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Abstract

We propose an energy-based framework for approximat-
ing surfaces from a cloud of point measurements corrupted
by noise and outliers. Our energy assigns a tangent plane to
each (noisy) data point by minimizing the squared distances
to the points and the irregularity of the surface implicitly
defined by the tangent planes. In order to avoid the well-
known ”shrinking” bias associated with first-order surface
regularization, we choose a robust smoothing term that ap-
proximates curvature of the underlying surface. In contrast
to a number of recent publications estimating curvature us-
ing discrete (e.g. binary) labellings with triple-cliques we
use higher-dimensional labels that allows modeling curva-
ture with only pair-wise interactions. Hence, many stan-
dard optimization algorithms (e.g. message passing, graph
cut, etc) can minimize the proposed curvature-based reg-
ularization functional. The accuracy of our approach for
representing curvature is demonstrated by theoretical and
empirical results on synthetic and real data sets from multi-
view reconstruction and stereo. 1

1. Introduction

We present an energy minimization framework for tan-
gential approximation of surfaces (TAS). For each noisy
measurement (like p̃ in Fig.1a) our method estimates a tan-
gent plane and a “true” point position on the underlying
smooth surface (like p). The utilized measurements are ap-
plication specific and could , for example, be 3D-positions
(from multiple view geometry or laser scans), 2D projec-
tions, or photoconsistency (from image data). Our en-
ergy minimizes geometric errors and encourages tangents
to agree on some underlying piece-wise smooth surface by
penalizing curvature. Despite recent interest in computer

1 This work has been funded by the Swedish Foundation for Inter-
national Cooperation in Research and Higher Education (STINT, grant
KU2003 4682), the Swedish Foundation for Strategic Research (SSF)
through the programmes Future Research Leaders and Wearable Visual In-
formation Systems, by the European Research Council (GlobalVision grant
no. 209480), and by the Canadian Foundation for Innovation (CFI 10318).

(a) minimizing
∫
|κ|ds (b) using length or

∫
|κ|2ds

Figure 1. Different regularization criteria for tangential approxi-
mation of a surface (e.g. an ellipsoid) from the same noisy data
points. Well-known Euler’s formula implies that minimization of
geometric errors combined with an integral of the absolute curva-
ture yields no shape bias (a). It is easy to show that more com-
mon squared curvature biases shapes to larger circles (blue), while
standard length-based regularization (red) has ”shrinking” bias to
smaller circles, see (b). This figure is an illustration only.

vision community [15, 9, 16, 21] efficient optimization
of functionals accurately approximating curvature is still
a challenge. We propose a simple curvature-optimization
framework that assumes no topological constraints (e.g.
surface closedness) and is robust to intersections, outliers,
etc. Unlike many prior works, we focus on curvature func-
tionals that have no shape bias. For example, in 2D we use
the absolute value of the curvature motivated in Fig.1.

Our framework is based on a graphical model. In gen-
eral, graphical models are widely used in vision for prob-
lems like dense stereo [21, 4], surface estimation [19], im-
age segmentation [4], inpainting [15], etc. Perhaps the
most common regularizer is length (or area in 3D) since
this smoothness criteria corresponds to graphical models
with simple pair-wise potentials, which admit very efficient
global optimization algorithms like [4, 12]. Recently, the
vision community has begun to actively explore graphi-
cal models using curvature-based regularization or similar
second-order smoothness priors [15, 9, 16, 21]. Typically,
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evaluation of the second-order smoothness properties of a
curve/surface requires an interaction between three or more
points. This leads to hard-to-optimize graphical models
with higher-order cliques instead of simple pairwise poten-
tials. In [15] the curvature problem is solved by formulating
a linear integer program, which is solved by relaxing to a
linear program. While this approach has been demonstrated
to often provide integer or near integer solutions, the size
of the linear program currently limits the usefulness of this
approach. Furthermore, it requires the curve/surface to be
closed.

This paper takes an alternative approach to evaluating
curvature. Instead of using graphical models with higher-
order interactions, we extend our label space so that the
labels (tangents) encode both position and orientation of a
curve/surface. This makes it possible to evaluate curvature
using only pairwise interactions. Thus, standard combinato-
rial optimization methods, e.g. TRW-S [12], can be readily
applied. To demonstrate this general approach we primar-
ily focus on regularization of point clouds. For each noisy
3D-point we try to estimate its “true” position and a tangent
plane, such that neighboring points agree on an underlying
piecewise smooth surface. We do not assume any particular
topology, nor does it have to be closed or “orientable”.

Piece-wise constant regularization was previously ap-
plied to geometric problems, e.g. [11, 7]. Their labels
are global geometric primitives (lines, circles, homogra-
phies). For a general scene such an approach may require
enumerating a very large number of primitives to account
for all possible surfaces in a scene. In contrast, this paper
adopts an approach where global non-parametric surfaces
are formed by smoothly combining locally estimated prim-
itives (e.g. tangent lines/planes). As shown by [18] in the
context of non-rigid structure from motion, similar local-
to-global approach may work even without regularization.
In general, however, piece-wise smooth MRF priors [3] are
necessary to build global surfaces from local primitives es-
timated from ambiguous data with noise and outliers.

In the graphics community surface estimation from point
clouds is widely studied [10]. Popular approaches are
least squares surfaces (MLS) [1], locally optimal projec-
tions (LOP) [14], and anisotropic point cloud diffusion [13].
However, none of these methods regularize curvature. Per-
haps, the closest to our approach is [17] that uses active sur-
face elements, a.k.a. surfels. In principle, curvature could
be estimated from pairwise potentials between the surfels.
However, this is difficult in practice since surfels correspond
to a label space with six degrees of freedom (point position
and a local coordinate frame). In contrast, our labels have
only three d.o.f. (tangent plane).

Our main contribution is a simple graphical framework
for tangential approximation of surfaces (TAS) that uses
pairwise potentials to regularize curvature. No assumptions

Figure 2. Left: pairwise interaction approximating curvature cor-
responds to quotient (12). Right: the quotient |q−q′|

|p−q|2 yields half
the curvature at p under the assumption that p and q belong to a
constant curvature segment.

about surface topology are made. In practice, standard op-
timization algorithms (e.g. TRWs) find good solutions for
our energies. We discuss curvature regularization measures
that have no shape biases. The accuracy of our approach to
curvature is shown both theoretically and empirically.

2. Regularizing 2D-Point-Clouds

For simplicity, we first discuss our TAS framework in
2D. In this paper we primarily focus on estimating models
from point measurements corrupted by noise. This is a very
common problem in computer vision. In many instances the
model itself can not be inferred from only point measure-
ments and additional knowledge needs to be incorporated,
often in the form of regularization. Consider a set of points
that are noisy observations from some underlying curve. We
will assume that the underlying curve is piecewise smooth
and that the samples are sufficiently dense and cover the
whole curve. The goal of this paper is to recover the “true”
(noiseless) positions of the points in the point cloud. We do
not recover the curve itself but rather an approximation of
it, consisting of the tangents to the curve at each estimated
point.

We assume that points p̃ and q̃ are noisy measurements
of the points p and q on the underlying curve (see Figure 2).
To p̃ and q̃ we assign (as labels) tangent lines (np, dp) and
(nq, dq) where np, nq are unit vectors representing the nor-
mals of the tangent lines and scalars dp and dq are distances
from these lines to the origin. The estimated “true” points
p and q will be the projections of p̃ and q̃ onto the assigned
tangent lines. Depending on the particular application these
projections can take different forms. For example, if the
measurement errors are modeled as Gaussian noise in the
direction of the normal (which is reasonable for curves with
low curvature) then the estimated points p and q are or-
thogonal projections of observations p̃ and q̃ onto the corre-
sponding tangent lines (see Fig.2 left)

p = p̃− (n⊤
p p̃+ dp)np (1)

q = p̃− (n⊤
q q̃ + dq)nq. (2)
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Given the estimations p and q and their tangents we
would like to estimate how smooth the underlying curve is.
If it is smooth and the points p and q are close then the
two tangents at p and q should be similar. There are sev-
eral possible choices for measuring the difference between
the tangents. The most obvious is perhaps to measure the
angle between the normals. Since angles are related to cur-
vature, this may seem a good choice. However this mea-
surement does not depend on the position of the estimated
points. Even if the tangents are very far apart at the esti-
mated points the angle between them might be small.

Bruckstein etal [5] use angles between consecutive line
segments to measure curvature. While this gives an easy
type of interaction it requires an explicit representation
of the estimated polygonal curve. In addition it does
not seem possible to generalize this measure to the 3-
dimensional case without resorting to triple cliques. In con-
trast we are seeking an implicit local estimation using tan-
gent lines/planes with pairwise interactions. To measure
the difference between the two tangent planes we therefore
compute the projections (see Fig.2 left)

p′ = p− (n⊤
q p+ dq)nq (3)

q′ = q − (n⊤
p q + dp)np, (4)

that is, the estimated points projected onto the neighboring
tangent plane. If the underlying surface is smooth then

|p′ − p|+ |q′ − q| (5)

should be small since the tangents are close to each other.
Note that the projections (3) and (4) are not application de-
pendent. For the smoothness estimate we will always use
orthogonal projection. The reason for this will become ap-
parent in the following section.

2.1. Relation to Curvature

The term (5) turns out to be closely related to curvature.
To see this we assume that (np, dp) , (nq, dq) are the true
tangent planes at the points p and q, and that

p = α(t1) (6)
q = α(t2), (7)

where α is a smooth curve. Furthermore, we will assume
that this curve is parametrized by arc-length. (This is how-
ever no restriction since any curve with derivative α̇ ̸= 0
can be re-parametrized.) Since n⊤

p p+ dp = 0 we have

|q − q′| = |n⊤
p q + dp| = |n⊤

p (q − p)| (8)

Using the Taylor expansion of α at t1,

α(t) = α(t1)+α̇(t1)(t−t1)+
1

2
α̈(t1)(t−t1)

2+O((t−t1)
3).

(9)

Together with (6)-(7), the term (8) can be written

|n⊤
p

(
α̇(t1)(t2 − t1) +

1

2
α̈(t1)(t2 − t1)

2
)
+O((t− t1)

3)|.
(10)

Since α̇(t1) is the tangent at p it is perpendicular to the nor-
mal np so the first term vanishes. Furthermore, since α is
parametrized by arc length, α̈ is perpendicular to the tan-
gent α̇. Therefore n⊤

p α̈(t1) is only the length of α̈(t1) (plus
or minus, depending on the direction of np), which is the
curvature. Hence if we divide |q − q′| by (t2 − t1)

2 we get
roughly half the curvature. However, as we estimate the un-
derlying curve (or any parametrization of it) t1 and t2 are
unknown. Again using the Taylor expansion we note that

|p− q|2 = |α̇(t1)|(t2 − t1)
2 +O((t2 − t1)

3) (11)

Since α is a unit speed curve |α̇| = 1, and therefore

|q − q′|
|p− q|2

=
1
2 |n

⊤
p α̈(t1) +O(t2 − t1)|
|1 +O(t2 − t1)|

. (12)

This expression will tend to half of the curvature when t2
tends to t1, and therefore approximates curvature well if p
and q are close enough.

Figures 3-5 shows the computation of the quotient (12)
for the curve

√
3 cos(t). To approximate the integral of the

curvature we use

1

2

∫
|κ|dσ ≈

∑
i

|pi+1 − p′i+1|
|pi+1 − pi|

, (13)

where pi are the sampled 2D points. Since the function has
amplitude

√
3 the derivative is ±

√
3 in its endpoints. This

gives 60 degree angles to the x-axis at the endpoints, which
is very close to what the approximations in Figures 3-5 give.

An interesting special case where the approximation
turns out to be exact is when the points are lying on a con-
stant curvature segment, that is, a segment that is part of a
circle or line. For simplicity let us assume that p and q is on
a circle with center at the origin, see Figure 2 right. If we
parametrize the curve by arc length the angle 2α is t/r. By
the cosine theorem we get

|p− q|2 = 2r2(1− cos(
t

r
)) (14)

Since the angle α is t/2r we see from the second triangle
that

|q − q′| = |p− q′| sin( t

2r
) (15)

Assuming 0 ≤ t
2r ≤ π, this gives us the quotient

|q − q′|
|p− q|2

=
sin( t

2r )√
2r2(1− cos( tr ))

=
sin( t

2r )

2r| sin( t
2r )|

=
1

2r
,

(16)
which is half of the curvature of a circle with radius r.
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Figure 3. Computation of the curvature of
√
3 cos(t), −π/2 ≤

t ≤ π/2. Left: The sample points and their tangent planes. Right:
The computed curvature at the sample points, and the true curva-
ture of the function. The value of the integral approximation is
59.6265 degrees (converted from radians).

Figure 4. Same as above but with a denser sampling. The value
of the integral approximation is 59.9600 degrees (converted from
radians).

Figure 5. Same as above but with an even denser sampling. The
value of the integral approximation is 59.9961 degrees (converted
from radians).

2.2. Smoothness of a set of Points

In previous sections we showed that we can accurately
measure the smoothness of a curve by evaluating (12) when
the points and there normals are known. In practice the nor-
mals np are not known but will be computed by optimizing
the tangent lines. However, equation (10), shows that if the
sampling rate is small enough then optimizing over np will
yield the correct solution. This can be seen by noting that if
we minimize (10) with respect to np then the dominant term
n⊤
p α̇(t1)(t2−t1) (assuming sufficiently high sampling rate)

vanishes if np is perpendicular to the tangent α̇(t1). Hence
np will approach the true normal when the sampling dis-
tance approaches zero. Therefore we take

min
{(np1 ,...,npm ); ||npi

||=1, ∀i}

m∑
i=1

∑
j∈N (i)

|pj − p′j |
|pi − pj |

(17)

as our measure of smoothness of a set of points. Here N (i)
represents some predefined neighborhood of the point i. In
equation (13) the neighborhood of i is i + 1, however for

Figure 6. Estimated tangent planes for exactly measured data
points at two different sampling rates. Left: The energy of
the solution is 2.0221 (which corresponds to 115.8578 degrees).
Right: The energy of the solution is 2.0864 (which corresponds to
119.5419 degrees)

general point clouds the connectivity of the points is not
known and therefore the neighborhood will in practice con-
sist of nearby located points (see section 2.3). Note that
since we are assuming that the points pi are fixed the above
minimization problem is separable and each normal could
be optimized by itself. However in general, we will also
assume that the points are noisy in which case pi will also
depend on its normal.

Figure 6 shows the solutions obtained when optimizing
(17) for two different sampling rates. Here we are using
both forward and backward distances, and therefore (17)
should evaluate to approximately 120 degrees (when con-
verted from radians). Even at the crude sampling rate of
Figure 6, the sum in (17) is close to the true value.

2.3. Energy

Next we consider the full problem of regularizing 2D-
point clouds. We consider p̃i to be noisy measurements of
the true points pi. We will estimate the pi and the curve
implicitly represented by its tangent lines li = (npi , dpi) by
minimizing the pairwise energy

min
∑
i

∑
j∈N (i)

wijEs(li, lj) + µ
∑
i

Ed(li). (18)

Here the minimum is taken over the set of tangent lines.
The data term Ed measures the quality of the estimation

of pi. As mentioned before this term is application depen-
dent, and should be chosen depending on what type of noise
we may expect. In the 2D case we will use

Ed(li) = (npi p̃i + dpi)
2, (19)

which is the squared distance between the measured 2D
point and its orthogonal projection on the tangent line. It
is straight forward to use other data terms that would prefer
certain directions and positions. For example in the 3D-
case a data term based on photoconsistency could be used.
However in this work we are mainly interested in 3D point
clouds and we do not assume that any other knowledge than
the point measurements them selves are available.
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For the smoothness term Es(li, lj) we will use one of the
quotients

|pj − p′j |
|pi − pj |

,
|pj − p′j |2

|pi − pj |3
,
|pj − p′j |2

|pi − pj |2
(20)

(Note that the estimated points pi pj depend on the tangent
lines li and lj .) The first quotient corresponds to integrating
absolute curvature, the second one integrating squared cur-
vature. It is well known that integrating absolute curvature
is the same as measuring the angle between the tangents at
the start and endpoints of the curve (assuming the curve is
part of a boundary of a convex region). Therefore this regu-
larizer gives the same result regardless if the tangent space
changes is located to a small region or spread out over the
entire segment. In contrast the second one would encour-
age smoother transitions between tangent spaces. It does
however have a growing bias. Integrating squared curvature
over a circle with radius r gives∫

κ2dσ =

∫ 2π

0

1

r2
rdθ =

2π

r
. (21)

Therefore we prefer to use the third quotient that also en-
courages smoother estimations but does not have the grow-
ing bias (being scale invariant). Since we want to handle
curves which are only piecewise smooth we add a threshold
τ to the smoothing term as well. This prevents the energy
from overly penalizing corners and jumps where the curva-
ture becomes very large.

Note that energy (19) does not assume that the order of
the points are known. In the examples of sections 2.2 and
2.1 we only used neighboring points in the x-coordinate. In
practice, when we have noise in both coordinates we cannot
be certain of the order of the points. There are applications,
such as for example stereo, where we can assume that the
noise is dominant in some direction (the depth direction)
where we can determine the point ordering reliably. In such
cases it may be enough to use neighborhoods similar to that
of section 2.2.

In the general case we assume noise in both point coor-
dinates and an unknown topology of the surface. Therefore
our neighborhood system is based on distances between the
measured 3D points alone. For most of the implementa-
tions we use delaunay triangulations/tetraedizations where
we have removed edges that are considered to long.

The number of neighbors is not fixed and therefore the
number of terms in the inner sum of the smoothness term
will vary. Since each term in the inner sum may be seen as
a measurement of the curvature at pi the sum will penalize
terms with many neighbors harder. Therefore we chose the
weights wij in (18) to be positive and sum to one over j.
If we have any reason to believe that certain measurements
are more accurate than others this may be encoded in the

weights. In this section we only select them to be constant
over j. This makes certain that the curvature at each point is
counted once. Still there is a bias to selecting solutions with
low curvature at areas with many points and high curvature
with a small number of points. If this bias is unwanted it
can be removed by multiplying with some measure of point
density.

2.4. Optimization and Implementation

To optimize our energy we employ and alternating ap-
proach similar to that of [7, 11]. First candidate tangents
are computed using random sampling and refinement using
local optimization of the energy. The energy is then op-
timized with the current candidates using TRW-S. We use
the implementation form [12] and the matlab wrapper from
[21]. After the energy has been optimized we compute new
candidates based on the current labeling and re-optimize.

2.5. Experiments

Next we present a few synthetic experiments that illus-
trate the properties of the different choices in (20). To gen-
erate the data of Figure (7) we sampled points from an el-
lipse and added Gaussian noise to the samples. We then
used our algorithm to estimate the tangent planes. To the
left in Figure 7 is the result of using the first term of (20).
This term approximates integration of absolute curvature.
The integral in (13) only depends on the total variation of
the tangents and does not care weather this variation is lo-
cated to a single point or spread out. This formulation often
produces edgy looking solutions, especially when the data
is sparse. Therefore this formulation is preferable if the un-
derlying surface has kinks.

The two middle images show the result using the sec-
ond quotient. Since this term approximates integration of
squared curvature it prefers to spread the variation of the
tangents thus giving a smoother result. On the other hand,
it has a growing bias. Reducing the weight of the data term
gives the result of the third image.

To the right is the result using the third option of (20).
This formulation also prefers to spread out the variation but
has no growing bias.

Figures 8 and 9 show the results of a more difficult prob-
lem comparing the three different smoothness terms of (20).
Here we sampled 1300 2D points from 3 smooth curves and
added Gaussian noise. In addition we added 100 outliers to
the data. It can be seen that despite the noise levels, the pres-
ence of outliers and kinks and intersections of the curves,
all of the formulations give reasonable results and a correct
overall shape.

3. Regularizing 3D-Point-Clouds
In this section we consider the problem of regularizing

3D-point clouds. Our energy will be the same as for the
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Figure 7. Ellipse experiments. From left to right: Using 1st term in (20), 2nd term, 2nd term with weaker data term, and 3rd term.

Figure 8. Input points (green) and estimated tangent lines (black) obtained using (from left to right) 1st, 2nd, and 3rd terms in (20).

Figure 9. Neighborhood structure. Smoothness term for red edges
equals threshold. (This result is similar for all variants in (20))

2D-case except that the tangent lines are replaced by tangent
planes. It can be shown (in a similar way as for the 2D case)
that the quotient (12) can be interpreted as normal curvature
at the point p in the direction towards q.

Popular curvature regularizers for surfaces are the
Wilmore and bending energies [20, 8]. Using the Euler for-
mula they can both be shown to integrate normal curvature
over the surface [8]. However to represent these energies re-

quires triple order cliques. In contras our energy measures
the curvature of the surface by integrating along curves on
the surface.

3.1. Unordered Point Clouds

In this section we apply our energy to 3D-point cloud
regularization. Here we assume that the noise is Gaussian
in the direction of the normal. Therefore the data term will
be the same as that of equation (19). We apply it to the
two real datasets depicted in figures 10 and 11. The first
one is a set of 3D points at the surface of a castle (18270
points), and the second one is one of the laser scans of the
well known Stanford bunny (40256 points) The first dataset
is more noisy since it was created using a 3D reconstruction
scheme, whereas the bunny was scanned in a laboratory set-
ting. In both cases we used the third quotient of (20). Fig-
ure 10 and 11 shows the obtained results. The settings used
where µ = 5e5, τ = 0.56 for the bunny, and and µ = 2500,
τ = 0.56 for the castle. In both cases the solution took
roughly 3 hours to compute. For the computations we used
the code available from [12] and the matlab wrapper from
[21]. Since our energy is not of any of the standard forms
supported by [12], we used the general lookup table form
(which is highly inefficient according [12]) to setup our po-
tentials. Specialized software should therefore be able to
speed up these computations considerably.
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Figure 10. Visualization of the resulting tangent planes along two planar cuts. 1st column: Image of the scene, Input 3D points (blue,
18270 in total) and points (green) close to the two cutting planes. 2nd column: Points (green) projected onto the plane and line segments
(black) obtained when intersecting the corresponding tangent planes with the cutting plane. 3rd and 4th columns: Two closeups.

Figure 11. Visualization of the resulting tangent planes along two planar cuts. 1st column: Image of the scene, Input 3D points (blue,
40256 in total) and points (green) close to the two cutting planes. 2nd column: Points (green) projected onto the plane and line segments
(black) obtained when intersecting the corresponding tangent planes with the cutting plane. 3rd and 4th columns: Two closeups.

Figure 12. Visualization of the sparse stereo experiment. Left to right: Image of the scene. Input 3D points (blue, 1892 in total) and points
(green) close to the cutting plane. Tangent planes estimated using no regularization. Solution with regularization.



Proceedings of “IEEE Conference on Computer Vision and Pattern Recognition” (CVPR), Providence, RI, June 2012 p.8

3.2. Sparse Multiple View Stereo

Next we consider the problem of multiple view stereo us-
ing sparse features. Given a number of images (with known
camera matrices) of a patch the orientation of the patch can
be inferred by evaluating photo consistency with respect
to the rest of the images. In this experiment we used the
gate dataset (Figure 12), which consists of 34 images of a
stone gate. We selected one of the images and ran our al-
gorithm on all points visible in this image. In this case the
data term will consist of two parts; a photo consistency part,
and a distance part. The distance part measures the distance
from the estimated tangent plane to the triangulated point
along the viewing ray. Hence the estimated point will be
the intersection of the tangent plane and the viewing ray.
Other measurements such as reprojection error or Maha-
lanobis distance can also be used, but we choose this one for
its simplicity. The photo consistency term takes a 20 × 20
patch around the current point and back projects using the
current tangent plane estimate. To measure differences be-
tween patches we employ normalized cross correlation. In
this case the connectivity of the points is known, since they
are all visible in one image. We use the edges of a Delau-
nay triangulation in the image (removing edges that are to
long) to define the neighborhood system. Figure 12 shows
the results along a planar cut. Here we used the settings
µ = 3, τ = 0.56. Further more the photo consistency cue
was added with a weight of 0.1. In the middle is the solu-
tion obtained by sampling 440 normals on the half sphere
and selecting the best one based on photo consistency. To
the right is the solution obtained with regularization.

4. Summary and Future Work

We presented a discrete optimization algorithm for
curvature-based regularization using (only) pairwise poten-
tials over extended labels describing surface orientation in
addition to its position. As pointed out by A. Chambolle
and by our area chair, there are related continuous [6] and
discrete [5] mathematical models. Unlike [5], we represent
a surface implicitly without assuming its topology. Data
points are treated as noisy measurements. An interesting
direction of further research is to extend our discrete pair-
wise framework to curvature-based image segmentation.

There are other applications besides stereo, multi-view
reconstruction, or segmentation. For example, [2] has an
interesting formulation of multi-object tracking as a prob-
lem of fitting global parametric models (e.g. splines) into
locally detected features. As suggested by A. Delong, our
piece-wise smooth regularization approach may work as
an alternative method fusing local tracks into global non-
parametric trajectories of objects.
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