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Abstract:

We present a semiautomatic segmentation algo-
rithm, that can segment an object of interest from
its background based on a single user selected seed.
We are able to obtain reliable and robust segmenta-
tion with such low user interaction by assuming that
the object to be segmented is of compact shape (we
define this assumption later). We base our work on
the powerful Graph Cut segmentation algorithm of
Boykov and Jolly [2]. As additional benefit of in-
corporating the compact shape prior we are able to
bias the graph cuts segmentation framework towards
larger objects. It helps to counteract the well known
bias of [2] to shorter segmentation boundaries. Seg-
mentation results are quite sensitive to the choice of
parameters, and so another contribution of our paper
is that we show how to select the parameters auto-
matically. We demonstrate the effectiveness of our
method on the challenging industrial application of
transistor gate segmentation in an integrated chip,
for which it produces highly accurate results in real-
time.
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1 Introduction

In most applications, purely automatic segmentation
is often ambiguous in presence of multiple objects
and in absence of strong edges. These problems can
be avoided by using semiautomatic or interactive seg-
mentation methods which depend on user guidance.
Hence their popularity is increasing in applications in
different domains. Segmentation is goal-dependent
and thus it is ill-posed in a general set up. However,
for a specific domain, if we can make simplifying as-
sumptions then very reliable segmentations can be
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obtained. The motivation behind our work is to re-
duce user interaction to the minimum, requiring that
the user just chooses the object of interest by clicking
anywhere inside. Our goal is to produce an accurate
and robust segmentation.

Among the existing methods of segmentation
found in the literature, techniques like region grow-
ing, split and merge, edge detection [6] are local and,
in general, fail to obtain segmentation with global
properties. The way to incorporate global proper-
ties into segmentation is to formulate an objective
function or energy function and optimize it implic-
itly as in Live wire [4, 10] or explicitly as in active
contour (snake) [7, 3|, level set [11], normalized
cut, [12] and graph cut [2] based methods. How-
ever, while formulating an energy function is rela-
tively straightforward, finding a global minima of an
energy function is computational prohibitive, in gen-
eral. Out of the methods mentioned above, only the
graph cut [2] energy optimization technique guaran-
tees globally optimal solution for a family of energy
functions, and our application falls in this family.
An additional benefit of using the framework of [2] is
that it easily allows to incorporate both regional and
boundary properties of the segment and also provides
the option to simplify the user interaction. These ad-
vantages make the graph cut [2] based method much
more attractive than others.

As segmentation is a subjective problem, we make
some assumptions based on the prior knowledge
about the data. We also make assumptions about
the regional and boundary properties of the segment
and fit them into the framework of the algorithm
in [2]. The most important assumption that we make
is that an object to be segmented is compact' in

lwe use the word compact here informally, we will explain

what we mean by it later.



shape. While this assumption allows us to produce
very robust segmentations, it is also our most re-
strictive assumption, making our algorithm not suit-
able for segmentation of objects of general shapes.
However, there are important applications (indus-
trial and medical) where the objects of interest are
approximately compact in shape. Furthermore, we
can also handle objects with somewhat more general
shapes, specifically the objects that can be divided
into several approximately collinear pieces, where
each piece is compact in shape. There are several
related methods [13, 9, 5] which incorporate shape
priors into graph cut based segmentation, however
these methods are either too computationally inten-
sive and/or still require too much user interaction.

An important issue with the framework of [2] that
we have to handle is that the values of parameters
have direct impact on the result produced by the al-
gorithm. Unfortunate choice of parameters can pro-
duce unacceptable segmentation results that have to
be detected by the user and corrected by possibly
considerable amount of user interaction. As we want
to reduce the user interaction, we devise a simple but
intuitive test to check the quality of the segment au-
tomatically. This “quality check” is application de-
pendent. If current segment does not pass the quality
check, the parameters are readjusted and the graph
cut step is redone with the new parameters. We iter-
ate this process using a search over parameter space
until the resulting segment passes the quality check.
Thus in our work, we estimate all the important pa-
rameters in the algorithm automatically.

A serious difficulty in practice for graph cut based
segmentation is its bias towards producing segments
with shorter boundaries, if the regional properties
are weighted not as heavily as the boundary proper-
ties. Our goal is to have a very low input from the
user, who just marks one object seed point. Thus
we do not have enough samples from the user to
construct a reliable model for the color distribution
of the object, and we are forced to weight bound-
ary information more heavily than regional informa-
tion. In our framework, we can easily counteract the
bias towards shorter boundaries of [2]. It turns out
that due to incorporating compact shape prior in the
framework of [2], we can introducing a new parame-
ter bias, which biases the algorithm towards a larger
object segment?. We search over a range of values
to find the appropriate value of bias that produces a
segment passing the quality check as discussed above.

2Without the compact shape prior, incorporating bias pa-
rameter results in an energy function which is not submodu-
lar [8], and thus cannot be minimized exactly with graph cuts,
see section 3.4

Thus our main contributions to the graph cut seg-
mentation framework of [2] are as follows. We intro-
duce the idea of an application dependent “quality
check” which can be effectively used for automatic
parameter selection. We introduce compact shape
prior in the framework of [2] which lets us deal with
the objects of compact shape very robustly. Lastly,
due to the shape prior, we are able to introduce a bias
parameter which allows us to counteract the shrink-
ing bias of graph cut based segmentation.

We evaluate our approach on a transistor segmen-
tation application for Semiconductor Insights, which
is an engineering consultancy company specializing
in intellectual property protection and competitive
intelligence in the integrated circuit domain. Our
segmentation algorithm produces highly accurate re-
sults in real-time, and was used to upgrade their
manual system to a semi-automatic one.

This paper is organized as follows. In section 2 we
review the graph cut based segmentation framework
of [2], in section 3 we describe our work, and finally
we conclude with experimental results in section 4.

2 Graph Cut Segmentation

In this section we briefly review the graph cut seg-
mentation algorithm in [2].

2.1 Graph Cut

Let G =< V,E > be a graph consisting of a set
of vertices V and a set of edges E connecting the
vertices. Each edge e € E in G is assigned a non-
negative cost w.. There are two special vertices
called the terminals identified as source, s and sink,
t. A cut C is a subset of edges C C FE, which when
removed from G partitions V into two disjoint sets
Sand T =V — S such that s € S and t € T. The
cost of the cut C is just the sum its edge weights:

|IC| = Zwe.

ecC

The minimum cut is the cut with minimum cost.
Max-flow/Mincut algorithm can be used to obtain
the minimum cut. We use a fast implementation of
graph cuts described in [1].

2.2 Segmentation Algorithm

In the graph-cut segmentation of [2], the problem of
segmenting an object from its background is inter-
preted as a binary labelling problem, which can be



solved in energy minimisation framework. The la-
belling corresponding to the minimum energy is cho-
sen as the solution. Let P be the set of all pixels in
the image, and let N be the standard 4-connected
neighborhood system on P, i.e. N is a set of pixel
pairs {p, q} where p is immediately to the right, or
left, or top, or bottom of q.

For the segmentation problem at hand each pixel
of the image has to be assigned a label from the
label set L = {0,1}, where 0 and 1 represent
background and object, respectively. Let S =
{S81,...,8p,...,8p|} be a binary set that defines a
segmentation, where each S, € L is the label as-
signed to pixel p. Thus the set P is partitioned into
two subsets, where pixels in one subset are labelled
0 and the ones in the other subset are labelled 1.

The labelling problem for segmentation is formu-
lated in the energy minimization framework with the
energy defined in terms of labelling S as:

E(S) = aR(S) + B(S). (1)

In the energy function above, R(S) is called the re-
gional term because it incorporates the regional con-
straints into the segmentation. Specifically, R(S)
measures how well pixels fit into the object or back-
ground models under labelling S. It has the following
form:

VpeP

where R,(Sp) is the penalty of assigning the label
Sp to pixel p. If label Sy, is likely for a pixel p, then
R,(Sp) should be small. If label S, is unlikely for a
pixel p, then R,(S,) should be large.

The term B(S) in equation (1), is called the
boundary term because it incorporates the boundary
constraints in segmentation. A segmentation bound-
ary occurs whenever two neighboring pixels are as-
signed different labels. Thus B(S) is defined as a
sum over neighboring pixel pairs:

B(S) = Z qu(Sp,Sq),

{p,q}eN
r<gqg

where Bp,q(Sp, Sq) describes the penalty for assigning
labels S, and S, to two adjacent pixels. We use B,
to incorporate our prior knowledge that most nearby
pixels tend to have the same label. Thus there is
no penalty if neighboring pixels have the same label
and a penalty otherwise. Typically, Bpq(Sp,Sq) =
Wpq - I(Sp # Sq) where I(-) is an identity function
of a boolean argument defined as:

I(Sp7ésq)={ L i85, 7 Sy,

0 otherwise.

To align the segmentation boundary with intensity
edges, wp, is typically chosen to be a non-increasing
function of |I, — I,|, where I, and I, are the inten-
sities of pixels p and q respectively.

Note that the term a > 0 in (1), decides the rela-
tive importance of the regional and boundary terms.
The larger the value of « is, the more importance
the regional constraints R(S) have compared with
the boundary constraints B(S). This parameter is
one of the most important parameters in the graph-
cut segmentation framework.

In [2] they show how to construct the graph such
that the labelling corresponding to the minimum cut
is the labelling optimizing the energy in (1).

3 Owur Work

The main goal of our work is to reduce the user inter-
action for segmentation to the minimum. We seek to
develop an interface where the user just has to choose
the object of interest by clicking inside the object
only once. At the same time the segmentation result
has to be accurate and robust. We call such segmen-
tation semi-automatic. Under the general set-up, the
segmentation algorithm in [2] has several issues mak-
ing it unsuitable for semi-automatic segmentation.
We address these issues in our work.

The algorithm in [2] was proposed for a general
framework, and when trying to use it for a specific
application, there are several problems one typically
runs into. In [2] the user has to initially select a
few object seeds and a few background seeds. After
running the algorithm the user has to inspect the
quality of the segment. If required, he/she has to
repeatedly add new seeds and rerun the algorithm
until an acceptable segmentation is obtained. How-
ever the results of the algorithm depend heavily on
the choice of parameters for the energy (1). If pa-
rameters are far from optimal, the user might have
to perform a significant amount of interaction.

While general purpose semi-automatic segmenta-
tion is likely to remain an allusive goal in the foresee-
able future, an application specific segmentation is a
much more tractable problem. One of the main ideas
in our paper is that for a specific application, it is not
too hard to come up with a goal-dependent measure
of segment quality. We produce a relatively simple
“quality check” which lets us decide whether segmen-
tation under current parameters in (1) is satisfactory.
With this quality check at hand, we can then search
over a range of parameters (typically using a vari-
ant of binary search) to quickly and automatically
find parameters corresponding to a suitable segmen-
tation. While our particular segment “quality check”



was tested on our particular application, the overall
idea of segment quality test can be used for auto-
matic parameter selection in any application where
a segment quality test is possible to design.

In our particular application, the objects are of
compact shape (or close to compact shape), we ex-
plain what we mean by compact in section 3.2. Thus
we introduce a compact shape constrain as a hard
constraint in our segmentation. Many objects can
be approximated by a compact shape, so similar con-
struction can be used in other applications. A ma-
jor benefit of including the compact shape prior is
that the objects of this shape are segmented more
robustly and reliably. An additional and very im-
portant benefit is that we can include a new pa-
rameter in our energy function which incorporates
bias to larger objects, as explained in section 3.4.
This helps to solve another general issue in graph
cut based segmentation of [2], namely its tendency
to produce segments of smaller size.

This section is organized as follows. In section 3.1
we discuss the assumptions made by our algorithm,
in section 3.2 we explain the compact shape prior,
in section 3.3 we give the regional term that we
use for the energy in (1), in section 3.4 we explain
our boundary term and show that our energy func-
tion can be minimized exactly with a graph cut,
in section 3.5 we discuss shapes more general than
compact that our algorithm can handle, and in sec-
tion 3.6 we give an overview of our algorithm.

3.1 Owur Assumptions

In this paper, we make the following assumptions:
(a) the intensity variation inside the object of inter-
est is small compared to the strength of the intensity
edge on its border; (b) minimum and maximum pos-
sible size of the objects to be segmented are known;
(c) the objects to be segmented are compact in shape
or can be divided into approximately collinear parts
which are compact. The first two assumptions are
relatively general, and are usually appropriate for a
variety of segmentation applications. The last as-
sumption is the most restrictive, but can be still sat-
isfied by certain application, for example by the ap-
plication we test our segmentation algorithm on.

3.2 Compact Shape

We assume that the object or the part of the ob-
ject that is to be segmented is compact in shape.
Incorporating the compact shape prior in the frame-
work allows to obtain more robust segmentation. We
use the word compact informally, borrowing the idea

from [14]. Consider Fig.1. In this figure, the squares
represent the image pixels, and the dark gray square
represents the seed point that the user has selected.
We divide the image into four slightly overlapping
quadrants with respect to the seed, as shown in the
figure. Let us name these quadrants Py, P, Ps, and
P,. P, consists of all pixels above and to the right
of the seed, P» consists of all the pixels above and to
the left of the seed, P5 consists of all the pixels below
and to the left of the seed, and, finally, P, consists
of all the pixels to the right and below the seed.

An object is defined to be compact if its boundary
can be fully traced clockwise using only the edges in
each quadrant shown in Fig.l. In [14], the word
compact is chosen to reflect that for such segments,
the perimeter to area ratio tends to be small.

Thus in order for the object segment to be com-
pact, we must prohibit a certain set of label assign-
ments to neighboring pixels. For example, for any
neighboring pixels p and ¢ in the first quadrant, we
must prohibit assigning 0 to p and 1 to q if p is either
to the left or below q. We will use notation p <; ¢
to denote that pixel p is to the left of ¢q. Similarly,
notation p <, ¢ means pixel p is above pixel q. If
I, I' are labels, we will denote the assignment of I to
pixel p and !’ to pixel ¢ by (p < I,q + I'). Now we
can define the set of prohibited assignments:

{p <+ 0,q 1}|p,qg € PLUPy,p <; q}U

p_ P+ 0,g 1}p,g€ PUPs,q<;p}U

" {p+0,q 1}|p,g € PLUP,,q <, p}U
{p + 0,9+ 1}|p,q € P3U P4,p <a q}

An object segment is of compact shape if no prohib-
ited assignments are made in its segmentation.

3.3 Regional Term

In this section discusses our regional terms in equa-
tion (1). For the segmentation algorithm in [2], ini-
tially the user has to provide a few object seeds
and a few background seeds. We reduce the user
interaction to a single object seed selection. We
find the background seeds automatically using the
maximum object size information. Following [2],
for the foreground seed pixel p, we set R,(0) =
MazInt and R,(1) = 0, where MazInt is the max-
imum integer allowed by a programming environ-
ment. This insures that the foreground seed pixel
will always be assigned to the foreground in the op-
timal labelling. Similarly, if p is the automatically
detected background pixel, we set Ry(1) = MazInt
and R,(0) = 0.

In our application, as the background is unknown,
we use a uniform distribution as the background in-
tensity model. Since we have only one pixel marked
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Figure 1: Shows how the segmented is restricted
in different quadrants drawn wrt the object seed
(marked in dark gray). The Quadrants intersect
along the cells through which the bold lines pass.

as the object seed we use the knowledge of minimum
object size to collect more data around the seed point
to build the intensity histogram. But even then, the
data is not sufficient to represent a good intensity
distribution of the object. So we use a weighted
mixture of uniform distribution and the smoothed
normalized histogram. The actual costs R,(S,) are
taken as negative logarithms of these likelihood mod-
els. Therefore for pixel p,
Ry) = <t (1 Phaa() + (1= 7) 55 ).

and R,(0) = —In(1/256), where we assume that
there are 256 gray levels possible in an image, and
Phisi(I) is the likelihood of the object pixel to have
intensity I, according to the distribution modelled
by the smoothed histogram.

3.4 Boundary Term

In this section we discuss the boundary term that we
use in equation (1). Like in the framework of [2], the
boundary terms serve to insure that most nearby pix-
els are assigned the same label (and thereby the ob-
ject and the foreground regions form coherent blobs)
and also that the boundary between the object and
the background lies on image intensity edges. In our
framework, in addition to the two purposes above,
we use the boundary terms to make sure the object
segment follows the compact shape described in sec-

tion 3.2 and also to incorporate bias to a larger object
segment.

Our boundary terms have the following form:

0 if S, =5,

Wpq I {p  Sp,q  Sq} & AP

K if{p« Sp,q S;} € AP
(2)

where AP was defined in section 3.2, the constant K

. g _Up—1g)? .
is prohibitively large®, and w,q = €~ 2.2  — bias.

The parameter o in equation (2) affects the seg-
mentation by controlling when intensity difference
|I, — I,| is large enough to be a good place for a seg-
mentation boundary. When |I,, — I;| > o, the weight
Wpq is typically small enough to allow a boundary.
Thus we compute o as the average difference of the
intensities of two adjacent pixels in a region around
the user marked object seed. The size of this region
is same as the smallest possible object size which is
known to us beforehand.

qu(Sp’ Sq) =

Parameter bias implements bias to a larger seg-
mentation boundary, and it is chosen automatically.
When the bias increases the boundary cost decreases,
though the gradient of the function remains the
same. We devise a simple intuitive test that auto-
matically detects the quality of the segment. It re-
quires the average intensity difference between neigh-
boring pixels along the segmentation boundary to
be greater than the average absolute intensity dif-
ference of neighboring pixels inside the object. We
search over a range, to find an appropriate value of
bias that results in segmentation passing this quality
check. Note that by changing the value of bias we are
changing the values of the boundary terms. This al-
ters the relative importance between the regional and
the boundary terms in the energy function (1) . Re-
call that the parameter « in equation (1) also weights
the importance between the regional and the bound-
ary terms. We found that it is enough to search over
the bias parameter while keeping o fixed.

Now that the energy is fully specified, to minimize
it globally and exactly with a graph cut, all that
remains is to check that it is submodular, according
to [8]. For our energy to be submodular, the binary
terms of E(S) have to satisfy the following inequality:

BPQ(O?O)+BPQ(1?1) Squ(l,O)'i‘qu(O, 1) (3)

The left hand-side of equation 3 is always 0, and
the right hand-side is wpq + K, which is always non-
negative since K was chosen to be very large.

31t is enough to make K equal to the cost of E(S') where
S’ is any segmentation not containing prohibited assignments.



Figure 2: The left image shows the original image
and the right image illustrates the extension to more
general shapes. The white circles mark is the seed
selected by the user, and the white squares show the
automatically selected seeds for extension.

3.5 More General Shapes

Our algorithm can handle shapes somewhat more
general than compact. Suppose the object can be
divided into several approximately collinear pieces,
where each piece is of compact shape. If we apply
the algorithm above to such an object, we obtain
an initial segment of compact shape around the user
entered seed. We check if all the edges of the cur-
rent segment satisfy the criteria for being a “strong
edge”. If an edge does not pass this test, a new
seed point is chosen which lies inside the current
segment, close to the weak edge and approximately
collinear to the current seed. The last part empha-
sises our assumption that the object can be divided
into approximately collinear compact pieces. Then
the graph-cut is run again in the same way as already
described, except we reuse the value for the bias pa-
rameter estimated previously, we found no need to
re-estimate it. Thus by repeatedly finding new seeds
and running the graph-cut, it is possible to segment
the whole object accurately. Fig. 2 illustrates the
above process. The white circles show the original
seed selected by the user, and the white squares show
the automatically selected extension seeds.

3.6 Owur Algorithm

We build a graph of size greater than the maxi-
mum possible size of the object around the object
seed. Once the initial segment is obtained, it is likely
to contain only a portion of the object that agrees
with the compact shape. This initial segment is ex-
tended in smaller pieces along the direction where
the boundary of the segment does not meet the cri-
teria for being strong boundary. Thus by iteratively
running the graph-cut we can segment the whole ob-
ject regardless of its length. Our algorithm can be

summarized in the following steps:

1. User marks a single seed inside the object of
interest.

2. Build a graph around the seed.

3. Run graph cut algorithm to obtain the initial
segment

4. Test the quality of the segment.

if it fails: search for bias using binary search
and go to step 3.

else: go to step 5

5. Find the part of the boundary which does not
meet good boundary criteria

if found: extend the current segment by us-
ing graph cut to obtain the next piece of the
object and go to step 5.

else: terminate.

4 Results

We applied our algorithm to a challenging industrial
problem of transistor gate segmentation in the im-
ages of integrated chips. It is an important prelimi-
nary step for many reverse engineering tasks. To ob-
tain the images, the integrated circuit is de-layered
and SEM micro-photographed. F'ig.3 shows some
of the images of ICs provided by Semiconductor In-
sight. Notice the large variation in the noise level
across the images. Hence accurate estimation of o
is a crucial part in our work in order to accommo-
date the variation. From F'ig.3, it can also be seen
that other challenges are the large variation in con-
trast and intensity range of the transistor gates. An-
other challenge is the wide variability in the transis-
tor gates sizes,which range in length from 10 pixels
to a few thousands of pixels.

For all the experiments in this section, the pa-
rameters were set to the following values: a = 0.007,
~v = 0.4. As discussed in section 3.4, the parameter o
is computed from the data collected around the seed
using the knowledge of the minimum possible size of
the object. Parameter bias is chosen automatically,
as discussed in section 3.4.

We first compare our results with the results of
the algorithm [2]. Fig.4(a) shows the result of al-
gorithm [2] using only the boundary terms and the
region terms which come from object/background
seeds. On including the intensity model for describ-
ing the regional property of the segment, the algo-
rithm [2] produces multiple segments with very com-
plex boundaries, most of them being false alarms,
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Figure 3: Sample of the images provided by by Semiconductor Insight Inc. showing the variation in image
contrast, noise characteristics and the size of the object. Different scales are used for displaying.

(a) ()

(c) () | (e)

Figure 4: (a)-(b)Segmentation results obtained using algorithm of [2] (a) with the boundary term only (b)
with intensity model as regional term along with the boundary term. (c)-(e)Segmentation results obtained
with our algorithm (c)Initial segment obtained with bias = 0 (d)Initial segment obtained with bias > 0
(e)Final segmentation obtained by extending the initial segment obtained in (d). The seeds are marked with
white squares, and the initial user entered seed is labelled. The large dotted square shows the maximum

allowed segment size.

shown in Fig.4(b). This happens because many pix-
els not inside the object of interest have intensi-
ties close to the intensity of the object seed pixel.
On adding the compact shape prior to the frame-
work, the segment obtained is compact in shape with
smoother boundaries as shown in Fig.4(c).

The parameter bias is initially set to 0. After
we estimate an appropriate value for bias, that is
a value which results in an initial segment passing
our “quality check”, we get the part of the transis-

tor gate shown in F'ig.4(d), which corresponds to an
acceptable initial segment. It is then extended it-
eratively to the whole object as shown in Fig.4(e).
Every time a segment is extended, a new seed point,
marked with a white square in F'ig.4, is located and
o is re-estimated using the current segment.

Fig.5 shows the segmentation results obtained
using our algorithm on the images in F'ig.3. The
object seed pixel inside the transistor gate on which
the user clicked is marked with white circles and the
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Figure 5: Shows the segmentation results obtained using our algorithm on the images of Fig.3.

automatically detected extension seeds are marked
with white squares.

The application developed on the basis of our al-
gorithm runs in real-time and is being used by Semi-
conductor Insight Inc.
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