minimum guidance from the user,
who just has to choose the transistor gate of interest by clicking inside it once.
The graph cut algorithm [1] can not be directly applied because of several issues,
which we address in our work. The main issues are as follows: automatic selection
of background seeds, automatic parameter selection for the energy in Eqn. (1),
counteracting the bias of [1] towards smaller segment boundaries, and reducing
user interaction to a single seed. In this section, we address these issues and also
discuss other modifications to [1] that improve segmentation robustness.

This section is organized as follows. Sec. 3.1 describes automatic background
seed selection based on orientation estimation for transistor gates. Sec. 3.2 ex-
plains our automatic parameter selection for the energy in Eqn. (1), which also



leads to eliminating the need for user guidance beyond the initial object seed.
Sec. 3.3 and 3.5 explain the regional and boundary terms that we use in equa-
tion (1). Sec. 3.4 explains the compact shape prior, and Sec. 3.6 explains how we
perform segmentation in piecewise manner, which improves efficiency and allows
segmenting transistor gates of shapes somewhat more general than compact.

3.1 Background Seed Detection and Orientation Estimation

In [1] the user is required to mark a few object seeds and a few background seeds.
Since we don’t require background seeds from the user, we need to identify them
automatically. For this purpose we use our prior knowledge about the width of
transistor gates, which ranges from 2 to 200 pixels, and about orientation, which
is roughly horizontal or vertical. We first estimate the orientation by comparing
the intensity variation along the horizontal and vertical directions in a small
window around the user provided seed. We choose the orientation corresponding
to the smallest intensity variation. Then we take the line parallel to the dominant
direction and passing through the user marked seed. All pixels at distance 200
(the maximum width) away from that line can be safely assumed to be in the
background, and we mark them as background seeds.

3.2 Eliminating User Guidance and Parameter Estimation

In [1], the user has to decide on the segment quality and, if necessary, correct it
by repeatedly adding new seeds and rerunning the graph-cut step. However [1]
is sensitive to the parameters choice, and if they are far from optimal, signif-
icant interaction may be required for acceptable segmentation. Unfortunately,
parameter estimation for [1] is not yet solved. We solve the parameter selection
issue as follows. We devise a simple yet intuitive test for automatically checking
the quality of a segment. Our quality test requires the average intensity differ-
ence between adjacent pixels along the segment boundary to be greater than
the intensity variation inside the object. If the current segment does not pass
the quality check, we readjust the parameters and rerun the graph cut step. We
search over parameter space until the resulting segment passes the quality check.
Thus we eliminate the need for user guidance beyond the initial object seed.

3.3 Regional Term

In this section, we explain the regional terms D,’s that we use in Eqn. (1). We
first discuss D,,’s for the object seed and the automatically detected background
seeds. For the object seed pixel p, we set D,,(0) = MazInt and D,(1) = 0, where
MaxInt is the maximum integer allowed. This insures that p will be assigned
to the object in the optimal labeling. Similarly, for a background seed p, we
set Dp(1) = MazInt and D,(0) = 0. In [1] the seeds are also used to build
the object and background models to be used for regional properties for other
pixels. For more object data, we collect pixels from the region of size equal to the
minimum possible transistor gate (2 by 10 in our application) and centered at



the object seed to build an object intensity histogram. Still the amount of data
may be insufficient for an accurate intensity distribution model. Hence we use a
weighted mixture of uniform distribution and a smoothed normalized histogram.
For the background, we use a uniform distribution. The actual costs D,(S,) are
negative logarithms of the likelihoods. Therefore,

D(1) = -t (1PhsuL) + (1~ 1) ). )

and D, (0) = —In(1/256), where we assume that there are 256 gray levels in an
image, and Pp;s:(-) is the object intensity likelihood (built from the histogram).

3.4 Compact Shape
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Fig. 2. Shows how segmentation is restricted in different quadrants. Object seed is red.

The transistor gates are roughly rectangular in shape, and thus if we impose
a roughly rectangular shape prior on the object segment, we can significantly
improve the robustness of our algorithm. We incorporate the so called com-
pact shape prior. We use the word compact informally, borrowing the idea
from [8], where they chose the word compact to reflect that for such segments,
the perimeter to area ratio tends to be small. Consider F'ig.2. It shows a square
image region with the side equal to the maximum possible width of a transistor
gate. The squares are the image pixels, and the dark square is the object seed.
We divide this region into four slightly overlapping quadrants with respect to
the seed, named P;, P», P3, and P,. P; consists of all pixels above and to the
right of the seed, P, consists of all the pixels above and to the left of the seed,
P53 consists of all the pixels below and to the left of the seed, and P, consists of
all the pixels to the right and below the seed. We say that an object is compact
if its boundary can be fully traced clockwise using only the edges in each quad-
rant shown in F'ig.2. Thus in order for the object segment to be compact, we
prohibit a certain set of label assignments to neighboring pixels. For example,
for any neighboring pixels p and ¢ in the first quadrant, we prohibit assigning 0
to p and 1 to g if p is either to the left or below ¢. Notation p <; ¢ denotes that
pixel p is to the left of ¢ and notation p <, g means pixel p is above pixel ¢. If



I, I' are labels, we will denote the assignment of [ to pixel p and I’ to pixel g by
(p < 1l,q «+ I'). Now we can define the set of prohibited assignments:

{p 0, 1}p,q € PLUPy,p <; q}U
AP — {p« 0,9« 1}p,g € P,UP3,q <, p}U

{p+0,g« 1}p,g € PLUPy,q <, p}U

{p+ 0,9 1}p,qg € PsUPy,p <4 q}

An object segment is of compact shape if no prohibited assignments need to be
made in its segmentation. In practice we found that incorporating the compact
shape prior greatly improves the robustness of the transistor gate segmentation.

3.5 Boundary term

In this section we describe the boundary terms V), that we use in Eqn. (1). We
assume that the intensity variation inside the transistor gate is smaller than the
strength of intensity edges on its border. Another fact that we use is that the
intensity edge between a transistor gate and its background almost always goes
from light to dark. We also use the boundary term to incorporate the compact
shape prior and to introduce a parameter bias in V,, to encourage object segment
towards a larger boundary. This parameter helps to counteract the well known
bias of [1] towards a shorter boundaries. Hence V,,, is:
0 ifS,=25,
Vg (Sps Sq) = § wpq if {p < Sp,q = S,} ¢ AP, (3)
K if{p« S,,q« S,} € AP

where AP was defined in section 3.4, the constant K is prohibitively large?,
2

and wp, = e 2T — bias, where AI = maz{(I, —I,),0} encourages the intensity
transition on segmentation border to be from light to dark. Parameter o can be
regarded as a measure of the noise level in the image. It affects the segmentation
directly and hence a crucial parameter that needs to estimated correctly. When
Al > o, the weight wp, is typically small enough to allow a boundary. We
compute o as the average difference of the intensities of two adjacent pixels in
a region around the object seed. The size of this region is same as the smallest
possible object size which is known to us beforehand.

Parameter bias implements bias to a larger segmentation boundary. When
the bias increases the boundary cost decreases. The value of bias has large influ-
ence on the segmentation results, and we automatically choose an appropriate
value from a range by using the “quality check” as described in Sec. 3.2.

Now our energy function is fully specified, to minimize it globally and exactly
with a graph cut, we just have to check that it is submodular, according to [9]. To
be submodular, the binary terms of E(S) have to satisfy: Bpq(0,0) + Bpq(1,1) <
Byp(1,0) + Byg(0,1). The left hand-side is always 0, and the right hand-side is
wpq + K, which is always nonnegative since K is chosen to be very large.

* Tt is enough to make K equal to the cost of E(S’) where S’ is any segmentation not
containing prohibited assignments.



3.6 Piecewise Segmentation

Fig. 3. Explains how the extension step works. The initial segment is outlined by black
and the next segments are outlined with white.

In our application, we use piecewise approach to segmentation. First, we
segment a piece of the transistor gate around the user provided seed, and if
required, extend it piecewise along the dominant orientation, by repeatedly and
automatically selecting a new object seed and running the graph cut until the
whole transistor gate is segmented. F'ig. 3 illustrates piecewise segmentation.

There are two main reasons for performing piecewise segmentation. The first
reason is that a transistor gate may not be compact in shape, but rather consist
of several roughly collinear compact pieces. The second reason is computational
efficiency. There is a huge variability in transistor gate lengths, which can range
from 10 pixels to a few thousand pixels. To segment the whole transistor gate, we
would have to construct the graph of size equal to the biggest possible transistor
gate, which would be too expensive if the actual transistor gate is medium/small.
With piecewise segmentation, we run the graph cut on a series of much smaller
graphs, adapting to the actual length of the transistor gate.

Our test to decide if the current segment has to be to be extended consists
of measuring the dissimilarity between the intensity distribution of the current
segment and that of the region just beyond the end of the segment. If the test
fails, then the segment is extended. For extending, a new seed is selected which
lies inside the current segment, close to the weak edge and approximately on the
axis of the transistor gate in the dominant orientation.

4 Results

Fig. 4 shows segmentation results for the images in Fig.1. The central dots are
the user entered seeds, and the other dots are the automatically chosen extension
seeds. We set a = 0.007, v = 0.4, and they are fixed for the application. Param-
eters o and bias are estimated adaptively for each image as already explained.
The application is able to segment transistor gates efficiently and with high
accuracy. As we segment a transistor piecewise, we build relatively small 2D
grid graph with 4-neighborhood connection. Hence the graph cut computations
using the max flow algorithm of [7] runs very fast. The application is implemented
with C++. On a P4, 2.8 GHz computer it takes less than 2 seconds to segment a
transistor of size 1202:2500 pixels. Out of 100 random selections (some including



Fig. 4. Shows the segmentation results on the images displayed in 1.

very poor quality images with almost no contrast on the transistor gate border),
82 transistors were segmented accurately and 7 of them had the initial piece
around the seed segmented correctly but the extension failed. If we include only
the relatively better quality images, the accuracy is 95%. This application is

currently being used by Semiconductor Insight Inc. for transistor segmentation
replacing their manual segmentation system.
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