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Abstract

Curvature has received increasing attention as an impor-
tant alternative to length based regularization in computer
vision. In contrast to length, it preserves elongated struc-
tures and fine details. Existing approaches are either ineffi-
cient, or have low angular resolution and yield results with
strong block artifacts. We derive a new model for computing
squared curvature based on integral geometry. The model
counts responses of straight line triple cliques. The corre-
sponding energy decomposes into submodular and super-
modular pairwise potentials. We show that this energy can
be efficiently minimized even for high angular resolutions
using the trust region framework. Our results confirm that
we obtain accurate and visually pleasing solutions without
strong artifacts at reasonable runtimes.

1. Introduction
A number of vision tasks can be formulated as an en-

ergy minimization problem such as segmentation, 3D re-
construction, stereo and inpainting. The corresponding en-
ergies typically consist of a data affiliation term and a regu-
larization term. The data affiliation term relates the solution
to the image data, while the regularization term imposes
some kind of prior knowledge on the result. Length-based
regularizers give rise to sub-modular energies (Potts model)
that can be globally and efficiently optimized and, there-
fore, are widely used. Their main disadvantage is an inher-
ent shrinking bias, which tends to eliminate thin and elon-
gated structures such as vessels or limbs, see Figure 1(b).
In contrast, curvature-based regularizers preserve such fine
details, but are more difficult to model, often resulting in
non-submodular energies that are hard to optimize.

Previous approaches to curvature regularization are com-
putationally intensive [14, 4, 8, 16], have strong discretiza-
tion artifacts [14, 16, 6, 8, 15, 4] and are often restricted to
specific angular resolutions [6] or grid complexes [14, 16,
8]. Curvature is often combined with length to compute Eu-
ler’s elastica, which can alleviate some of the problems of
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(a) Original (b) Length Regularization

(c) Elastica Regularization (d) Proposed

Figure 1. Segmentation results of Picasso’s ink drawing using (b)
length based regularization computed with the Potts model based
on a 16 neighborhood using [2], (c) Euler’s elastica combining
squared curvature with length regularization, (d) the novel squared
curvature regularizer.

pure curvature regularizers, see Figure 1(c). However, sat-
isfactory solutions to the curvature regularization problem
have not been found yet. In this paper we present a novel ap-
proach to modeling and efficiently optimizing squared cur-
vature, which yields visually pleasing results without strong
discretization artifacts, see Figure 1(d).

Our goal is to regularize the boundary of a binary label-
ing S based on an integral of squared curvature

K(S) =

∫
∂S

κ2 · ds. (1)

For example, a segmentation energy can combine this
regularization term with a regional appearance term∫
int(S)

f(p) dp for some potential function f over pixels p.
We optimize a binary energy function with triple clique

potentials, which can be reduced to an integer quadratic
energy with both submodular and supermodular pairwise
terms without adding auxiliary variables.

Such energies can be efficiently optimized with the LSA-
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TR method [7]. Our formalism is based on integral geome-
try, allows for high angular resolutions and yields excellent
results compared to previous approaches.

Our contributions can be summarized as follows

• We propose a novel model for measuring squared cur-
vature based on integral geometry and show how it re-
lates to counting straight triple cliques.

• Our model can be formulated as a pairwise quadratic
energy and optimized efficiently even for high angular
resolutions.

• The proposed approach outperforms previous methods
in terms of quality of the results as well as efficiency.

Related work: Most existing models for curvature reg-
ularization in vision are based on Bruckstein’s formula
[14, 16, 8, 6] except for approaches based on learning
[15, 11] or functional lifting [4]. The different formulations
are optimized with methods from discrete or continuous op-
timization [10].

Olsson et al. [11] express curvature regularization as
a multi-label optimization problem based on a set of lo-
cal neighborhood patterns with learned weights and con-
sistency constraints between neighboring patterns. This ap-
proach works well for small patterns but the runtime grows
exponentially with the pattern size. Thus angular resolu-
tion is quite limited in practice. Shekhovtsov et al. [15]
learn the costs for curvature in the form of “soft” patterns
which serve as filters whose response is locally minimized.
However, their MRF approach lacks accuracy due to miss-
ing consistency constraints.

Approaches based on the Bruckstein formula [5] express
curvature as the exterior angle sum of an approximating
polygon. Mostly this is done by formulating an optimiza-
tion problem on a cell complex, which is a planar graph with
fixed, regular structure. A segmentation is a consistent sub-
set of faces and edges. Local “curvature” is then measured
by the exterior angle between consecutive boundary edges.

The pioneering approach to image segmentation with
curvature regularization on cell complexes was given by
Schoenemann et al. [14]. They solve a linear program
where each variable corresponds to a configuration of two
edges with associated angle. Strandmark and Kahl [16] im-
prove this framework by removing extraneous arcs and gen-
eralize it to 3D surfaces. Heber et al. [8] provide a formu-
lation of the curvature model on cell complexes that can be
optimized by approximating the envelope of the underlying
non-convex functional.

The main drawback of the approaches formulated on cell
complexes is their high runtime up to several hours, which
is due to the large number of variables and consistency con-
straints. In addition, these methods suffer from a strong
angular bias since they only allow for specific edge con-
figurations. Although angular resolution can in theory be

increased arbitrarily, solving the problem for high resolu-
tions easily becomes infeasible. This is not the case for our
approach since the number of triple cliques grows linearly
with the angular resolution.

Another approach based on the Bruckstein formula
which is related to cell complexes is El-Zehiry and Grady’s
work [6]. They formulate their problem on a regular pixel
grid, which is interpreted as a cell complex. Accordingly,
their angular resolution is limited by 90 degrees, which
leads to a coarse approximation of curvature. Extending
this approach to a higher angular resolution is not possible
due to inconsistencies with the Bruckstein formula.

Our method differs from the previous approaches in that
we neither explicitly model our segmentation boundary as
a polygon by means of cell complexes, nor do we measure
angles between edges. Instead, we count the number of “ac-
tive” straight line triple cliques and relate it to squared cur-
vature based on integral geometry.

2. Integrating Squared Curvature
We propose a new discrete model for approximating

the squared curvature integral K(S) in (1) based on a
certain class of triple cliques. Our combinatorial ap-
proach is presented below in the context of 2D segmen-
tation and inpainting. It has straightforward extensions to
segmentation problems in higher dimensions, but this is
left for future work, see Section 5. Unlike previous dis-
crete methods for curvature, we use a neighborhood system
of symmetric ’straight’ triple
cliques. Our general in-
tuition is illustrated on the
right-hand side. Let the in-
dicator variables xp on pix-
els p ∈ Ω define the segment
S = {p |xp = 1} ⊂ Ω and
consider a collection of triple
cliques (p−∆, p, p+∆) for each pixel p and its symmetric
neighbors for fixed 2D shifts ±∆ within a 5 × 5 neighbor-
hood. The colors show triple cliques with binary configu-
rations (0, 1, 0) or (1, 0, 1) at different pixels p. Such triple
cliques ’fire’ only on curved parts of the boundary of S. The
number of responses increases for larger curvature. Config-
urations (0, 1, 0) respond to positive and (1, 0, 1) to nega-
tive curvature. These observations suggest that such triple
cliques can measure curvature.

2.1. Notation: Variables, Cliques, Neighborhood

The proposed neighborhood structure is somewhat simi-
lar to the standard regular neighborhood of pairwise cliques
(edges) commonly used for length-based regularization [3].
At each pixel p the neighborhood is bounded by a box cen-
tered at this pixel, see Figure 3. Interactions are imposed
between pixel p and its m neighbors in a certain discrete
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Figure 2. The partial sum approximation (3) of the integral∫
C
κ2ds uses a sequence of points on the contour C. Our approach

is to select all contour points {n}N1 where the tangent is consistent
with the orientation of some triple clique in a given neighborhood
in Figure 3(a). For example, two points in this Figure are marked
with a tangent of the same orientation as clique ci in Figure 3(a).
Each point n corresponds to a particular clique index i(n).
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Figure 3. Neighborhood systems of size (2d+1)×(2d+1) for (a)
d = 2 and (b) d = 3. To make all triple cliques approximately the
same length, for each orientation θi ∈ Θ we select the centered
triple clique ci whose length di is as close to d as possible. θi
indicates the orientation of ci with respect to the horizontal axis.
∆θi denotes the angular rotation to the next clique.

set of directions Θ = {θi | i = 1, ..,m} limited by the grid
locations within the box. Standard length-based regulariza-
tion [3] corresponds to pairwise Potts interactions imposed
over p and each neighbor q = p ⊕ i := p + d̄i where d̄i
denotes a shift of given length di in direction θi. Our new
curvature-based regularization model uses interaction po-
tentials imposed over p and pairs of symmetric neighbors in
directions d̄i and −d̄i forming a straight triple clique

ci(p) := (p⊖ i, p, p⊕ i) (2)

centered at pixel p, see Figure 3.
We will use standard binary variables xp ∈ {0, 1} to

denote the object/background label at pixel p. Vector X =
(xp | p ∈ Ω) will denote a configuration of binary labels of
all pixels in Ω defining segment S = {p |xp = 1} ⊂ Ω.
Vector Xc = (xp⊖i, xp, xp⊕i) will denote a configuration
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Figure 4. Examples of triple cliques of orientation θi that “fire” in
a vicinity of point n on contour C in Figure 2. The brown region
highlights points p where clique ci(p) = (p⊖ i, p, p⊕ i) has con-
figuration Xc = (0, 1, 0). The area of this brown region A(κ, d)
in (13), that is the number of such triple cliques, is determined by
local curvature κn = 1

rn
and by clique size di.

of labels for pixels in clique ci(p).
Each triple clique ci centered at pixel p is described by

its orientation θi and distance di, see Figure 3(a). We will
also use ∆θi := θi+1 − θi to denote the angular rotation
to the next clique. Since our triple cliques include symmet-
ric pairs of neighbors, the actual number of distinct triple
cliques ci(p) centered at pixel p is half the number of its
neighbors. To avoid confusion, in the rest of the paper m
denotes the number of distinct triple cliques ci at pixel p
where i ∈ {1, . . . ,m} is an index of orientation in the set
Θ = {θi | i = 1, ..,m} such that Θ ⊂ [0, π). This avoids
identical cliques with orientations θi and π + θi.

2.2. Partial Sum Approximation of (1)

Our discrete model for evaluating the integral of squared
curvature (1) is based on a partial sum approximation. With-
out loss of generality, assume that the (continuous) segment
S has genus zero and that its boundary ∂S is a closed con-
tour C, as shown in Figure 2. Then, the integral in (1) can
be approximated as∫

C

κ2 · ds ≈
N∑

n=1

κ2
n ·∆sn (3)

where {n}N1 is a finite sequence of points n ∈ C, ∆sn is a
contour length between adjacent points, and κn is the cur-
vature at point n. In general, such approximations converge
for finer discretizations {n}N1 as maxn|∆sn| → 0 if the
contour C is sufficiently smooth.

It is common to select a sequence of approximating
points {n}N1 at equal intervals. Our approach selects these
points differently. We choose points {n}N1 where tangents
coincide with orientations Θ = {θi | i = 1, ..,m} for a cho-
sen neighborhood system, as illustrated in Figures 2 and 3.
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Assume that curvature is nearly constant between adjacent
points, then ∆sn ≈ rn · ∆θi(n) =

∆θi(n)

|κn| where rn is the
radius of the osculating circle at point n and θi(n) ∈ Θ is
the tangent orientation at point n. Thus, the partial sum (3)
becomes

N∑
n=1

κ2
n ·∆sn ≈

N∑
n=1

|κn| ·∆θi(n). (4)

Theorem 1. Let contour point n have tangent orientation ū
and osculating ball B of radius r = 1

|κ| . Then, the set of all
points p ∈ B such that ||p−n|| ≤ r and (p±d · ū) ̸∈ B for
given distance d < r has area A(κ, d) = |κ|·d3

4 + O(d4),
see brown region in Figure 4.

This theorem is proved in the Appendix (Section 6). It
allows to accurately estimate curvature κn at contour point
n using triple cliques ci(p) = (p⊖ i, p, p⊕ i) of orientation
θi(n) consistent with the tangent at point n. Assuming κn ≥
0, Theorem 1 implies that the number of triple cliques ci(p)
in a vicinity of point n with configuration (0, 1, 0) is

A(κn, di) ≈
|κn| · d3i

4
,

which is the brown area in Figure 4. In case κn ≤ 0, the
same number A corresponds to configurations (1, 0, 1).

Assuming that triple cliques ci(p) of configurations
(0, 1, 0) or (1, 0, 1) have penalties wi depending on orienta-
tion i, the overall cost of all such cliques is∑

i

∑
p

wi · δ(Xci(p)) =
∑
i

∑
n:i(n)=i

wi ·A(κn, di)

where

δ(Xc) :=

{
1 if Xc = (1, 0, 1) or (0, 1, 0)
0 otherwise

(5)

is an indicator function. Choosing penalty

wi =
4 ·∆θi
d3i

(6)

converts the right hand side in the equation above into

∑
i

∑
n:i(n)=i

4 ·∆θi
d3i

·A(κn, di) =

N∑
n=1

|κn| ·∆θi(n).

In combination with (3) and (4) this demonstrates that∫
C

κ2 · ds ≈
∑
i

∑
p

wi · δ(Xci(p)) (7)

which is our main technical result concluding this section.
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Figure 5. Accuracy of our squared curvature model. The proposed
estimated squared curvature (vertical axis) is computed on a cir-
cle of decreasing total curvature (i.e. increasing radius, horizontal
axis) based on increasing clique size d. To approximate large cur-
vature small clique sizes d are required, whereas large clique sizes
are more accurate to measure large curvature and yield less noisy
measurements. For curvature values κ > 1

d
we underestimate cur-

vature, since in these cases the circle fits inside the neighborhood.
This limits the estimated curvature energy by the number of pixels
in the circle, i.e. its area, which grows quadratically.

2.3. Accuracy of Our Curvature Model

To demonstrate the accuracy of the proposed squared
curvature model we generated a sequence of circles with
decreasing total squared curvature (increasing radius r).
We compared the computed curvature energy (7) obtained
with different neighborhood sizes to the correct integral of
squared curvature of the circle, 2πκ. The plots in Figure
5 show that we indeed approximate squared curvature. We
can also conclude that for smaller neighborhoods we more
accurately measure larger curvature values but obtain more
noisy results. In contrast, our results are less noisy for
larger neighborhood masks but yield less accurate measure-
ments for larger curvature. This is because our measure-
ment is limited by the area of the circle, which is very small
for small radius (large curvature) and grows quadratically.
These findings are supported by Figure 6, which shows the
contribution of each pixel to the measured curvature energy.
To alleviate the issue of underestimating curvature for larger
values of d the image can be scaled to subpixel accuracy
according to the increase in neighborhood size or stronger
regularization can be used, see Section 4.1.

3. Optimization

In (7) we derived our new squared curvature model,
which can be used as a regularization energy

Ecurv(X) =
∑
i

∑
p

wi · δ(xp, xp⊕i, xp⊖i). (8)
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(a) κ = 1/4 (b) κ = 1/12 (c) κ = 1/20

Figure 6. Response images showing contribution of each pixel to
the curvature energy for circles of increasing radius (decreasing
curvature), see Figure 13. The computations are based on a clique
size d = 9. The images show that the brown area in Figure 4 is
approximated with our approach. (a) also shows that large curva-
ture is underestimated for large values of d since the response is
limited by the area of the circle (compare Figure 5).

Let a, b, c denote the three pixels corresponding to a triple
clique ci(p) given in (2). The function δ defined in (5) as-
signs each triple clique the value 1 if its configuration is
(1,0,1) or (0,1,0). The corresponding triple clique energy in
(8) naturally decomposes into a unary term, two pairwise
submodular terms and a pairwise supermodular term with-
out additional auxiliary variables

δ(xa, xb, xc) = xa(1− xb)xc + (1− xa)xb(1− xc)

= xb + xaxc − xaxb − xbxc. (9)

In general, energies of lower order are considered to be
easier to optimize. This is an additional benefit of our inte-
gral geometry model that we get for ’free’.

Our energy is nevertheless non-submodular and, there-
fore, cannot be optimized globally. We use a new method
called Local Submodular Approximations with Trust Re-
gion (LSA-TR) proposed in [7]. The method is efficient
and obtains state-of-the-art results that are very accurate on
a wide range of applications.

We compare our results in terms of accuracy and runtime
to other optimization approaches (TRW-S [9], LBP [12],
QPBO-I [13] - an extension of QPBO [1]) in the experi-
mental section 4.4. Throughout all experiments we use the
same set of default parameters for LSA-TR.

4. Experiments
In this section we evaluate our squared curvature ap-

proach with respect to quality of the results and optimiza-
tion and show a comparison to previous curvature regular-
ization approaches.

We show results for binary segmentation and inpainting
which minimize the following energy

E(X) =
∑
i

D(xi, Ii) + λEcurv(X). (10)

The data term D(xi, Ii) depends on the color of the i-th
pixel in the image I . The weight λ balances the impact

of the regularizer with respect to the appearance term. We
use a Gaussian of variance 0.4 for modeling the foreground
and background data term in our experiments. The mean
values are 0 and 0.6 for foreground and background respec-
tively for the camera man examples and 0 and 1 for the Don
Quixote image. For inpainting, we use the same energy but
set the data term to 1 for foreground and background simul-
taneously for the region to be inpainted.

Note that we indicate the specific case of only four (hor-
izontal and vertical) neighbors in a 3 × 3 neighborhood by
“3 × 3 (4nh)” throughout the experimental section. If no
nh-number is indicated we mean the full neighborhood.

4.1. Triple Clique Length d

We first show the effect of larger triple cliques in Fig-
ure 7. The larger the length of the triple cliques the more
we underestimate large curvature values (see Figure 5) lead-
ing to noise in the segmentation. Yet, we would like to use
large neighborhoods to attain a larger angular resolution of
our clique orientations as shown in the next section. As a
remedy we propose to scale the image according to triple
clique length d in order to achieve subpixel accuracy. In
this way we do not underestimate large curvature and avoid
angular artifacts. Alternatively, one can increase regulariza-
tion to reduce the noise but this might lead to less details in
the segmentation. These points are illustrated in Figure 7.

4.2. Angular Resolution

We now show the effect of increasing angular resolu-
tion on the segmentation results. Figure 8 shows results
for angular resolutions θ of 90 degrees: 3 × 3 (4nh), 45
degrees: 3 × 3 and 12.5 degrees: 7 × 7. For small curva-
ture weight the appearance is strong yielding comparable
results for all angular resolutions. For very large curvature
weight block structures become apparent. This is due to the
fact that the algorithm is blind to curvature for points whose
tangent direction is not in our clique set. Accordingly, for
only 90 degree resolution horizontal and vertical edges be-
come dominant in the result. For 45 degree resolution diag-
onal edges appear as well. For larger resolution we obtain
smooth boundaries.

4.3. Inpainting Results

In this section we show results for the task of binary in-
painting demonstrating that our approach is able to recon-
struct shape with minimal curvature instead of length. We
show two examples in Figure 9, for which we mask larger
portions of the image for which we “occlude” its data: the
data term in these regions is set to a constant value for
both foreground and background. For the remaining part
of the image we use a data term based on a Gaussian in-
tensity model with fixed mean and variance for foreground
and background. Figure 9 shows the results of our exper-
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(a) 3× 3, λ = 0.1, 1x (b) 5× 5, λ = 0.1, 1x

(c) 5× 5, λ = 0.8, 3x (d) 5× 5, λ = 0.8, 1x

Figure 7. Segmentation results on the camera man image (left)
showing the effect of using large triple cliques. (a) Result with
novel squared curvature regularizer using a 3 × 3 neighborhood
(8-connectivity) (λ = 0.1). (b) The same segmentation using a
5 × 5 neighborhood (16-connectivity). Note the noise which is
due to underestimating large curvature locally (see text for details).
(c) By scaling the image (and adapting λ accordingly), we avoid
underestimation while taking advantage of a bigger angular reso-
lution. (d) Similar effects but with less details can be achieved by
increasing the regularizer weight instead of scaling the image.

iments and a comparison to length based inpainting. The
results clearly show that we minimize the curvature of the
object boundary, while length finds the shortest connection
between boundary segments.

4.4. Optimization and Efficiency

We evaluated the performance and runtime of different
optimization strategies for minimizing the energy in (10). In
particular, we compared QPBO-I [13], TRW-S [9], Loopy
Belief Propagation (LBP) [12] and LSA-TR [7]. For TRW-
S we stopped computations after 50,000 steps without con-
vergence of the algorithm. Running both TRW-S and LBP
even for 500,000 steps did not improve the results. Fig-
ure 10 shows the energies we obtain for the respective meth-
ods on the vertical axis plotted against the regularization
weight λ on the horizontal axis. Of all the tested algo-
rithms, LSA-TR finds the lowest energy for our problem for
almost all values λ. This is especially true for higher cur-
vature weights, where QPBO-I and TRW-S compute trivial
solutions of higher energy with almost all pixels labeled as
background. In particular, QPBO is unable to label any pix-
els at all for λ ≥ 0.5 and therefore QPBO-I cannot improve
the result either. The high energies we get with LBP for
λ ≥ 1 correlates with the extremely noisy results the algo-
rithm returns. Figure 11 shows a comparison in runtime re-

3× 3 (4nh), small 3× 3, small 7× 7, small

3× 3 (4nh), large 3× 3, large 7× 7, large

Figure 8. Segmentation results for Picasso’s ink drawing for small
and large curvature regularization weight and increasing neighbor-
hood size. Note that the choice of the neighborhood size only
becomes important for larger regularization weights. The images
clearly show how ’blocky’ structures disappear with larger neigh-
borhood sizes.

a) Input with mask b) Length c) Curvature
Figure 9. Results for binary inpainting: a) Original image with
masked regions to be inpainted, b) Result of length based inpaint-
ing, c) Result of curvature based inpainting with our approach.
The figure is best viewed in color.

vealing that TRW-S is least efficient of the four algorithms,
whereas LSA-TR is the fastest optimization method. The
proposed method also compares remarkably well to other
approaches that compute squared curvature. For the results
in Figure 12 the runtimes are as follows: Heber et al. [8]
1 to 5 minutes, Schoenemann et al. [14] 10 minutes to 3.5
hours, Bredies et al. [4] 5 minutes, Olsson et al. [11] be-
tween 0.9 seconds for 2 × 2 patches and 2.5 hours for 5×5
patches, and El-Zehiry and Grady’s [6] 10 seconds per im-
age. Strandmark and Kahl’s approach [16] is only slightly
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Figure 10. Comparison of optimized energies based on different
regularization strengths λ for the following optimization algo-
rithms: LSA-TR [7], TRW-S [9], LBP [12], QPBO-I [13]. LSA-
TR clearly outperforms the other algorithms yielding reasonable
results even for strong regularization, while the other approaches
break down with trivial (TRWS, QPBO-I) or extremely noisy so-
lutions (LBP).

λ QPBO TRW-S LBP
LSA-TR LSA-TR

(3x3) (7x7)
0.05 0.7 (2%) † † 0.8 0.7
0.1 9.3 (30%) † † 1.4 1.6
0.5 15.2 (100%) † † 3.9 9.2
1 15.4 (100%) † † 10.6 48.2
5 15.3 (100%) † † 16.5 88
10 15.4 (100%) † † 7.9 110

Figure 11. Runtime comparison for different optimization methods
based on a 3 × 3 neighborhood. For QPBO [1] the percentage of
unlabeled pixels is indicated in parenthesis. For TRW-S and LBP
we stopped computations after 50,000 steps (around 12.5 minutes)
without convergence. LSA-TR is also listed for a 7× 7 neighbor-
hood with λ× 10 to obtain comparable results.

faster than Schoenemann’s.

4.5. Comparison to Other Approaches

We compare our curvature regularizer to previous ap-
proaches in Figure 12 where we show results for small and
large regularization for various methods. For all of these
methods strong artifacts are evident, which become worse
for stronger regularization. Heber et al. [8] compute elastica
(i.e. length and squared curvature regularization), which
preserves long structures, but also introduces block arti-
facts. El-Zehiry and Grady are limited by 90 degree res-
olution, i.e. their results are composed of blocks and con-
tain large regions of unlabeled pixels QPBO [1] did not la-
bel. Schoenemann et al. [14] obtain block artifacts with
increasing regularization. Strandmark and Kahl [16] do not
preserve fine details and also suffer from some angular reso-
lution artifacts. Bredies et al. [4] do not preserve elongated
structures well for strong regularization and introduce block
artifacts. Olsson et al. [11] introduce fine block artifacts. In

(a) Heber et al. [8] (b) Schoenemann et al. [14]

(c) El-Zehiry & Grady [6] (d) Strandmark & Kahl [16]

(e) Bredies et al. [4] (f) Olsson et al. [11]

(g) Our novel squared curvature approach

Figure 12. Comparison of our results for 7x7 neighborhood to pre-
vious curvature regularizers for smaller (left) and larger (right) cur-
vature weight, see Figures 1 and 7 for original images. Due to lack
of space we only show results on one image for each method. Grey
pixels in (c) remain unassigned by QPBO - QPBO-I does not im-
prove results. Grey pixels in (a) and (e) are due to non-binary
solutions of the relaxed optimization problem.

contrast, our method (neighborhood size 7 × 7) preserves
fine details in the segmentation and produces clean object
boundaries for weak and strong regularization without re-
quiring excessive runtimes.

5. Conclusion and Future Work
In this paper we proposed a novel approach to squared

curvature computation and regularization. We gave an in-
tegral geometric derivation of our method which justifies
usage of straight triple cliques for measuring squared curva-
ture. Our triple cliques decompose into a set of submodular
and supermodular pairwise cliques, which can be efficiently
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optimized by LSA-TR. Our method outperforms previous
methods in terms of quality and efficiency. Moreover, un-
like previous methods our approach does not suffer from
grid artifacts and works for high angular resolution.

Our approach naturally extends to higher dimensions for
the regularization of 3D surfaces, which will be important
e.g. for 3D reconstruction approaches. The mathematical
model also directly extends to multi-label problems, but the
optimization method [7] is restricted to binary problems so
far. We will leave this for future work.

6. Appendix: Proof of Theorem 1
In this appendix we will prove Theorem 1. We will use

an integral geometric argument to show that squared curva-
ture is related to the brown area in Figure 4.

We first state that the partial area of the circle of cur-
vature κ = 1

r above a half chord of length d < r in Fig-
ure 13(a) is given by

G(κ, d) :=
1

2κ2
γ − d

2κ
cos γ

=
1

2κ2
arcsinκd− d

2

√
1

κ2
− d2. (11)

Based on this expression we can now derive the area
A(κ, d) in Figure 13(b) with respect to a half chord of length
d in a circle of radius r

A(κ, d) := 2

[
G (d, κ)− 2

(
G (d, κ)−G

(
d

2
, κ

)
− gd

2

)
︸ ︷︷ ︸

areaB

]

= − 1

κ2
arcsinκd+ 2

1

κ2
arcsin

κd

2

−d

√
1

κ2
− d2 + d

√
1

κ2
− d2

4
(12)

Using Taylor approximation w.r.t. d we obtain

A(κ, d) ≈ d3κ

4
. (13)

r 

G(κ,d) 

d 

𝛾 
r 

B 

d 

g 

r 

d/2 B 

A(κ, 𝑑) 

(a) (b)
Figure 13. (a) Computing the partial area G(κ, d) of a circle above
a half chord of length d, (b) Computing the shaded area A(κ, d)
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