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Abstract

Many standard optimization methods for segmentation
and reconstruction compute ML model estimates for ap-
pearance or geometry of segments, e.g. Zhu-Yuille [23],
Torr [20], Chan-Vese [6], GrabCut [18], Delong et al. [8].
We observe that the standard likelihood term in these formu-
lations corresponds to a generalized probabilistic K-means
energy. In learning it is well known that this energy has a
strong bias to clusters of equal size [11], which we express
as a penalty for KL divergence from a uniform distribution
of cardinalities. However, this volumetric bias has been
mostly ignored in computer vision. We demonstrate signif-
icant artifacts in standard segmentation and reconstruction
methods due to this bias. Moreover, we propose binary and
multi-label optimization techniques that either (a) remove
this bias or (b) replace it by a KL divergence term for any
given target volume distribution. Our general ideas apply
to continuous or discrete energy formulations in segmenta-
tion, stereo, and other reconstruction problems.

1. Introduction
Most problems in computer vision are ill-posed and opti-

mization of regularization functionals is critical for the area.
In the last decades the community developed many practi-
cal energy functionals and efficient methods for optimizing
them. This paper analyses a widely used general class of
segmentation energies motivated by Bayesian analysis, dis-
crete graphical models (e.g. MRF/CRF), information theory
(e.g. MDL) , or continuous geometric formulations. Typical
examples in this class of energies include a log-likelihood
term for models P k assigned to image segments Sk

E(S, P ) = −
K∑

k=1

∑
p∈Sk

logP k(Ip), (1)

where, for simplicity, we focus on a discrete formulation
with data Ip for a finite set of pixels/features p ∈ Ω and seg-
ments Sk = {p ∈ Ω|Sp = k} defined by variables/labels

Secrets (1) Solutions (6), (9-10)

(a) GrabCut [18] with unbiased data term (10)

(b) plane fitting [20, 8, 1] with unbiased data term (10)

(c) Chan-Vese [6] + [7] with target volumes (6)

Figure 1. Left: segmentation and stereo reconstruction with stan-
dard likelihoods or probabilistic K-means energy E(S, P ) in (1)
has bias to equal size segments (2). Right: (a-b) corrections due to
unbiased data term Ê(S, P ) in (9,10) or (c) weighted likelihoods
EW (S, P ) in (6) biased to proper target volumes, see (5). Sections
3.1-3.3 explain these examples in details.

Sp ∈ N indicating the segment index assigned to p. In dif-
ferent vision problems models P k could represent Gaussian
intensity models [6], color histograms [2], GMM [23, 18],
or geometric models [20, 8, 1] like lines, planes, homogra-
phies, or fundamental matrices.

Depending on application, the energies combine likeli-
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hoods (1), a.k.a. data term, with different regularization po-
tentials for segments Sk. One of the most standard regular-
izers is the Potts potential, as in the following energy

EPotts(S, P ) = −
K∑

k=1

∑
p∈Sk

logP k(Ip) + λ||∂S||,

where ||∂S|| is the number of label discontinuities between
neighboring points p on a given neighborhood graph or the
length of the segmentation boundary in the image grid [3].
Another common regularizer is sparsity or label cost for
each model P k with non-zero support [20, 23, 1, 8], e.g.

Esp(S, P ) = −
K∑

k=1

∑
p∈Sk

logP k(Ip) + γ
∑
k

[Sk ̸= ∅].

In general, energies often combine likelihoods (1) with mul-
tiple different regularizers at the same time.

This paper demonstrates practically significant bias to
equal size segments in standard energies where models
P = {P k} are variables jointly estimated with segmen-
tation S = {Sk}. This problem comes from likelihood
term (1), which we interpret as probabilistic K-means en-
ergy carefully analyzed in [11] based on the information
theory. In particular, [11] decomposes energy (1) as1

E(S, P )
c
=

K∑
k=1

|Sk| ·KL(Ik|P k)+ |Ω| ·(H(S|I)−H(S))

where KL(Ik|P k) is KL divergence for model P k and the
true distribution2 of data Ik = {Ip | p ∈ Sk} in segment k.
Conditional entropy H(S|I) penalizes “non-deterministic”
segmentation if variables Sp are not completely determined
by intensities Ip. The last term is negative entropy of seg-
mentation variables, which we express via KL divergence

−H(S)
c
= KL(S|U) :=

K∑
k=1

|Sk|
|Ω|

log
|Sk|/|Ω|
1/K

(2)

between the volume distribution for segmentation S

VS :=

{
|S1|
|Ω|

,
|S2|
|Ω|

, . . . ,
|SK |
|Ω|

}
(3)

and a uniform distribution U := { 1
K , ..., 1

K }. Our KL for-
mulation (2) implies that term −H(S) represents volumet-
ric bias to equal size segments, as previously noted in [11].

1Symbol c
= represents equality up to an additive constant.

2The decomposition above applies to either discrete or continuous
probability models (e.g. histogram vs. Gaussian). The continuous case
relies on Monte-Carlo estimation of the integrals over “true” data density.

1.1. Our contributions

Our experiments demonstrate that volumetric bias in
probabilistic K-means energy (1) leads to practically signif-
icant artifacts for problems in computer vision, where this
term is widely used for model fitting in combination with
different regularizers, e.g. [23, 20, 6, 18, 8]. Moreover, we
propose different approaches addressing this bias in Sec.2.

(A). We propose a simple weighted version of the stan-
dard likelihood term (1) correcting its equal-size bias to any
target distribution of volumes

W = {w1, w2, ..., wK} (4)

if available. In this case our weighted likelihoods (6) have
“correct” volumetric bias represented by KL divergence

KL(S|W ) =

K∑
k=1

|Sk|
|Ω|

log
|Sk|/|Ω|

wk
(5)

instead of (2). Correct volumetric bias (5) is implicit for our
weighted likelihoods, while practically no changes in opti-
mization are needed compared to standard likelihoods (1).
Note that (1) is often combined with a separate volumetric
term [9, 17] requiring more advanced optimization. In con-
trast to our implicit approach, explicit volumetric terms can
be freely tuned. Yet, such approaches should also use cor-
rectly weighted likelihoods (6) instead of tuning a separate
term to overcome wrong bias (2) in standard likelihoods (1).

(B). We propose methods removing the volumetric bias.
One standard method uses weighted likelihoods treating
weights W as free variables optimized via block-coordinate
descent [11]. We show that this approach is often weaker
than the following alternative. We observe that adding ex-
tra term |Ω| ·H(S) to any energy with standard likelihoods
(1) also cancels the volumetric bias. Since entropy H(S) is
a concave cardinality function submodular for binary prob-
lems [15], we can design efficient powerful solvers for our
high-order entropy-based correction term: exact one for bi-
nary problems and approximate one for multi-label prob-
lems using α-expansion [5]. Similar methods are known
for different concave cardinality terms in vision [12, 19].

Our segmentation and stereo tests show that methods (A)
and (B) managing volumetric bias (1) improve the results.

2. Log-likelihood energy formulations
This section has two goals. First, we present weighted

likelihoods energy EW (S, P ) in (6) and derive its volumet-
ric bias KL(S|W ). Standard data term E(P, S) in (1) is a
special case with W = U . Then, we present another modi-
fication of likelihood energy Ê(S, P ) in (9) and prove that it
does not have volumetric bias, as also discussed in [11]. Our
analysis of Ê is needed for completeness and to devise op-
timization methods for vision problems where likelihoods
are only one of the terms in typical regularization energies.
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Weighted likelihoods: Consider energy

EW (S, P ) := −
K∑

k=1

∑
p∈Sk

log(wkP k(Ip)), (6)

motivated by a Bayesian interpretation in [8] where weights
W explicitly come from a volumetric prior. As easy to see

EW (S, P ) = E(S, P )−
K∑

k=1

|Sk| logwk (7)

= E(S, P ) + |Ω| ·H(S|W )

where H(S|W ) is a cross entropy between distributions VS

and W . As discussed in the introduction, the analysis of
probabilistic K-means energy E(S, P ) in [11] implies that

EW (S, P )
c
=

K∑
k=1

|Sk| ·KL(Ik|P k) + |Ω| ·H(S|I)

− |Ω| ·H(S) + |Ω| ·H(S|W ).

Combining two terms in the second line gives

EW (S, P )
c
=

K∑
k=1

|Sk| ·KL(Ik|P k) + |Ω| ·H(S|I)

+ |Ω| ·KL(S|W ). (8)

In case of given weights W equation (8) implies that
weighted likelihood term (6) has bias to the target volume
distribution represented by KL divergence (5).

Note that optimization of weighted likelihood term (6)
presents no extra difficulty for regularization methods in vi-
sion. Fixed weights W contribute unary potentials for seg-
mentation variables Sp, see (7), which are trivial for stan-
dard discrete or continuous optimization methods. Never-
theless, examples in Sec. 3 show that indirect minimization
of KL divergence (5) substantially improves the results in
applications if (approximate) target volumes W are known.

Unbiased data term: If weights W are treated as un-
known parameters in likelihood energy (6) they can be op-
timized out. In this case decomposition (8) implies that the
corresponding energy has no volumetric bias:

Ê(S, P ) := min
W

EW (S, P ) (9)

=
K∑

k=1

|Sk| ·KL(Ik|P k) + |Ω| ·H(S|I).

Weights VS in (3) are ML estimate of W that minimize
(8) by achieving KL(S|W ) = 0. Putting optimal weights
W = VS into (7) confirms that volumetrically unbiased data
term (9) is a combination of standard likelihoods (1) with a

Figure 2. (Entropy - bound optimization) According to (7,10)
energy EWt(S, P ) is a bound for Ê(S, P ) since cross entropy
H(S|Wt) is a bound for entropy H(S) with equality at S = St.
This standard fact is easy to check: function −z log z (blue curve)
is concave and its 1st-order approximation at zt = wk

t = |Sk
t |/|Ω|

(red line) is a tight upper-bound or surrogate function [14].

Figure 3. (Entropy - high order optimization) (a) polygonal ap-
proximation for −z log z. (b) “triangle” functions decomposition.

high-order correction term H(S):

Ê(S, P ) = E(S, P )−
K∑

k=1

|Sk| log |Sk|
|Ω|

= E(S, P ) + |Ω| ·H(S). (10)

Note that unbiased data term Ê(S, P ) should be used
with caution in applications where allowed models P k are
highly descriptive. In particular, this applies to Zhu&Yuille
[23] and GrabCut [18] where probability models are his-
tograms or GMM. According to (9), optimization of model
P k will over-fit to data, i.e. KL(Ik|P k) will be reduced
to zero for arbitrary Ik = {Ip | p ∈ Sk}. Thus,
highly descriptive models reduce Ê(S, P ) to conditional
entropy H(S|I), which only encourages consistent label-
ing for points of the same color. While this could be useful
in segmentation, see bin consistency in [19], trivial solution
S0 = Ω becomes good for energy Ê(S, P ). Thus, bias to
equal size segments in standard likelihoods (1) is important
for histogram or GMM fitting methods [23, 18].

Many techniques with unbiased data term Ê(S, P ) avoid
trivial solutions. Over-fitting is not a problem for simple
models, e.g. Gaussians [6], lines, homographies [20, 8]. La-
bel cost could be used to limit model complexity. Trivial so-
lutions could also be removed by specialized regional terms
added to the energy [19]. Indirectly, optimization methods
that stop at a local minimum help as well.
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Bound optimization for (9-10): Block-coordinate de-
scent for energy E(W,S, P ) := EW (S, P ) as in [11] can
be seen as a bound optimization [14] for our unbiased en-
ergy Ê(S, P ). According to (8) the optimal weights at
any current solution St are Wt = { |S1

t |
|Ω| , ...,

|SK
t |

|Ω| } since
they minimize KL(St|W ). The algorithm in [11] iter-
atively optimizes EWt(S, P ) over P, S and resets to en-
ergy EWt+1(S, P ) at each step until convergence. Figure
2 shows that at any given St energy EWt(S, P ) is an upper
bound for Ê(S, P ), that is

Ê(S, P ) ≤ EWt(S, P ) ∀S
Ê(St, P ) = EWt(St, P ).

This iterative approach suggests a simple method for re-
moving volumetric bias in vision problems: use weighted
likelihoods EW (S, P ) in your regularization energy (with
standard optimization) and iteratively re-estimate W . How-
ever, our experiments show it is weaker than the following.

High-order optimization for entropy in (10): Alter-
natively, optimization of unbiased term Ê(S, P ) could be
based on equation (10). Since term E(S, P ) is unary for S
the only issue is optimization of high-order entropy H(S).
The entropy combines terms −z log z for z = |Sk|/|Ω|.
Each of these is a concave function of cardinality, which are
known to be submodular [15]. As explained below, entropy
is amenable to efficient discrete optimization techniques
both in binary (Sec.3.2) and multi-label cases (Sec.3.2-3.3).

Optimization of concave cardinality functions was pre-
viously used in vision, e.g. for label consistency [12] or bin
consistency [19]. We propose similar optimization methods
in the context of entropy. We use a polygonal approxima-
tion with triangle functions as illustrated in Figure 3. Each
triangle function is the minimum of two affine cardinality
functions, yielding an approximation of the type

−|Sk|
|Ω|

log
|Sk|
|Ω|

≈
∑
l

min
(
aLl |Sk|, aUl |Sk|+ bUl

)
. (11)

Optimization of each “triangle” term in this summation can
be done as follows. Cardinality functions like aLl |Sk| and
aUl |Sk| + bUl are unary. Evaluation of their minimum can
be done with an auxiliary variable yl ∈ {0, 1} as in

min
yl

yl(a
L
l |Sk|) + ȳl(a

U
l |Sk|+ bUl ) (12)

which is a pairwise energy. Indeed, consider binary seg-
mentation problems Sp ∈ {0, 1}. Since

|Sk| =

{∑
p∈Ω Sp, if k = 1∑
p∈Ω(1− Sp), if k = 0

(13)

(12) breaks into submodular3 pairwise terms for yl and Sp.
Thus, each “triangle” energy (12) can be globally optimized

3Depending on k, may need to switch yl and ȳl.

with graph cuts [13]. For more general multi-label problems
Sp ∈ N energy terms (12) can be iteratively optimized via
binary graph-cut moves like α-expansion [5]. Indeed, let
variables xp ∈ {0, 1} represent α-expansion from a current
solution St = {Sk

t } to a new solution S. Since

|Sk| =

{∑
p∈Ω xp, if k = α∑
p∈Sk

t
(1− xp), if k ̸= α

(14)

(12) also reduces to submodular pairwise terms for yl, xp.
The presented high-order optimization approach makes

stronger moves than the simpler bound optimization method
in the previous sub-section. However, both methods use
block coordinate descent iterating optimization of S and P
with no quality guarantees. The next section shows exam-
ples with different optimization methods.

3. Examples
This sections considers several representative examples

of computer vision problems where regularization energy
uses likelihood term (1) with re-estimated models P k. We
empirically demonstrate bias to segments of the same size
(2) and show advantages of different modifications of the
data term proposed in the previous section.

3.1. Segmentation with target volumes

In this section we consider a biomedical example with
K = 3 segments: S1 background, S2 liver, S3 substructure
inside liver (blood vessels or cancer), see Fig.4. The en-
ergy combines standard data term E(S, P ) from (1), bound-
ary length ||∂S||, an inclusion constraint S3 ⊂ S2, and a
penalty for L2 distance between the background segment
and a given shape template T , as follows

E(S, P ) + λ||∂S||+ [S3 ⊂ S2] + β||S1 − T ||L2. (15)

For fixed models P k this energy can be globally minimized
over S as described in [7]. In this example intensity like-
lihood models P k are histograms treated as unknown pa-
rameters and estimated using block-coordinate descent for
variables S and P . Figure 4 compares optimization of (15)
in (b) with optimization of a modified energy replacing stan-
dard likelihoods E(S, P ) with a weighted data term in (6)

EW (S, P ) + λ||∂S||+ [S3 ⊂ S2] + β||S1 − T ||L2 (16)

for fixed weights W set from specific target volumes (c-d).
The teaser in Figure 1(c) demonstrates a similar example

for separating a kidney from a liver based on Gaussian mod-
els P k, as in Chan-Vese [6], instead of histograms. Standard
likelihoods E(P, S) in (15) show equal-size bias, which is
corrected by weighted likelihoods EW (P, S) in (16) with
approximate target volumes W = {0.05, 0.95}.
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(a) initial models (b) segmentation for W = U (c) for W = {0.04, 0.96} (d) for W = {0.75, 0.25}

Figure 4. Equal volumes bias KL(S|U) versus target volumes bias KL(S|W ). Grey histogram is a distribution of intensities for the
ground truth liver segment including normal liver tissue (the main mode), blood vessels (the small mode on the right), and cancer tissue
(the left mode). (a) Initial (normalized) histograms for two liver parts. Initial segmentation shows which histogram has larger value for
each pixel’s intensity. (b) The result of optimizing energy (15). The solid blue and green (normalized) histograms at the bottom row are for
intensities at the corresponding segments. (c-d) The results of optimizing energy (16) for fixed weights W set for specific target volumes.

3.2. Segmentation without volumetric bias

We demonstrate in different applications a practically
significant effect of removing the volumetric bias, i.e., us-
ing our functional Ê(S, P ). We first report comprehensive
comparisons of binary segmentations on the GrabCut data
set [18], which consists of 50 color images with ground-
truth segmentations and user-provided bounding boxes4.
We compared three energies: high-order energy Ê(S, P )
(10), standard likelihoods E(S, P ) (1), which was used in
the well-known GrabCut algorithm [18], and EW (S, P )
(6), which constrains the solution with true target volumes
(i.e., those computed from ground truth). The appearance
models in each energy were based on histograms encoded
by 16 bins per channel, and the image data is based color
specified in RGB coordinates. For each energy, we added
a standard contrast-sensitive regularization term [18, 2]:
λ
∑

p,q∈N αpq[Sp ̸= Sq], where αpq denote standard pair-
wise weights determined by color contrast and spatial dis-
tance between neighboring pixels p and q [18, 2]. N is the
set neighboring pixels in a 8-connected grid.

We further evaluated two different optimization schemes
for high-order energy Ê(S, P ): (i) bound optimization and
(ii) high-order optimization of concave cardinality potential
H(S) using polygonal approximations; see Sec.2 for de-
tails. Each energy is optimized by alternating two iterative
steps: (i) fixing the appearance histogram models and opti-
mizing the energy w.r.t S using graph cut [4]; and (ii) fix-
ing segmentation S and updating the histograms from cur-

4http://research.microsoft.com/en-us/um/cambridge/projects
/visionimagevideoediting/segmentation/grabcut.htm

rent solution. For all methods we used the same appearance
model initialization based on a user-provided box5.

The error is evaluated as the percentage of mis-classified
pixels with respect to the ground truth. Table 1 reports the
best average error over λ ∈ [1 . . . 30] for each method. As
expected, using the true target volumes yields the lowest er-
ror. The second best performance was obtained by Ê(S, P )
with high-order optimization; removing the volumetric bias
substantially improves the performance of standards log-
likelihoods reducing the error by 6%. The bound optimiza-
tion obtains only a small improvement as it is more likely
to get stuck in weak local minima. We further show repre-
sentative examples for λ = 16 in the last two rows of Table
1, which illustrate clearly the effect of both equal-size bias
in (1) and the corrections we proposed in (10) and (6).

It is worth noting that the error we obtained for stan-
dard likelihoods (the last column in Table 1) is significantly
higher than the 8% error previously reported in the litera-
ture, e.g., [21]. The lower error in [21] is based on a differ-
ent (more recent) set of tighter bounding boxes [21], where
the size of the ground-truth segment is roughly half the size
of the box. Therefore, the equal-size bias in Ê(S, P ) (10)
for this particular set of boxes has an effect similar to the
effect of true target volumes W in EW (S, P ) (6) (the first
column in Table 1), which significantly improves the per-
formance of standard likelihoods (the last column). In prac-
tice, both 50/50 boxes and true W are equally unrealistic

5The data set comes with two boxes enclosing the foreground segment
for each image. We used the outer bounding box to restrict the image
domain and the inner box to compute initial appearance models.
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Energy EW (S, P ) (6)
true target volumes W

Ê(S, P ) (10)
high-order optimization

Ê(S, P ) (9)
bound optimization

E(S, P ) (1)
standard likelihoods

Overall Error
(50 images)

5.29% 7.87% 13.41% 14.41%

Examples

error: 4.75%

error: 2.29%

error: 6.85%

error: 4.95%

error: 9.64%

error: 41.20%

error: 14.69%

error: 40.88%

Table 1. Comparisons on the GrabCut data set.

assumptions that require knowledge of the ground truth.
Fig. 5 depicts a different application, where we segment

a magnetic resonance image (MRI) of the brain into mul-
tiple regions (K > 2). Here we introduce an extension of
Ê(S, P ) using a positive factor γ that weighs the contribu-
tion of entropy against the other terms:

Êγ(S, P ) = E(S, P ) + γ|Ω|H(S). (17)

This energy could be written as

K∑
k=1

|Sk|KL(Ik|P k) + |Ω|H(S|I) + (γ − 1)|Ω|H(S))

using the high-order decomposition of likelihoods E(S, P )
from [11] presented in the intro. Thus, the bias introduced
by H(S) has two cases: γ ≤ 1 (volumetric equality bias)
and γ ≥ 1 (volumetric disparity bias), as discussed below.

We use Chan-Vese data term [6] assuming the ap-
pearance models in E(S, P ) are Gaussian distributions
− logP k(Ip)

c
= (Ip − µk)2/2σ2 where µk is the mean of

intensities in segment Sk and σ is a given constant. We also
added a standard total-variation term [22] for regularization.

The solution is sought following the bound optimization
strategy discussed earlier, see Fig.2. The algorithm iterates
over two steps: (i) optimizing a bound of Êγ(S, P ) w.r.t
segmentation S via a continuous convex-relaxation tech-
nique [22] with fixed model parameters and (ii) update pa-
rameters µk and wk using fixed current solution S. We set
the initial number of models to 5 and fixed λ = 0.1 and
σ = 0.05. We run the method for γ = 0, γ = 1 and γ = 3.
Figure 5 displays the results using colors encoded by the

region means obtained at convergence. Column (a) demon-
strates the equal-size bias for γ = 0; notice that the yellow,
red and brown components have approximately the same
size. Setting γ = 1 in (b) removes this bias, yielding much
larger discrepancies in size between these components. Ex-
ample (c) shows that larger weight γ > 1 has a sparsity ef-
fect; it reduces the number of distinct segments/labels from
5 to 3. At the same time, for γ > 1 this energy introduces
disparity bias: the gap between the volumes of orange and
brown segments increases compared to γ = 1 in (b) where
no volumetric bias is present. This disparity bias is oppo-
site to the equality bias for γ < 1 in (a). Note that γ = 1 in
combination with a separate label cost term [8] should also
give sparsity, but without the disparity bias.

3.3. Geometric model fitting

Energy minimization methods for geometric model fit-
ting problems have recently gained popularity due to [10].
Similarly to segmentation these methods are often driven by
a maximum likelihood based data term measuring model fit
to the particular feature. The theory presented in Section 2
applies to these problems as well and they therefore exhibit
the same kind of volumetric bias.

Figures 1 (b) shows a simple homography estimation ex-
ample. Here we captured two images of a scene with two
planes and tried to fit homographies to these (the right im-
age with results is shown in Figure 1). For this image pair
SIFT [16] generated 3376 matches on the larger plane (pa-
per and floor) and 135 matches on the smaller plane (book).
For a pair of matching points Ip = {xp, yp} we use the log
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γ < 1 γ = 1 γ > 1
image equality bias no bias disparity bias

(a) (b) (c)

Figure 5. Segmentation using energy (17) combined with standard TV regularization [22]. We use the Chan-Vese model [6] as appearance
term and bound optimization computing a local minimum of the energy, see Fig.2. At each iteration, the bound is optimized w.r.t segmen-
tation using the convex-relaxation technique in [22]. Initial number of models is 5, λ = 0.1, and σ = 0.05. Upper row (from left to right):
image data and results for γ = 0, γ = 1 and γ = 3. Lower row: histograms of the number of assignments to each label and the entropies
at convergence. Note that the sparsity effect observed for γ > 1 could be obtained without disparity bias using γ = 1 and label costs [8].

likelihood costs∑
p∈Sk

− log
(
wk · PHk,Σk(Ip)

)
, (18)

where PHk,Σk(Ip) = 1

(2π)2
√

|Σk|
e−

1
2dHk,Σk

(xp,yp)
2

and

dHk,Σk
is the symmetric mahalanobis transfer distance. The

solution to the left in Figure 1 (b) was generated by optimiz-
ing over homographies and covariances while keeping the
priors fixed and equal (w1 = w2 = 0.5). The volume bias
makes the smaller plane (blue points) grab points from the
larger plane. For comparison Figure 1 (b) also shows the
result obtained when reestimating w1 and w2. Note that the
two algorithms were started with the same homographies
and covariances. Figure 6 shows an independently com-
puted 3D reconstruction using the same matches as for the
homography experiment.

Figure 6. 3D-Geometry of the book scene in Figure 1 (b).

3.3.1 Multi Model Fitting

Recently discrete energy minimization formulations have
been shown to be effective for geometric model fitting tasks
[10, 8]. These methods effectively handle regularization
terms needed to produce visually appealing results. The
typical objective functions are of the type

E(S,W,Θ) = V (S) +D(S,W,Θ) + L(S), (19)

where V (S) =
∑

(p,g)∈N Vpq(Sp, Sq) is a smoothness term
and L(S) is a label cost preventing over fitting by penalizing
the number of labels. The data term

D(S,W,Θ) = −
∑
k

∑
Sp=k

(
log(wk) + P (mp|Θk)

)
(20)

consists of log-likelihoods for the observed measurements
mp, given the model parameters Θ. Typically the prior dis-
tributions wk are ignored (which is equivalent to letting all
wk be equal) hence resulting in a bias to equal partitioning.
Because of the smoothness and label cost terms the bias is
not as evident in practical model fitting applications as in
k-means, but as we shall see it is still present.

Multi model fitting with variable priors presents an addi-
tional challenge. The PEARL (Propose, Expand And Rees-
timate Labels) paradigm [10] naturally introduces and re-
moves models during optimization. However, when reesti-
mating priors, a model k that is not in the current labeling
will have wk = 0 giving an infinite log-likelihood penalty.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Line fitting: (a) data generated from three lines, (b) data
with outliers, (c) fixed W and h = 100, (d) fixed W and h = 200,
(e) fixed W and h = 300, (f) variable W and h = 5.

Therefore a simple alternating approach (see bound opti-
mization in Sec.2) will be unable to add new models to
the solution. For sets of small cardinality it can further be
seen that the entropy bound in Figure 2 will become pro-
hibitively large since the derivative of the entropy function
is unbounded (when approaching w = 0). Instead we use
α-expansion moves with higher order interactions to handle
the entropy term, as described in Section 2.

Figure 7 shows the result of a synthetic line fitting exper-
iment. Here we randomly sampled points from four lines
with different probabilities, added noise with σ = 0.025
and added outliers. We used energy (19) without smooth-
ness and with label cost h times the number of labels (ex-
cluding the outlier label). The model parameters Θ consist
of line location and orientation. We treated the noise level
for each line as known. Although the volume bias mani-
fest itself more clearly when the variance is reestimated, it
is also present when only the means are estimated.

Using random sampling we generated 200 line proposals
to be used by both methods (fixed and variable W). Figure 7
(c), (d) and (e) show the results with fixed W for three dif-
ferent strengths of label cost. Both the label cost and the en-
tropy term want to remove models with few assigned points.
However, the label cost does not favor any assignment when

Figure 8. Homography fitting: fixed (left) and variable W (right).

Figure 9. Histogram of the number of assignments to each label
(model) in Figure 8. Fixed W (left) and variable W (right).

it is not strong enough to remove a model. Therefore it can-
not counter the volume bias of the standard data term favor-
ing more assignments to weaker models. In the line fitting
experiment of Figure 7 we varied the strength of the label
cost (three settings shown in (c), (d) and (e)) without being
able to correctly find all the 4 lines. Reestimation of W in
Figure 7 (f) resulted in a better solution.

Figures 8 and 9 show the results of a homography esti-
mation problem with the smoothness term V (S). For the
smoothness term we followed [10] and created edges using
a Delauney triangulation with weights e−d2/52 , where d is
the distance between the points. For the label costs we used
h = 100 with fixed W and h = 5 with variable W . We
fixed the model variance to 52 (pixels2).

The two solutions are displayed in Figure 8 and Figure 9
shows a histogram of the number of assigned points to each
model (black corresponds to the outlier label). Even though
smoothness and label costs mask it somewhat, the bias to
equal volume can be seen here as well.
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