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Abstra
t. In re
ent years, intera
tive methods for segmentation are in-
reasing in popularity due to their su

ess in di�erent domains su
h asmedi
al image pro
essing, photo editing, et
. In this paper we dis
ussa 
hallenging industrial appli
ation of transistor gate segmentation inthe images of integrated 
hips, whi
h is essential for reverse engineeringtasks. Segmentation in the domain of integrated 
hips is very diÆ
ultdue to large variations in 
ontrast and noise type and also due to ex-treme variation in the size of the transistor gates, whi
h 
an range froma few pixels to a few thousands of pixels in length, and from one to sev-eral hundred pixels in width. We present a semiautomati
 segmentationalgorithm that produ
es reliable and a

urate segmentation of a transis-tor gate from its ba
kground with the minimum guidan
e from the user,who just has to 
li
k on one pixel inside the transistor gate of interest.The algorithm is based on the powerful graph-
ut intera
tive segmenta-tion te
hnique of Boykov and Jolly [1℄. In order to obtain a

urate androbust segmentation with su
h low user intera
tion, we make several as-sumptions based on our observations of the transistor gate images. Themain assumption is that the transistor gates are approximately 
ompa
tin shape, or 
an be approximated by several roughly 
ollinear 
ompa
tparts. To a
hieve robustness in segmentation, we in
orporate the 
om-pa
t shape prior into the framework of [1℄. The use of the 
ompa
t shapeprior allows us to introdu
e a parameter bias to bias the segmentation to-wards larger obje
t boundaries, whi
h 
ountera
ts the general tenden
yof the algorithm in [1℄ to produ
e smaller segments. In order to a

om-modate large variation in the quality of the images, most parameters inthe algorithm are sele
ted automati
ally to adapt to the 
urrent image.An appli
ation developed on the basis of our algorithm runs in real-timeand is being used by Semi
ondu
tor Insight In
.



21 Introdu
tionSegmentation is an important problem in 
omputer vision and is often requiredas a preliminary step to solving various image analysis tasks. Segmentation issubje
tive, and thus it is ill-posed in a general setting. However for a parti
ularappli
ation segmentation 
an be
ome tra
table, provided that enough problemspe
i�
 assumptions 
an be made to simplify the problem.In this paper, we des
ribe a segmentation appli
ation for Semi
ondu
tor In-sight, whi
h is an engineering 
onsultan
y 
ompany spe
ializing in intelle
tualproperty prote
tion in the integrated 
ir
uit domain. To obtain images, the in-tegrated 
ir
uit is delayered and SEM mi
ro-photographed. The upper layers ofthe 
hip, that 
ontain metal wiring, are typi
ally high quality and 
an be seg-mented by automated means. The lower levels, that 
ontain the a
tual dopantsili
on implementation of transistors, are typi
ally low quality, and 
ould havesubstantial variation in brightness and 
ontrast. Two of the most important pa-rameters in IC 
ir
uitry are the length and the width of the transistors. Theydetermine the 
ir
uitry power 
hara
teristi
s and are 
ru
ial for proper modelingand understanding of the fun
tionality. Prior to the development of the appli
a-tion des
ribed in the paper, the width and length measurements were done bya human operator, boxing the a
tual gate in a 
omputer appli
ation, whi
h alsoinvolved time 
onsuming panning and zooming a
ross the image. We developedan intera
tive segmentation system for determining the length and the width ofthe transistor gates. The system requires the minimum possible user intera
tionand produ
es a

urate and robust segmentation. The user just has to 
hoose thetarget transistor by 
li
king inside it only on
e. Hen
e we refer to our appli
ationas semiautomati
 segmentation.We 
hose the graph-
ut segmentation algorithm proposed by Boykov andJolly in [1℄ as a basi
 framework for our appli
ation. The intera
tive graph
ut [1℄ is one of the state-of-the-art methods for intera
tive segmentation. Unlikelo
al methods like region growing or thresholding [2℄, algorithm in [1℄ is ableto produ
e globally optimal segments. The global methods typi
ally solve theproblem by de�ning an obje
tive fun
tion and optimizing it. Ex
ept the graph-
ut based method of [1℄, none of the other optimization based methods like a
tive
ontour (snake) [3, 4℄, level sets [5℄, normalized 
ut [6℄ guarantees a globallyoptimal solution.The framework in [1℄ was proposed for a general segmentation and requiresthe user to mark a few obje
t seeds and a few ba
kground seeds. In addition, ifsegmentation results are not satisfa
tory, the user has to 
orre
t them by addingmore obje
t and ba
kground seeds. We seek to redu
e the intera
tion to theminimum, the user just needs to 
hoose the transistor gate to be segmented bymarking a single seed pixel inside it. The algorithm in [1℄ is not dire
tly appli
ablewith su
h a low user intera
tion. In order to make the graph 
ut framework ap-pli
able, we make several simplifying assumptions based on the observed images.Consider the sample images in the Fig:1. The 
ommon property of the transis-tor gates is that they are nearly re
tangular in shape. Hen
e, we in
orporate the
ompa
t shape prior in the framework of [1℄ whi
h 
onstrains the segmentation
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Fig. 1. Sample of the images provided by Semi
ondu
tor Insight In
.
to follow the 
ompa
t shape3. Another observation is that the transistor gatesappear brighter than their ba
kground. In
orporating these assumptions intothe framework of [1℄ helps a
hieve robust and a

urate segmentation.A major diÆ
ulty in our appli
ation arises from the large variability in thesizes of the transistor gates. They 
an range from 2 to 200 pixels in widthand from 10 to a few thousands of pixels in length. In addition, there is alarge variation in quality of the images. The 
ontrast between the transistorgate and its ba
kground is frequently poor, and the intensity within a singletransistor gate may vary signi�
antly. Moreover, the noise level varies from imageto image. Fig:1 shows some of the images. A

urate estimation and adaptationof the algorithm's parameters to a spe
i�
 image is hen
e essential for robustsegmentation.In [1℄, the user is required to de
ide upon the quality of the segment and, ifne
essary, 
orre
t it by repeatedly adding new seeds and rerunning the graph-
utstep. However the algorithm in [1℄ is sensitive to the 
hoi
e of parameters, andif they are far from optimal, signi�
ant intera
tion may be required from theuser to obtain the desired segmentation. Unfortunately, automati
 parameterestimation for [1℄ is not a solved problem yet. In our appli
ation, we solve theparameter sele
tion issue as follows. We devise a simple yet intuitive test forautomati
ally 
he
king the quality of the segment. If the 
urrent segment doesnot pass the quality 
he
k, we readjust the parameters and rerun the graph 
utsegmentation. We iterate this step using a sear
h over parameter spa
e until theresulting segment passes the quality 
he
k.Another issue with [1℄ is its tenden
y to produ
e obje
ts with shorter bound-aries. For te
hni
al reasons, due to the 
ompa
t shape prior, we 
an introdu
e anew parameter bias into the framework of [1℄ to bias segmentation towards larger3 We explain in se
tion 3.4 what we mean by the word 
ompa
t.



4obje
ts. The value of this parameter has a large in
uen
e on the segmentationresults, and we 
hoose it automati
ally as des
ribed in the previous paragraph.The semiautomati
 segmentation system developed on the basis of our al-gorithm for Semi
ondu
tor Insight In
. has su

essfully repla
ed their existingtime-
onsuming and tedious manual segmentation system. This paper is orga-nized as follows. In Se
. 2 we review the graph 
ut segmentation framework of[1℄, in Se
. 3 we give the details of our algorithm for transistor segmentation, inSe
. 4 we present results.
2 Segmentation with Graph CutsIn [1℄ segmentation of an obje
t from its ba
kground is stated as a binary labelingproblem. Given a set of pixels P and a set labels L = f0; 1g, where labels 0 and1 represent the ba
kground and the obje
t, respe
tively, the goal is to �nd anassignment of labels to pixels S = fS1; : : : ; Sp; : : : ; SjP jg that minimizes theenergy fun
tion: E(S) = �Xp2P Dp(Sp) + Xfp;qg2Np<q Vpq(Sp; Sq); (1)N is the neighborhood system, whi
h is often 
hosen as the standard 4-
onne
ted grid, and p and q are pixels. Dp(Sp) is the penalty for assigning labelSp to the pixel p, and should be small if label Sp is likely for a pixel p. Vpq(Sp; Sq)is the pairwise penalty for assigning labels Sp, Sq to neighboring pixels p andq, and should be large if Sp 6= Sq and an obje
t border is unlikely between pand q. Dp is 
alled the regional term and it en
odes the regional properties ofthe segment, while Vpq is 
alled the boundary term and it en
odes the boundaryproperties of a segment. The parameter � de
ides the relative importan
e be-tween the regional and the boundary properties of the segment. In [1℄ it is shownhow to �nd the global minimum of the energy in equation (1) using the min-
ut/max-
ow algorithm. We use the fast max-
ow algorithm developed in [7℄.
3 Transistor Gate SegmentationOur goal is to develop a semiautomati
 segmentation system that segments atransistor gate in an IC image a

urately with minimum guidan
e from the user,who just has to 
hoose the transistor gate of interest by 
li
king inside it on
e.The graph 
ut algorithm [1℄ 
an not be dire
tly applied be
ause of several issues,whi
h we address in our work. The main issues are as follows: automati
 sele
tionof ba
kground seeds, automati
 parameter sele
tion for the energy in Eqn. (1),
ountera
ting the bias of [1℄ towards smaller segment boundaries, and redu
inguser intera
tion to a single seed. In this se
tion, we address these issues and alsodis
uss other modi�
ations to [1℄ that improve segmentation robustness.This se
tion is organized as follows. Se
. 3.1 des
ribes automati
 ba
kgroundseed sele
tion based on orientation estimation for transistor gates. Se
. 3.2 ex-plains our automati
 parameter sele
tion for the energy in Eqn. (1), whi
h also



5leads to eliminating the need for user guidan
e beyond the initial obje
t seed.Se
. 3.3 and 3.5 explain the regional and boundary terms that we use in equa-tion (1). Se
. 3.4 explains the 
ompa
t shape prior, and Se
. 3.6 explains how weperform segmentation in pie
ewise manner, whi
h improves eÆ
ien
y and allowssegmenting transistor gates of shapes somewhat more general than 
ompa
t.
3.1 Ba
kground Seed Dete
tion and Orientation EstimationIn [1℄ the user is required to mark a few obje
t seeds and a few ba
kground seeds.Sin
e we don't require ba
kground seeds from the user, we need to identify themautomati
ally. For this purpose we use our prior knowledge about the width oftransistor gates, whi
h ranges from 2 to 200 pixels, and about orientation, whi
his roughly horizontal or verti
al. We �rst estimate the orientation by 
omparingthe intensity variation along the horizontal and verti
al dire
tions in a smallwindow around the user provided seed. We 
hoose the orientation 
orrespondingto the smallest intensity variation. Then we take the line parallel to the dominantdire
tion and passing through the user marked seed. All pixels at distan
e 200(the maximum width) away from that line 
an be safely assumed to be in theba
kground, and we mark them as ba
kground seeds.3.2 Eliminating User Guidan
e and Parameter EstimationIn [1℄, the user has to de
ide on the segment quality and, if ne
essary, 
orre
t itby repeatedly adding new seeds and rerunning the graph-
ut step. However [1℄is sensitive to the parameters 
hoi
e, and if they are far from optimal, signif-i
ant intera
tion may be required for a

eptable segmentation. Unfortunately,parameter estimation for [1℄ is not yet solved. We solve the parameter sele
tionissue as follows. We devise a simple yet intuitive test for automati
ally 
he
kingthe quality of a segment. Our quality test requires the average intensity di�er-en
e between adja
ent pixels along the segment boundary to be greater thanthe intensity variation inside the obje
t. If the 
urrent segment does not passthe quality 
he
k, we readjust the parameters and rerun the graph 
ut step. Wesear
h over parameter spa
e until the resulting segment passes the quality 
he
k.Thus we eliminate the need for user guidan
e beyond the initial obje
t seed.3.3 Regional TermIn this se
tion, we explain the regional terms Dp's that we use in Eqn. (1). We�rst dis
uss Dp's for the obje
t seed and the automati
ally dete
ted ba
kgroundseeds. For the obje
t seed pixel p, we set Dp(0) =MaxInt and Dp(1) = 0, whereMaxInt is the maximum integer allowed. This insures that p will be assignedto the obje
t in the optimal labeling. Similarly, for a ba
kground seed p, weset Dp(1) = MaxInt and Dp(0) = 0. In [1℄ the seeds are also used to buildthe obje
t and ba
kground models to be used for regional properties for otherpixels. For more obje
t data, we 
olle
t pixels from the region of size equal to theminimum possible transistor gate (2 by 10 in our appli
ation) and 
entered at



6the obje
t seed to build an obje
t intensity histogram. Still the amount of datamay be insuÆ
ient for an a

urate intensity distribution model. Hen
e we use aweighted mixture of uniform distribution and a smoothed normalized histogram.For the ba
kground, we use a uniform distribution. The a
tual 
osts Dp(Sp) arenegative logarithms of the likelihoods. Therefore,Dp(1) = �ln�
Phist(Ip) + (1� 
) 1256� ; (2)and Dp(0) = �ln(1=256); where we assume that there are 256 gray levels in animage, and Phist(�) is the obje
t intensity likelihood (built from the histogram).
3.4 Compa
t Shape

Fig. 2. Shows how segmentation is restri
ted in di�erent quadrants. Obje
t seed is red.
The transistor gates are roughly re
tangular in shape, and thus if we imposea roughly re
tangular shape prior on the obje
t segment, we 
an signi�
antlyimprove the robustness of our algorithm. We in
orporate the so 
alled 
om-pa
t shape prior. We use the word 
ompa
t informally, borrowing the ideafrom [8℄, where they 
hose the word 
ompa
t to re
e
t that for su
h segments,the perimeter to area ratio tends to be small. Consider Fig:2. It shows a squareimage region with the side equal to the maximum possible width of a transistorgate. The squares are the image pixels, and the dark square is the obje
t seed.We divide this region into four slightly overlapping quadrants with respe
t tothe seed, named P1, P2, P3, and P4. P1 
onsists of all pixels above and to theright of the seed, P2 
onsists of all the pixels above and to the left of the seed,P3 
onsists of all the pixels below and to the left of the seed, and P4 
onsists ofall the pixels to the right and below the seed. We say that an obje
t is 
ompa
tif its boundary 
an be fully tra
ed 
lo
kwise using only the edges in ea
h quad-rant shown in Fig:2. Thus in order for the obje
t segment to be 
ompa
t, weprohibit a 
ertain set of label assignments to neighboring pixels. For example,for any neighboring pixels p and q in the �rst quadrant, we prohibit assigning 0to p and 1 to q if p is either to the left or below q. Notation p <l q denotes thatpixel p is to the left of q and notation p <a q means pixel p is above pixel q. If



7l, l0 are labels, we will denote the assignment of l to pixel p and l0 to pixel q by(p l; q  l0). Now we 
an de�ne the set of prohibited assignments:
Ap = fp 0; q  1gjp; q 2 P1 [ P4; p <l qg[fp 0; q  1gjp; q 2 P2 [ P3; q <l pg[fp 0; q  1gjp; q 2 P1 [ P2; q <a pg[fp 0; q  1gjp; q 2 P3 [ P4; p <a qgAn obje
t segment is of 
ompa
t shape if no prohibited assignments need to bemade in its segmentation. In pra
ti
e we found that in
orporating the 
ompa
tshape prior greatly improves the robustness of the transistor gate segmentation.

3.5 Boundary termIn this se
tion we des
ribe the boundary terms Vpq that we use in Eqn. (1). Weassume that the intensity variation inside the transistor gate is smaller than thestrength of intensity edges on its border. Another fa
t that we use is that theintensity edge between a transistor gate and its ba
kground almost always goesfrom light to dark. We also use the boundary term to in
orporate the 
ompa
tshape prior and to introdu
e a parameter bias in Vpq to en
ourage obje
t segmenttowards a larger boundary. This parameter helps to 
ountera
t the well knownbias of [1℄ towards a shorter boundaries. Hen
e Vpq is:Vpq(Sp; Sq) = 8<:0 if Sp = Sqwpq if fp Sp; q  Sqg 62 ApK if fp Sp; q  Sqg 2 Ap ; (3)where Ap was de�ned in se
tion 3.4, the 
onstant K is prohibitively large4,and wpq = e��I22�2 � bias, where �I = maxf(Ip� Iq); 0g en
ourages the intensitytransition on segmentation border to be from light to dark. Parameter � 
an beregarded as a measure of the noise level in the image. It a�e
ts the segmentationdire
tly and hen
e a 
ru
ial parameter that needs to estimated 
orre
tly. When�I > �, the weight wpq is typi
ally small enough to allow a boundary. We
ompute � as the average di�eren
e of the intensities of two adja
ent pixels ina region around the obje
t seed. The size of this region is same as the smallestpossible obje
t size whi
h is known to us beforehand.Parameter bias implements bias to a larger segmentation boundary. Whenthe bias in
reases the boundary 
ost de
reases. The value of bias has large in
u-en
e on the segmentation results, and we automati
ally 
hoose an appropriatevalue from a range by using the \quality 
he
k" as des
ribed in Se
. 3.2.Now our energy fun
tion is fully spe
i�ed, to minimize it globally and exa
tlywith a graph 
ut, we just have to 
he
k that it is submodular, a

ording to [9℄. Tobe submodular, the binary terms of E(S) have to satisfy: Bpq(0; 0)+Bpq(1; 1) �Bpq(1; 0) + Bpq(0; 1): The left hand-side is always 0, and the right hand-side iswpq +K, whi
h is always nonnegative sin
e K is 
hosen to be very large.4 It is enough to make K equal to the 
ost of E(S0) where S0 is any segmentation not
ontaining prohibited assignments.



83.6 Pie
ewise Segmentation

Fig. 3. Explains how the extension step works. The initial segment is outlined by bla
kand the next segments are outlined with white.
In our appli
ation, we use pie
ewise approa
h to segmentation. First, wesegment a pie
e of the transistor gate around the user provided seed, and ifrequired, extend it pie
ewise along the dominant orientation, by repeatedly andautomati
ally sele
ting a new obje
t seed and running the graph 
ut until thewhole transistor gate is segmented. Fig: 3 illustrates pie
ewise segmentation.There are two main reasons for performing pie
ewise segmentation. The �rstreason is that a transistor gate may not be 
ompa
t in shape, but rather 
onsistof several roughly 
ollinear 
ompa
t pie
es. The se
ond reason is 
omputationaleÆ
ien
y. There is a huge variability in transistor gate lengths, whi
h 
an rangefrom 10 pixels to a few thousand pixels. To segment the whole transistor gate, wewould have to 
onstru
t the graph of size equal to the biggest possible transistorgate, whi
h would be too expensive if the a
tual transistor gate is medium/small.With pie
ewise segmentation, we run the graph 
ut on a series of mu
h smallergraphs, adapting to the a
tual length of the transistor gate.Our test to de
ide if the 
urrent segment has to be to be extended 
onsistsof measuring the dissimilarity between the intensity distribution of the 
urrentsegment and that of the region just beyond the end of the segment. If the testfails, then the segment is extended. For extending, a new seed is sele
ted whi
hlies inside the 
urrent segment, 
lose to the weak edge and approximately on theaxis of the transistor gate in the dominant orientation.4 ResultsFig: 4 shows segmentation results for the images in Fig:1. The 
entral dots arethe user entered seeds, and the other dots are the automati
ally 
hosen extensionseeds. We set � = 0:007, 
 = 0:4, and they are �xed for the appli
ation. Param-eters � and bias are estimated adaptively for ea
h image as already explained.The appli
ation is able to segment transistor gates eÆ
iently and with higha

ura
y. As we segment a transistor pie
ewise, we build relatively small 2Dgrid graph with 4-neighborhood 
onne
tion. Hen
e the graph 
ut 
omputationsusing the max 
ow algorithm of [7℄ runs very fast. The appli
ation is implementedwith C++. On a P4, 2.8 GHz 
omputer it takes less than 2 se
onds to segment atransistor of size 120x2500 pixels. Out of 100 random sele
tions (some in
luding
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Fig. 4. Shows the segmentation results on the images displayed in 1.
very poor quality images with almost no 
ontrast on the transistor gate border),82 transistors were segmented a

urately and 7 of them had the initial pie
earound the seed segmented 
orre
tly but the extension failed. If we in
lude onlythe relatively better quality images, the a

ura
y is 95%. This appli
ation is
urrently being used by Semi
ondu
tor Insight In
. for transistor segmentationrepla
ing their manual segmentation system.A
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