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Abstract

The α-expansion algorithm [7] has had a significant im-

pact in computer vision due to its generality, effectiveness,

and speed. Thus far it can only minimize energies that in-

volve unary, pairwise, and specialized higher-order terms.

Our main contribution is to extend α-expansion so that it

can simultaneously optimize “label costs” as well. An en-

ergy with label costs can penalize a solution based on the

set of labels that appear in it. The simplest special case is

to penalize the number of labels in the solution.

Our energy is quite general, and we prove optimality

bounds for our algorithm. A natural application of la-

bel costs is multi-model fitting, and we demonstrate several

such applications in vision: homography detection, motion

segmentation, and unsupervised image segmentation. Our

C++/MATLAB implementation is publicly available.

1. Some Useful Regularization Energies

In a labeling problem we are given a set of observa-

tions P (pixels, features, data points) and a set of labels L
(categories, geometric models, disparities). The goal is to

assign each observation p ∈ P a label fp ∈ L such that the

joint labeling f minimizes some objective function E(f).
Most labeling problems in computer vision are ill-posed

and in need of regularization, but the most useful regular-

izers often make the problem NP-hard. Our work is about

how to effectively optimize two such regularizers: a pref-

erence for fewer labels in the solution, and a preference for

spatial smoothness. Figure 1 suggests how these criteria co-

operate to give clean results. Surprisingly, there is no good

algorithm to optimize their combination.1 Our main con-

tribution is a way to simultaneously optimize both of these

criteria inside the powerful α-expansion algorithm [7].

Label costs. Start from a basic (unregularized) energy

E(f) =
∑

pDp(fp), where optimal fp can each be deter-

mined independently from the ‘data costs’. Suppose, how-

ever, that we wish to explain the observations using as few

unique labels as necessary. We can introduce label costs

into E(f) to penalize each unique label that appears in f :

E(f) =
∑

p∈P
Dp(fp) +

∑

l∈L
hl ·δl(f) (1)

(a)

(b) (c)

Figure 1. Motion segmentation on the 1RT2RCR sequence [36].

Energy (1) finds 3 dominant motions (a) but labels many points

incorrectly. Energy (2) gives coherent segmentations (b) but finds

redundant motions. Our energy combines the best of both (c).

where hl is the non-negative label cost of label l, and δl(·)
is the corresponding indicator function

δl(f) def
=

{
1 ∃p : fp = l
0 otherwise.

Energy (1) balances data costs against label costs in a

formulation equivalent to the well-studied uncapacitated

facility location (UFL) problem. Li [26] recently posed

multi-model fitting in terms of UFL. For multi-model fit-

ting, where each label corresponds to a candidate model,

label costs penalize overly-complex models, preferring to

explain the data with fewer, cheaper labels (see Figure 1a).

Smooth costs. Spatial smoothness is a standard regu-

larizer in computer vision. The idea here is that groups of

observations are often known a priori to be positively corre-

lated, and should thus be encouraged to have similar labels.

Neighbouring image pixels are a classic example of this.

Such pairwise priors can be expressed by the energy

E(f) =
∑

p∈P
Dp(fp) +

∑

pq∈N
Vpq(fp, fq) (2)

1*†The authors assert equal contribution and thus joint first authorship.
1See Addendum on page 13, dated April 25, 2010.
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(a)

(b) (c)

Figure 2. Planar homography detection on VGG (Oxford) Merton

College 1 image (right view). Energy (1) finds reasonable param-

eters for only the strongest 3 models shown in (a), and still assigns

a few incorret labels. Energy (2) finds reasonable clusters (b) but

fits 9 models, some of which are redundant (nearly co-planar). Our

energy (?) finds both good parameters and labels (c) for 7 models.

where each Vpq penalizes fp 6= fq in some manner. If each

Vpq defines a metric, then minimizing (2) is known as the

metric labeling problem [7] and can be optimized effec-

tively with the α-expansion algorithm.

This regularizer prefers coherent segmentations, but has

no incentive to combine non-adjacent segments and thus a

tendency to suggest redundant labels in multi-model fitting

(see Figure 1b). Still, spatial smoothness priors are impor-

tant for a wide array of vision applications.

Our combined energy. We propose a discrete energy that

essentially combines the UFL and metric labeling problems.

E(f) =

data cost
︷ ︸︸ ︷
∑

p∈P
Dp(fp) +

smooth cost
︷ ︸︸ ︷
∑

pq∈N
Vpq(fp, fq) +

label cost
︷ ︸︸ ︷
∑

L⊆L
hL·δL(f) (?)

where the indicator function δL(·) is now defined on label

subset L as

δL(f) def
=

{
1 ∃p : fp ∈ L
0 otherwise.

Our energy actually makes a generalization from label

costs hl to label subset costs hL, but one can imagine ba-

sic per-label costs throughout for simplicity.

Energy (?) balances two demonstrably important regu-

larizers, as suggested by Figure 1c. Figures 2 and 3 show

other vision applications where our combined energy makes

sense. Section 2 presents our extension to α-expansion and

corresponding optimality bounds. Section 3 describes a

multi-model fitting algorithm based on our energy, and Sec-

tion 4 discusses connections to standard expectation maxi-

mization (EM) and K-means. Section 5 details our experi-

mental setup. Section 6 discusses applications of high-order

label costs, more related works, and possible extensions.

(a)

(b) (c)

Figure 3. Unsupervised segmentation using histogram models.

Energy (1) clusters in colour space, so segments (a) are incoher-

ent. Energy (2) clusters over pixels and must either over-segment

or over-smooth (b), just as in [41]. Our energy (?) balances these

criteria (c) and corresponds to Zhu & Yuille [42] for segmentation.

2. Fast Algorithms to Minimize (?)

Our main technical contribution is to extend the well-

known α-expansion algorithm [7] to incorporate label costs

at each expansion (Section 2.1) and prove new optimality

guarantees (Section 2.2). Section 2.3 reviews known results

for the ‘easy’ case (1) with only data and per-label costs.

2.1. Expansion moves with label costs

Since minimizing energy (?) is NP-hard for |L| ≥ 3 , the

α-expansion algorithm [7] iteratively ‘moves’ from some

current labeling f ′ to a better one until convergence. Specif-

ically, at each step, some label α ∈ L is chosen and vari-

ables fp are simultaneously given a binary choice to either

stay as fp = f ′p or switch to fp = α. This binary step is

called expansion because only the α label can grow and, if

each Vpq is a metric, the best possible expansion is com-

puted by a single graph cut.

Let f = {f1, . . . , fn} and let fα denote any feasible

α-expansion w.r.t. current labeling f ′. The possible label-

ings fα can be expressed one-to-one with binary indicator

variables x = {x1, . . . , xn} by defining

xp = 0 ⇐⇒ fα
p = f ′p

xp = 1 ⇐⇒ fα
p = α.

(3)

Let Eα(x) be the energy corresponding to encoding (3) rel-

ative to f ′. The α-expansion algorithm computes an opti-

mum x
∗, and thereby fα, by a single graph cut.

For example, suppose energy E(f) is such that the opti-

mal expansion w.r.t. labeling f ′ is fα:

f ′ = γ γ ββαβ → γ ββαα α = fα

1 1 1 0 0 0 = x
∗ (4)

where 1 means x2 is fixed to 1. Here only f1 and f3 changed

to label α while the rest preferred to keep their labels. The

α-expansion algorithm iterates the above binary step until

finally Eα(x′) = Eα(x∗) for all α ∈ L.
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Encoding label costs. The energy in example (4) was such

that f5 and f6 preferred to stay as label β rather than switch

to α. Suppose we want to introduce a cost hβ > 0 that

is added to E(f) if and only if there exists some fp = β.

This would encourage label α to absorb the entire region

that β occupies in f ′. If hβ is large enough, the optimal

α-expansion move would also change f5 and f6:

f ′ = γ γαβ γ γαβ
1

γ ββγ ββ
5 6

→ γαα α α α = fα

1 1 1 0 1 1 = x
∗ (5)

Our main algorithmic contribution is a way to encode such

label costs into the expansion step and thereby encourage

solutions that use fewer labels.

Energy Eα(x), when expressed as a multilinear polyno-

mial, is a sum of linear and quadratic terms over x. For the

specific example (5), we can encode cost hβ in Eα by sim-

ply adding hβ − hβx1x5x6 to the binary energy. Because

this specific term is cubic and hβ ≥ 0, it can be optimized

by a single graph cut using the construction in [22].

To encode general label costs for arbitray L ⊆ L and f ′,
we must optimize the modified expansion energy

Eα
h(x) = Eα(x) +

∑

L⊆L
L∩L′ 6=∅

(

hL−hL

∏

p∈PL

xp

)

+ Cα(x) (6)

where set L′ contains the unique labels in the current la-

beling f ′, and set PL = { p : f ′p ∈ L}. Term Cα simply

corrects for the case when α /∈ L′ and is discussed later.

Each product term in (6) adds a higher-order clique PL

beyond the standard α-expansion energy Eα(x). Freedman

and Drineas [14] generalized the graph construction of [22]

to handle terms c
∏

pxp of arbitrary degree when c ≤ 0.

This means we can transform each product seen in (6) into

a sum of quadratic and linear terms that graph cuts can still

optimize globally. The transformation for a particular label

subset L ⊆ L with |PL| ≥ 3 is

−hL

∏

p∈PL

xp = min
y

L
∈{0,1}

hL

[

(|PL|−1)yL −
∑

p∈PL

xpyL

]

(7)

where yL is an auxiliary variable that must be optimized

alongside x whenever hL > 0. Since each xpyL term has

non-positive coefficient, the overall binary energy can be

minimized by a single graph cut [5].

To encode the potential (7) into an s-tmin-cut graph con-

struction, we reparameterize the right-hand side such that

each quadratic monomial has exactly one complemented

variable (e.g. xȳ) and non-negative coefficient (arc weight).

The particular reparameterization we use is

− hL + hLȳL +
∑

p∈PL

hLx̄pyL (8)

where x̄ = 1−x. Figure 4 shows the subgraph correspond-

ing to (8) after cancelling the constant −hL using (7).
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Figure 4. LEFT: Graph construction that encodes h−hx1x2· · ·xk

when we define xp = 1 ⇔ p ∈ T where T is the sink side of the

cut. RIGHT: In a minimal s-t cut, the subgraph contributes cost

either 0 (all xp = 1) or h (otherwise). A cost greater than h (e.g. ∗)

cannot be minimal because setting y = 0 cuts only one arc.
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Figure 5. The alternate undirected graph construction correspond-

ing to Figure 4 may be easier to understand. The weights are found

by reparameterizing (8) such that x̄y and xȳ terms receive identi-

cal coefficients. Cut ∗ is not minimal w.r.t. auxiliary variable y.

Subgraphs of this type have been used in vision before,

most notably the Pn Potts potentials of Kohli et al. [20].

Our indicator potentials δL(·) are different in that, at the

binary step (6), each clique PL is determined dynamically

from the current labeling f ′ and is not expressed as such in

the original energy (?). It is easy to represent a Pn Potts

potential by combination of label subset cost potentials, but

not the other way around. Section 6 elaborates on this point,

and mentions a possible extension to our work based on the

Robust Pn Potts construction [21].

A final detail is how to handle the case when label α was

not used in the current labeling f ′. The corrective term Cα

in (6) incorporates the label costs for α itself:

Cα(x) =
∑

L⊆L\L′

α∈L

(

hL − hL

∏

p∈P
x̄p

)

. (9)

If we find that x
∗ = 0 then label α was not used in f ′ and

it was also not worth expanding it in fα. The term (9) can

be encoded by a subgraph analogous to Figure 4, but the

following is more efficient: first compute optimal x∗ for (6)

without considering Cα, then explicitly add it to Eα
h(x∗)

if x
∗ 6= 0, and reject the expansion if the energy would

increase.

In fact, a similar test-and-reject step allows label costs to

be trivially incorporated into α-β-swap: before accepting

a standard swap move, compare its energy to the energy

when all β variables become α and vice versa, then apply

the move with minimum energy.
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2.2. Optimality guarantees

In what follows we assume that energy (?) is configured2

so that Dp ≥ 0, Vpq is a metric [7], and thus E(f) ≥ 0.

Theorem 1 If f∗ is a global minimum of energy (?) and f̂
is a local minimum w.r.t. α-expansion then

E(f̂) ≤ 2cE(f∗) +
∑

L⊆L
hL|L| (10)

where c = max
pq∈N

(
maxα 6=β∈L Vpq(α,β)
minγ 6=ζ∈L Vpq(γ,ζ)

)

See Appendix A for the proof. The a priori bound (10)

suggests that for label costs on large subsets the worst-case

approximation is poor. The fundamental problem is that α-

expansion can expand only one label at a time. It may help

empirically to order the expansions in a greedy manner, but

the Section 2.3 describes a special case for which the greedy

algorithm still yields a similar additive bound (see Section

3.5.1 of [10]). We thus do not expect much improvement

unless different moves are considered.

For discussion, we note that bound (10) actually follows

from a more general bound that does not assume Dp ≥ 0:

E(f̂) ≤ E(f∗) + (2c−1)EV (f∗) +
∑

L⊆L
hL|L| (11)

where EV denotes the smooth cost of energy E. This holds

for all f̂ and f∗, so approximation error is actually bounded

in terms of smooth cost minEV (f∗) rather than by E(f∗)
itself. We submit our additive bound (11) as an alternative

to the familiar multiplicative bound E(f̂) ≤ 2cE(f∗) for

α-expansion [7]. To see why, consider that the multiplica-

tive bound for α-expansion is only tight when ED(f∗) = 0,

and does not even hold for ED(f∗)< 0. Yet, replacing data

terms with D′
p(·) := Dp(·) + εp for arbitrary constant εp

effects neither the global optima nor the optimal expan-

sions. The α-expansion algorithm is indifferent to εp, and

this property distinguishes it from the isolation heuristic al-

gorithm for multi-terminal cuts [11]. The isolation heuristic

is applicable to metric labeling when Vpq are Potts interac-

tions, also has multiplicative bound of 2, but can compute

arbitrarily bad solutions to multi-label problems depending

on εp. The comparative robustness of α-expansion is not

reflected in the multiplicative bound.

Tightness of bounds. There are non-trivial examples for

which the bound (10) is tight. Consider the problem in-

stance shown below, where w is the weight of a pairwise

Potts term and d, g ≥ 0 are constants such that w < 2d+ g.

0

γ
β

α

hγ

∞ 0

∞

D1 D2

gγf̂ = γ

αf∗= β

w

d d
(12)

2Adding an arbitrary constant to Dp(·) or Vpq(·, ·) does not affect the

optimal labeling, so finite costs can always be made non-negative.

For d≤w the labeling f̂ is a local optimum w.r.t. expansion

moves. Plugging f̂ and f∗ into inequality (10) we get

2d+g ≤ w + w + g

d ≤ w (13)

We can therefore bring the a priori bound (10) arbitrarily

close to equality by setting w−d → 0. In this example

the standard multiplicative bound E(f̂) ≤ 2cE(f∗) is also

tight, but only because ED(f∗) = 0. If we add an arbitrary

constant to anyDp(·), our additive bound (11) remains tight

whereas the multiplicative bound does not.

If we introduce high-order label costs, such as h{α,β},

the bound (10) is no longer tight. However, bound (11) fol-

lows from a tighter a posteriori bound w.r.t. specific f̂ :

E(f̂) ≤ E(f∗) + (2c−1)EV (f∗) (14)

+EH(f̂) −EH(f∗) +
∑

L⊆L\L̂

hL|L∩L
∗|

where EH(f) denotes the label cost of labeling f , and sets

L∗ and L̂ contain the unique labels in f∗ and f̂ respectively.

Suppose we again have pairwise Potts terms with weight

w, and consider the problem instance below for constants

d, g ≥ 0 such that 3w+ g < 3d.

h{α,β,γ}0

γ
β

α

∞ 0

∞

d d

D1 D2

g

f̂ =

αf∗= β γ

ζζζ

w D3

∞

∞

d

∞∞ 0

ζ
(15)

The labeling f̂ is a local optimum for any d ≤ 2w + g.

Plugging f̂ and f∗ into inequality (14) we get

3d ≤ 3w + g + 3w + 0 − g + 3g

d ≤ 2w + g (16)

so setting d= 2w+g makes bound (14) tight. This example

demonstrates precisely how high-order label costs can lead

to worse approximations.

2.3. Easy case: only per­label costs

In the absence of any smooth costs (Vpq ≡ 0) and higher-

order label costs (hL = 0 for |L| > 1) our energy reduces

to a special case (1) known as the uncapacitated facility lo-

cation (UFL) problem. This well-studied problem was re-

cently applied for motion segmentation, first by Li [26] and

then by Lazic et al. [25]. The UFL problem assigns facil-

ities (labels) to each client (variable) such that the cost to

clients is balanced against the cost of ‘opening’ facilities

to serve them. Optimizing UFL is NP-hard by simple re-

duction from SET-COVER, so it is ‘easier’ than our full en-

ergy (?) only in a practical sense.

Li optimizes the integer program corresponding to UFL

by linear programming (LP) relaxation, then rounds frac-

tional ‘facility’ variables to 0 or 1 in a straight-forward man-

ner. Because of the heavy LP machinery, this approach is
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ground truth raw data proposals 1st iteration 5th iteration convergence
(50% outliers) (6 models) (6 models) (5 models)

Figure 6. Re-estimation helps to align models over time. Above shows 900 raw data points with 50% generated from 5 line intervals.

Random sampling proposes a list of candidate lines (we show 20 out of 100). The 1st segmentation and re-estimation corresponds to

Li [26], but only the yellow line and gray line were correctly aligned. The decreasing energies in Figure 7 correspond to better alignments

like the subsequent iterations above. If a model loses enough inliers during this process, it is dropped due to label cost (dark blue line).

slow and affords relatively few candidate models in prac-

tice. Li implements four application-specific heuristics to

aggressively prune candidate models “for LP’s sake.” Lazic

et al. optimize the same energy using max-product belief

propagation (BP), a message-passing algorithm.

Kuehn & Hamburger [23] proposed a natural greedy al-

gorithm for UFL in 1963. The algorithm starts from an

empty set of facilities (labels) and greedily introduces one

facility at a time until no facility would decrease the over-

all cost. The greedy algorithm runs in O(|L|2|P|) time for

labels L and observations P . Hochbaum [17] later showed

that greedy yields a O(log |P|)-approximation in general,

and better bounds exist for special cost functions (see [32]

for review). Besides the add-facilities-greedily strategy,

other greedy moves have been proposed for UFL such as

the greedy-interchange and dynamic programming heuris-

tics (see [9, 10] for review).

Our C++ library implements the greedy heuristic [23]

and, when smooth costs are all zero, it is 5–20 times faster

than α-expansion while yielding similar energies. Indeed,

“open facility α” is analogous to expansion in this case.

Note that our high-order label costs hL can also be opti-

mized greedily, but this is not standard and our bound (10)

suggests the approximation may become worse than the

bound proven by Hochbaum. Babayev [2] and Frieze [15]

noted in 1974 that, as a function of open facilities, standard

UFL is supermodular (as a minimization problem) and thus

yields some form of approximation guarantee [30, 24]. It

can be shown however that our generalization of UFL to

subset costs hL is neither supermodular nor submodular.

3. Working With a Continuum of Labels

Our experimental Section 5 focuses on multi-model fit-

ting problems, which are the most natural applications of

energy (?). As was first argued in [19], energies like (?) are

powerful criteria for multi-model fitting in general. How-

ever, there is a technical hurdle with using combinatorial

algorithms for model fitting. In such applications each label

represents a specific model, including its parameter values,

and the set of all labels L is a continuum. In line fitting, for

example, L = R2. Practically speaking, however, the com-

binatorial algorithms from Section 2 require a finite set L

of labels (models). Below we review a technique to effec-

tively explore the continuum of model parameters by work-

ing with a finite subset of models at any given iteration t.

PEARL Algorithm [19]

1 propose initial models L0 by random samples (as in RANSAC)

2 run α-expansion to compute optimal labeling f w.r.t. Lt

3 re-estimate model parameters to get Lt+1; t := t+1; goto 2

PEARL was the first to use regularization energies and

EM-style optimization for geometric multi-model fitting.

Other geometric model fitting works have used separate el-

ements such as random sampling [35, 26] (as in RANSAC)

or EM-style iteration [3], but none have combined them in

a single optimization framework. The experiments in [19]

show that their energy-based formulation beats many state-

of-the-art algorithms in this area. In other settings (segmen-

tation, stereo) these elements have been combined in vari-

ous application-specific ways [42, 3, 31, 41].

Our paper introduces a more general energy (?) and a

better algorithm for the expansion step of PEARL (step 2).

Review of PEARL for (?). Step 1 of PEARL is to pro-

pose an initial set of models L0. Each proposal is gener-

ated by a randomly sampling the smallest subset of data

points needed to define a geometric model, exactly as in

RANSAC [13]. A larger set of proposals L0 is more likely

to contain models that approximate the true ones. Of course,

L0 will contain many incorrect models as well, but optimiz-

ing energy (?) over L0 (step 2) will automatically select a

small subset of labels from among the best models in L0.

The initial set of selected models can actually be further

improved as follows. From here on, we represent model as-

signments by two sets of variables: segmentation variables

{fp} that for each data point p specifies the index of a model

from the finite set L0, and parameter variables {θl} that

specify model parameters currently associated with each

model index. Then, energy (?) is equivalent to

E(f ; θ) =
∑

p∈P
Dp(fp, θfp

) +
∑

pq∈N
Vpq(fp, fq, θfp

, θfq
)

+
∑

L⊆L
hL(θL)·δL(f). (?′)
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Figure 7. Energy (?′) over time for a line-fitting example (1000

points, 40% outliers, 6 ground truth models). Only label cost regu-

larization was used. Re-estimation reduces energy faster and from

fewer samples. The first point (•) in each series is taken after ex-

actly one segmentation/re-estimation, and thus suggests the speed

of Li [26] using a fast greedy algorithm instead of LP relaxation.

For simplicity, assume that the smoothness terms in (?′) are

Potts interaction potentials [7] and the third term represents

simple per-label costs as in (1). Then, specific model pa-

rameters θl assigned to a cluster of points Pl = {p|fp = l}
only affect the first term in (?′), which is a sum of unary

potentials. In most cases, it is easy to compute a pa-

rameter value θ̂l that locally or even globally minimizes
∑

p∈Pl
Dp(l, θl). The re-estimated parameters {θ̂l} cor-

respond to an improved set of labels L1 that reduces en-

ergy (?′) for fixed segmentation f (step 3).

Now one can re-compute segmentation f by applying

the algorithms in Section 2 to energy (?) over a new set

of labels L1 (step 2 again). PEARL’s re-segmentation and

re-estimation steps 2 and 3 reduce the energy. Iterating

these two steps generates a sequence of re-estimated mod-

els L0,L1,L2, ... converging to a better local minima of

energy (?). In our experiments, convergence is typically

achieved in 5–20 iterations. In most cases, iterating im-

proves the solution significantly beyond the initial result.

Figure 7 shows how re-estimation finds a low energy for

line-fitting faster than brute-force random sampling. For

this example, the algorithm needs at least 250 random sam-

ples to be stable, but more than 700 samples is redundant.

Figure 8 shows an analogous plot for unsupervised image

segmentation. Recall that Li [26] does not re-estimate be-

yond the first iteration, and thus corresponds to what we are

calling brute-force, i.e. selecting only from among the ini-

tial proposals.

Segmentation problem 0 5 10 15 20
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Figure 8. Energy (?′) over time for image segmentation (222×183

pixels). Smooth cost and label cost were regularized together. The

models are 256-dimensional greylevel histograms. See Section 5.2

for experimental details.

Proposal heuristics. Re-estimation is a natural way to pro-

pose better models from existing ones because it applies to

any family of models for which a maximum-likelihood es-

timator can be found. For example, the results in Figures 9

and 10 were both computed with re-estimation alone.

Re-estimation is by no means the only way to propose

new models. Another general heuristic is to fit a new model

to the inliers of two existing models, and then add this new

model to the candidate list; this ‘merge’ heuristic [37] gives

energy (?′) an opportunity to jump out of local minima when

computing optimal f .

The most effective proposal techniques actually tend to

be class-specific and make use of the current solution. A

simple example for line fitting is to compute a ‘merge’ pro-

posal only for pairs of lines that are nearly colinear, since

we know heuristically that such proposals are more likely

to succeed. Li [26] uses a number of “guided sampling”

heuristics specific to motion estimation, but they are only

used for the initial proposals. Such heuristics make our al-

gorithm more robust, but this is not the point of our work

and so all our results use basic re-estimation only.

4. Relationship to EM and K-means

The main goal of this section is to relate our model

fitting algorithm to the standard expectation maximization

(EM) and K-means algorithms. Our discussion will focus

on Gaussian mixture models (GMM). To keep things simple

for GMM, we use only data terms and label cost terms, even

though our full energy (?′) was designed to handle smooth-

ness priors as well.



ISBN: 978-0-7714-2823-4, Tech.Report #731, CS Dept., UWO, December 4, 2009. Revised April 25, 2010. 7

seed=100 seed=101 seed=102

Figure 9. We can also fit line intervals to the raw data in Figure 6.

The three results above were each computed from a different set L

of random initial proposals. See Section 5.1 for details.

Figure 10. For multi-model fitting, each label can represent a spe-

cific model from any family (Gaussians, lines, circles...). Above

shows circle-fitting by minimizing geometric error of points.

A number of interesting observations about our model

fitting approach can be made:

– K-means minimizes a special case of our energy (?′),

– like K-means, we make hard assignments of models

to data points (in contrast to EM), and

– unlike K-means, our energy automatically removes

unnecessary models from the initial set of proposals.

Sections 4.1–4.3 elaborate on these points, and Section 4.4

shows experimental results to help understand the relation-

ship to EM and K-means. Note that our experiments are

meant to be illustrative, and do not suggest that we have a

state-of-the-art algorithm for GMM.

The main practical conclusion of this section is that hard

assignment works at least as well as soft assignment

when models do not overlap too significantly. We claim

that many multi-model fitting applications in computer vi-

sion satisfy this property.

4.1. Standard Approaches to Finite Mixtures

Let some finite set of observed points X = {xp |p ∈ P}
be a mixture of independent samples taken from different

probability distributions. These distributions are described

by probability density functions Pr(x | θl) with distinct pa-

rameters from a set θ = {θl | l ∈ L}, where L is a finite

set of distribution indices (labels). A set of hidden (unob-

served) variables f = {fp ∈ L | p ∈ P} represent indices

of specific distributions that generated each data point. The

probability of sampling from each distribution is defined by

a set of mixing parameters ω = {ωl | l ∈ L} such that

Pr(fp = l) := ωl,
∑

l∈L
ωl = 1, ωl ≥ 0.

It can be shown that data points inX sampled in this manner

correspond to the standard mixture model density [4]

Pr(x |θ, ω) =
∑

l∈L
ωl ·Pr(x |θl).

The problem of estimating a mixture model is to estimate

parameters θ and mixing coefficients ω. We will mainly fo-

cus on estimating GMM, i.e. mixtures of normal distribu-

tions Pr(x | θl) = N (x | µl,Σl) where model parame-

ters θl = {µl,Σl} are the mean and covariance matrix.

Standard EM and (elliptical) K-means algorithms can be

seen as maximum likelihood (ML) approaches to estimat-

ing GMM. The classic EM algorithm [4, 12] finds θ, ω that

maximize the likelihood function

Pr(X |θ, ω) =
∏

p∈P

(
∑

l∈L
ωl ·Pr(xp |θl)

)

. (17)

As an internal step, EM also computes responsibilities

Pr(fp = l | xp, θ, ω) in order to estimate which mixture

components could have generated each data point [4].

The elliptical3 K-means algorithm [33] maximizes a dif-

ferent likelihood function on the same probability space

Pr(X |f, θ) =
∏

p∈P
Pr
(
xp |θfp

)
. (18)

In contrast to EM, this approach directly computes labeling

f = {fp | p ∈ P}, while mixing coefficients ωl are im-

plicitly estimated as percentages of points with fp = l. It is

often said that K-means performs hard assignment of mod-

els to data points, whereas EM performs soft assignment

leaving room for uncertainty in the labeling f .

It is possible to derive a version of K-means that ex-

plicitly estimates mixing weights ω. Assuming that fp are

independent, one gets the following prior on the labeling

Pr(f |ω) =
∏

p∈P
Pr(fp |ω) =

∏

p∈P
ωfp

. (19)

By applying this prior to (18), Bayes rule then gives poste-

rior distribution

Pr(f, ω, θ |X) ∼
∏

p∈P
ωfp

·Pr(xp |θfp
). (20)

Values of f, ω, θ that maximize this distribution are max-

imum a posteriori (MAP) estimates of these parameters.

Like the standard K-means algorithm, one can maxi-

mize (20) by iterating two steps: first optimize over f for

fixed ω, θ and then (independently) optimize over ω and θ
for fixed f . We refer to this algorithm as weighted (el-

liptical) K-means. Note that weighted K-means assumes

no prior at all on weights ω, whereas standard K-means is

equivalent to “weighted K-means with prior that ωl = 1
K

.”

Figure 11 shows how this difference can affect solutions.

3The elliptical version of K-means explicitly estimates a covariance

matrix Σ so that each set of parameters is θl = {µl, Σl}.
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1 2 1 2

elliptical K-means (18,21) weighted ellpt. K-means (20,22)

Figure 11. Mixture of two Gaussians where most data points were

generated from the first component (ω1 >ω2). Standard K-means

prefers equal cluster sizes because it assumes ω1 = ω2, whereas

weighted K-means has no such bias.

4.2. Using Energy (?′) for Finite Mixtures

The standard K-means algorithm directly minimizes the

negative-log of the likelihood function (18), giving energy

E(f ; θ) = −
∑

p∈P
ln Pr(xp |θfp

). (21)

Similarly, the weighted K-means algorithm minimizes the

negative-log of the posterior distribution (20)

E(f ; θ, ω) = −
∑

p∈P
ln
(
ωfp

·Pr(xp |θfp
)
)
. (22)

Both of these K-means energies are expressible as data

terms Dp in our energy (?′).
Note that posterior energy (22) is derived from the i.i.d.

assumption (19) on assignment variables fp. This assump-

tion holds when the sampling process does not have any co-

herence or constraints (e.g. occlusions). In some examples,

however, variables fp may be correlated. For example, pair-

wise interactions could be easily incorporated into a prior

for f yielding a posterior energy with the first and second

terms in (?′). Such a prior may be also useful for its regular-

ization effect. In the context of GMM estimation, however,

it makes more sense to incorporate a different regularization

prior Pr(ω) on possible combinations of models in the mix-

ture. In particular, if we add a term in the posterior energy

to penalize the number of assigned models.

E(f ; θ, ω) = −
∑

p∈P
ln
(
ωfp

·Pr(xp |θfp
)
)

+
∑

l∈L
h·δl(f)

(23)

where h ≥ 0 is the per-label cost, then this corresponds to

some non-standard prior on ω. Energy (23) is a special case

of (?′) with the simplest form of label cost regularizer. We

use (23) in our GMM experiments in Section 4.4.

Note that basicK-means (21) is known to be sensitive to

initialization with the correct number of models K. If the

number of given initial modelsK is too large, the algorithm

will over-fit these K models to data (see Fig.12e). One way

to look at energy (23) is that it robustifies K-means (22)

by penalizing the use of each model. As experiments in

Sections 4.4 and 5 show, the exact number of initial models

is largely irrelevant for the model fitting algorithms based

on energy (23).

There is a standard technique [4] to make EM similarly

robust to over-fitting: introduce a Dirichlet prior Pr(ω) =
Dir(ω | α0) that encourages most mixing weights ωl to be

small. By making our label costs hl dependent on ωl, our

energy (23) can also incorporate a Dirichlet-like prior on ω.

See Appendix B for details. It is interesting to note that, if

we apply a Dirichlet prior to weighted K-means (20) then

we can derive standard K-means (18) by taking α0 → ∞,

i.e. encouraging weights ωl to be as close to 1
K

as possible.

This “prior on ω” interpretation is another way to under-

stand standard K-means’ sensitivity to the choice of K.

4.3. Energy (?) as an information criterion

Regularizers are useful energy terms because they can

help to avoid over-fitting. In statistical model selection,

various information criteria have been proposed to fulfil a

similar role. Information criteria penalize overly-complex

models, preferring to explain the data with fewer, simpler

models (Occam’s razor [28]).

For example, consider the well-known Akaike informa-

tion criterion (AIC) [1]:

min
Θ

−2 ln Pr(X |Θ) + 2|Θ| (24)

where Θ is a model, Pr(X | Θ) is a likelihood function

and |Θ| is the number of parameters in Θ that can vary. This

criterion was also discussed by Torr [35] and Li [26] in the

context of motion estimation.

Another well-known example is the Bayesian informa-

tion criterion (BIC) [8, 28]:

min
Θ

−2 ln Pr(X |Θ) + |Θ|·ln |P| (25)

where |P| is the number of observations. The BIC suggests

that label costs should be scaled in some proportion (linear

or logarithmic) to the number of data points or, in practice,

to the estimated number of observations per model. In con-

trast, AIC over-fits as we add more observations from the

true models. See [8] for an intuitive discussion and deriva-

tion of BIC in general, particularly Sections 6.3–6.4, and

see Torr’s work [35] for insights specific to vision.

4.4. Experimental Results for GMM Estimation

Figure 12 juxtaposes representative results for GMM es-

timation by standard EM (17), elliptical K-means (21,22),

and energy (23). The latter represents a combination of the

first and the third terms in (?′). To minimize (23) we iterate

PEARL (Sec.3) in combination with the greedy optimiza-

tion method (Sec.2.3) for each expansion step. Note that

the first column paints each point with the color of a model

that had the highest responsibility according to EM’s “soft

assignments”. The columns for K-means and energy (23)

show colors corresponding to their “hard assignments”.
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EM algorithm (17) Elliptical K-means (21) or (22) PEARL w/ energy (23)

(a
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5 initial models 5 initial models 15 initial models

(b
)
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6 initial models 6 initial models 15 initial models

(c
)
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p
+
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3 initial models 3 initial models 15 initial models

(d
)

m
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4 initial models 4 initial models 15 initial models

(e
)
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a
m

o
d
el

s

7 initial models 7 initial models 15 initial models

Figure 12. Each row shows how GMM algorithms behave on a particular example. This table is for illustrative purposes, and is not meant

to be a state-of-the-art comparison. (a) If models do not overlap then all algorithms work. (b) Most algorithms can handle uniform outliers

by fitting an extra model. (c) EM finds overlapping models thanks to soft assignment; hard assignment has bias towards isolated models.

(d) Even EM (soft assignment) fails with only a little more ambiguity in the data. (e) Standard EM and K-means usually fail when given

too many initial models, whereas PEARL with energy (23) keeps only enough models to explain the data. See Section 4.4 for discussion.
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Figure 13. Unsupervised segmentation by clustering simultaneously over pixels and colour space using Gaussian Mixtures (colour images)

and non-parametric histograms (greyscale images). Notice we find coarser clustering on baseball than Zabih & Kolmogorov [41] without

over-smoothing. For segmentation, our energy is closer to Zhu & Yuille [42] but our algorithm is more powerful than region-competition.

The middle column in Figure 12 shows the results typical

for both standard (21) and weightedK-means (22). The two

methods worked similarly on all tests in Figure 12 because

all models there have approximately the same number of

inliers. Such examples can not reveal the bias of standard

K-means to equalizing mixing weights (see Fig.11).

One important conclusion from Figure 12 is that energy

(23) works well on all examples (a,b,e) where the models do

not have significant spatial overlap. This case is very com-

mon in computer vision problems where models occlude

each other rather than intersect.

If K-means and EM were initialized with a correct num-

ber of models, they also worked very well for spatially non-

ovelapping models (a,b), however, EM was more sensitive

to outliers in (b). If EM and K-means are initialized with

a wrong number of models (e) then they overfit these mod-

els to data, while regularization energy (23) keeps only the

minimal number of necessary models.

In general, EM handled intersecting models in (c) better

than the other two methods. Arguably, soft assignments of

models to data points help EM to deal with such overlapping

models. But, more severe cases of model mixing in (d) are

problematic even for EM.

Some additional experiments we made also show that

both EM and K-means could be sensitive to initial models,

particularly if distributions are not exactly Gaussian. Us-

ing PEARL to minimize (23) seems less sensitive to initial-

ization in these particular tests. In general, however, our

approach benefits from larger number of initial proposals

which increases the chances that correct models are found.

The last column in Figure 12 shows the minimum number

of initial randomly sampled models (proposals) that our al-

gorithm needed to robustly generate good results.

5. Applications and Experimental Setup

The experimental setup is essentially the same for each

application: generate proposals via random sampling, com-

pute initial data costs Dp, and run the iterative algorithm

from Section 3. The only components that change are the

application-specific Dp and regularization settings. Sec-

tion 5.1 outlines the setup for basic geometric models: lines,

circles, homographies, motion. Section 5.2 describes the

unsupervised image segmentation setup.

5.1. Geometric multi­model fitting

Here each label l ∈ L represents an instance from a spe-

cific class of geometric model (lines, homographies), and

each Dp(l) is computed by some class-specific measure of

geometric error. The strength of per-label costs and smooth

costs were tuned for each application.

Outliers. All our experiments handle outliers in a standard

way: we introduce a special outlier label φ with hφ =0 and

Dp(φ) = const > 0 manually tuned. This corresponds to a

uniform distribution of outliers over the domain.

5.1.1 Line fitting

Our line fitting experiments are all synthetic and mainly

meant to be illustrative. Our energy (?′) was motivated by

applications in vision that involve images (Sections 5.1.2–

5.2), but simple models (gaussians, lines) help to understand

our energy, our algorithm, and their relation to standard

methods.

Data points are sampled i.i.d. from a ground-truth set

of line segments (e.g. Figure 6), under reasonably simi-

lar noise; outliers are sampled uniformly. Since the data

is i.i.d. we set Vpq = 0 and use the greedy algorithm

from Section 2.3. We also use fixed per-label costs as

in (23), since keeping them independent of θ simplifies the
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re-estimation of θ itself. Not surprisingly, the greedy al-

gorithm (Section 2.3) was by far the best algorithm when

smooth costs are not involved. Greedy gives similar ener-

gies to α-expansion (Section 2.1) but is 5–20 times faster.

Figure 6 is a typical example of our line-fitting experi-

ments with outliers. In 2D each line model l has parameters

θl = {a, b, c, σ} where ax + by + c = 0 defines the line

and σ2 is the variance of data; here a, b, c have been scaled

such that a2 + b2 = 1. Each proposal line is generated by

selecting two random points from P , fitting a, b, c accord-

ingly, and selecting a random initial σ based on a prior. The

data cost for a 2D point xp = (xx
p, x

y
p) is computed w.r.t.

orthogonal distance

Dp( l ) = − ln
(

1√
2πσ

exp
(

−
(axx

p+bxy
p+c)2

2σ2

))

. (26)

Figure 7 shows the trend in running time as the num-

ber of random initial proposals is increased. For 1000 data

points and 700 samples, convergence took .7–1.2 seconds

with 50% of execution time going towards computing data

costs (26) and performing re-estimation.

Note that (26) does not correspond to a well-defined

probabilty density function. The density for unbounded

lines cannot be normalized, so lines do not spread their den-

sity over a coherent span. Still, in line-fitting experiments it

is common to fit full lines to data that was actually gener-

ated from line intervals, e.g. [19, 43]. The advantage of full

lines is that they are a lower-dimensional family of mod-

els, but when lines are fit to data generated from intervals

this is a model mis-specification, causing discrepancy be-

tween the energy being optimized versus the optimal solu-

tion from a generative viewpoint. Surprisingly, [19] showed

that there are examples where introducing spatial coherence

(Vpq > 0) for i.i.d. line interval data can actually improve

the results significantly. We hypothesize that, in this case,

spatial coherence can be trained discriminatively to counter

the discrepancy caused by fitting unbounded lines to line

interval data.

Line interval fitting. Figure 9 shows three interval-fitting

results, all on the same data. Each solution was computed

from a different (random) set of 1500 initial proposals. Line

intervals require many more proposals than for lines be-

cause intervals are higher-dimensional models. Each result

in Figure 9 took 2–4 seconds to converge, with 90% of the

execution time going towards computing data costs and per-

forming re-estimation (in MATLAB).

We model an interval from point a to point b as an infinite

mixture of isotropic Gaussians N
(
µ, σ2

)
for each µ inter-

polating a and b. The probability of a data point appearing

at position x is thus

Pr(x |a, b, σ2) =

∫ 1

0

N
(
x | (1−t)a+ tb, σ2

)
dt. (27)

In two dimensions, the above integral evaluates to

1
4πσ2‖a−b‖ · exp

(

−
(

xx(by−ax)−xy(bx−ay)+aybx−axby

√
2σ‖a−b‖

)
2
)

·
(

erf
(

(x−b)·(a−b)√
2σ‖a−b‖

)

− erf
(

(x−a)·(a−b)√
2σ‖a−b‖

))

(28)

where x = (xx, xy) is and erf(·) is the error function.

Given a set Xl = {xp : fp = l} of inliers for label l, we

find maximum-likelihood estimators θl = {a, b, σ} by nu-

merically minimizing the negative-log likelihood

E(Xl; a, b, σ) = −
∑

p

ln Pr(xp |a, b, σ
2). (29)

Circle fitting. Figure 10 shows a typical circle-fitting re-

sult. Our circle parameters are center-point a, radius r, and

variance σ2. We model a circle itself as an infinite mixture

of isotropic Gaussians along the circumference. Proposals

are generated by randomly sampling three points, fitting a

circle, and selecting random σ based on some prior. We find

maximum-likelihood estimators numerically, much like for

line intervals.

5.1.2 Homography Estimation

We used our energy to automatically detect multiple homo-

graphies in uncalibrated wide-base stereo image pairs. Our

setup comes directly from [19] so we give only an outline.

The input comprises two (static) images related by a fun-

damental matrix. We first detect SIFT features [27] and do

exhaustive matching as a preprocessing step; these matches

are our observations. The models being estimated are ho-

mographies, and each proposal is generated by sampling

four potential feature matches. Data costs measure the sym-

metric transfer error (STE) [16] of a match w.r.t. each can-

didate homography. Our set of neighbours pq ∈ N is de-

termined by a Delaunay triangulation of feature positions

in the first image. Re-estimation is done by minimizing

the STE of the current inliers via Levenberg-Marquard [16].

Figure 2c shows a representative result.

5.1.3 Motion Segmentation

The setup is from [19] and is essentially the same as for

homography estimation, except here each model is a fun-

damental matrix F = [K ′ t]×K ′RK−1 corresponding to a

rigid body motion (R, t) and intrinsic parameters K [16].

The aim is to select true motions from among the candi-

dates, as in [26].

Again, SIFT matches are our observations. We generate

initial proposals by randomly sampling eight matching pairs

and computing a fundamental matrix as described in [16],

minimizing the non-linear SSD error using Levenberg-

Marquard. Data costs measure the squared Sampson’s dis-

tance [16] of a match with respect to each candidate funda-

mental matrix. Figure 1 shows a representative result.
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5.2. Image Segmentation by MDL Criterion

The idea here is to automatically segment an image into

coherent parts that have consistent appearence. This is sim-

ilar to criteria for superpixels except our segments can be

any size and need not be contiguous. Figures 3 and 13 show

examples of such segmentations.

We formulate the problem as one of finding a mini-

mum description length (MDL) representation for the im-

age, meaning a we want to represent the image compactly,

in an information-theoretic sense (see [28] for review of

MDL). The MDL principle was first proposed for unsuper-

vised segmentation by Zhu & Yuille [42], along with their

region competition algorithm. When defined over a 2D grid

of image pixels, our energy (?′) can implement a discrete

version of Zhu & Yuille’s energy. Our algorithm is however

more powerful because α-expansion makes large moves,

while region competition relies on local contour evolution

and explicit merging of adjacent regions.

In our experiments, the appearance models for greyscale

images are 256-dimensional histograms, and for colour im-

ages we use Gaussian mixtures in RGB space. Inital pro-

posals were generated by sampling small patches of the im-

age, just like [41, 42]. Figure 8 shows performance at vari-

ous sampling rates. We used uniform Potts model for pair-

wise terms, and did not implement segmentation-specific

heuristics such as merging or splitting the histograms.

6. Discussion

The potential applications of our algorithm are nearly as

broad as for α-expansion. Our algorithm can be applied

whenever observations are known a priori to be correlated,

whereas standard mixture model algorithms are designed

for i.i.d. data.

Our C++ implementation and MATLAB wrapper are

available at http://vision.csd.uwo.ca/code/. Besides

general minimization of (?), the code is further optimized

in two important special cases:

1. when the energy reduces to (1) the solution is com-

puted by the greedy UFL algorithm (Section 2.3), and

2. when only a small fraction of labels are feasible for

any given data point (e.g. geometric models; labels lo-

calized to a patch) we support “sparse data costs” to

dramatically speed up computation.4

Our new α-expansion code optionally uses a simple strategy

to invest expansions mainly on ‘successful’ labels. This is

often faster, but can be slower, so we suggest selecting an

expansion scheme (adaptive vs. standard cycle) empirically

for each application.

Our energy is quite general but this can be a disadvantage

in terms of speed. The α-expansion step runs in polyno-

mial time for fixed number of positive hL terms, but higher-

order label costs should be used sparingly. Even the set of

4Sparse data costs were not used in our experiments.

per-label costs {hl} slows down α-expansion by 40–60%,

though this is still relatively fast for such difficult ener-

gies [34]. This slowdown may be because the Boykov-

Kolmogorov maxflow algorithm [6] relies on heuristics that

do not work well for large cliques, i.e. subgraphs of the kind

in Figure 4. Even if faster algorithms can be developed, our

implementation can test the merit of various energies before

one invests time in specialized algorithms.

Category costs. Our high-order label costs (on subsets of

labels) seem to be novel, both in vision and in terms of

the UFL problem, and can be thought of as a type of co-

occurence potential. A natural application is to group la-

bels in a hierarchy of categories and assign a category cost

to each. This encourages labelings to use fewer categories

or, equivalently, to avoid mixing labels from different cate-

gories (e.g. kitchen, office, street, forest,...). We anticipate

specific applications in object recognition/segmentation and

multi-homography/motion estimation.

Regional label costs. We can generalize the concept of

label costs by making them spatially localized. The label

cost term in energy (?) could actually be expressed as
∑

P⊆P

∑

L⊆L
hP

L·δL(fP )

where our basic energy (?) is a special case that assumes

hP
L = 0 for all non-global cliques P ( P . (Note that the

test-and-reject approach to incorporate Cα in Section 2.1 is

no longer ideal for this more general case above.)

Such potentials amount to regional label cost terms. Re-

gional and high-order label costs are useful together when

labels belong to known categories with specific location pri-

ors, such as “pay a fixed penalty if any label from {sky,

cloud,sun} appears in the bottom of an image.”

Relation to Pn Potts [20]. The Pn Potts potential ψP (fP )
is defined on clique P ⊆ P as

ψP (fP ) def
=

{

γα if fp = α ∀p ∈ P
γmax otherwise

where γα ≤ γmax for all α ∈ L. This potential encodes a

label-specific reward γmax−γα for clique P taking label α
in its entirety, and acts either as simple high-order regular-

ization (all γα = const) or as a form of high-order data cost

(label-specific γα).

Let ᾱ denote the set all labels except α, i.e. the set

L \ {α}. Regional label costs over clique P can represent

the Pn Potts potential in energy (?) as follows:

1. Set cost hP
ᾱ := γmax − γα for each α ∈ L.

2. Add constant (1−|L|)γmax +
∑

αγα to the energy.

Each regional label cost hP
ᾱ is non-negative by definition of

ψP (·), thus Pn Potts potentials can be expressed in terms of

high-order label costs.
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The Pn Potts potential and its robust generalization [21]

were designed to encourage consistent labelings over spe-

cific regions in an image. A special case of our potentials is

very closely related to the robust variant: a basic per-label

potential hl ·δl(f) can be expressed as a specific (concave)

Robust Pn Potts potential. Besides significant conceptual

and motivational differences, the main technical difference

is that our construction makes no reference to a “dominant

label.” By constructing a two-label Robust Pn Potts poten-

tial at each dynamic clique PL in our binary expansion step,

we can encode an arbitrary concave penalty on the number

of variables taking labels from a specific subset of labels.

This generalizes our high-order potentials δL(·) if needed.

Related global interactions. Label costs can be viewed as

a special case of global interactions recently studied in vi-

sion, for example, by Werner [38] and Woodford et al. [40].

Werner proposed a cutting plane algorithm to make high-

order potentials tractable in an LP relaxation framework.

The algorithm is very slow but much more general, and he

demonstrates global class size constraints (marginal statis-

tics) for image segmentation as a special case. The poten-

tial hl ·δl(f) corresponds to a soft constraint that the num-

ber of variables taking label l be zero; this cost is concave

w.r.t. the number of variables taking l. Woodford et al. op-

timize energies involving marginal statistics and they call

these Marginal Probability Fields (MPFs). They focus on

a number of hard cases with convex costs and propose spe-

cialized algorithms based on dual decomposition.
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Addendum, April 25 2010. We were recently informed

that John Winn had developed an “instance cost” potential for α-

expansion in 2005. It was manifested as a side contribution to

the paper “3D LayoutCRF for Multi-View Object Class Recogni-

tion and Segmentation” by Hoiem et al. [18] in 2007. Their paper

was about supervised part-based object recognition, an extension

of the 2D LayoutCRF work by Winn & Shotton [39]. The rel-

evant paragraph in [18] (p.6) mixes binary and multi-label vari-

ables in a way such that we are unsure of the exact method of

proof/implementation, but the basic idea seems analogous. Our

paper studied label costs from a general perspective, including dis-

cussion of multiple algorithms, optimality bounds, extensions, and

fast special cases. Our work on these algorithms was inspired by

an array of generic model-fitting applications in vision that benefit

from label costs, e.g. geometric model fitting [35], rigid motion

estimation [26, 36], MDL-based segmentation [42], finite mixture

models [4].

A. Optimality proof

Proof of Theorem 1. The proof idea follows Theorem 6.1

of [7]. Let us fix some α ∈ L and let

Pα
def
=
{
p ∈ P : f∗p = α

}
. (30)

We can produce a labeling fα within one α-expansion move

from f̂ as follows:

fα
p =

{

α if p ∈ Pα

f̂p otherwise.
(31)

Since f̂ is a local optimum w.r.t. expansion moves we have

E(f̂) ≤ E(fα). (32)

Let E(·)|S denote a restriction of the summands of en-

ergy (?) to only the following terms:

E(f)|S =
∑

p∈S
Dp(fp) +

∑

pq∈S
Vpq(fp, fq).

We separate the unary and pairwise terms of E(f) via inte-

rior, exterior, and boundary sets with respect to pixels Pα:

Iα = Pα ∪ { pq ∈ N : p ∈ Pα, q ∈ Pα }

Oα = P \ Pα ∪ { pq ∈ N : p 6∈ Pα, q 6∈ Pα }

Bα = { pq ∈ N : p ∈ Pα, q 6∈ Pα } .

The following facts now hold:

E(fα)|Iα = E(f∗)|Iα (33)

E(fα)|Oα = E( f̂ )|Oα (34)

E(fα)|Bα ≤ cE(f∗)|Bα . (35)

Equation (35) holds because for any pq ∈ Bα we have

V (fα
p , f

α
q ) ≤ cV (f∗p , f

∗
q ).

Let EH denote the label cost terms of energy E. Using

(33), (34) and (35) we can rewrite (32) as

E( f̂ )|Iα + E( f̂ )|Bα +EH( f̂ ) (36)

≤ E(fα)|Iα + E(fα)|Bα + EH(fα) (37)

≤ E(f∗)|Iα + cE(f∗)|Bα + EH(fα) (38)

Depending on f̂ we can bound EH(fα) by

EH(fα) ≤ EH(f̂) +







∑

L⊆L\L̂
α∈L

hL if α ∈ L∗

0 otherwise.

(39)

where sets L∗ and L̂ contain the unique labels in f∗ and f̂
respectively.

To bound the total energy we sum expressions (36)

and (38) over all labels α ∈ L∗ to arrive at the following:
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∑

α∈L∗

(

E( f̂ )|Iα + E( f̂ )|Bα

)

(40)

≤
∑

α∈L∗

(

E(f∗)|Iα +cE(f∗)|Bα

)

+
∑

L⊆L\L̂

hL|L∩L
∗|.

Observe that, for every pq ∈ B =
⋃

α∈LB
α, the term

Vpq(f̂p, f̂q) appears twice on the left side of (40), once for

α = f∗p and once for α = f∗q . Similarly every V (f∗p , f
∗
q )

appears 2c times on the right side of (40). Therefore equa-

tion (40) can be rewritten as

E(f̂) ≤ E(f∗) + (2c− 1)EV (f∗) − E(f̂)|B (41)

+ EH(f̂) −EH(f∗) +
∑

L⊆L\L̂

hL|L∩L
∗|.

The above inequality is a tight a posteriori bound on

E(f̂) w.r.t. a specific local optimum f̂ and global opti-

mum f∗. Observe that

EH(f̂) − EH(f∗) +
∑

L⊆L\L̂

hL|L∩L
∗|

=
∑

L⊆L\L∗
L∩L̂6=∅

hL +
∑

L⊆L\L̂
L∩L∗6=∅

hL

(
|L∩L∗| − 1

)

≤
∑

L⊆L
hL|L|. (42)

Using (42) and the assumption Dp ≥ 0 we simplify (41) to

give a priori bound (10). �

B. Label costs as Dirichlet prior

The label costs in energy (23) help to avoid the inevitable

over-fitting by K-means when K is set too large. There is a

standard technique [4] to make EM similarly robust to over-

fitting: introduce a prior Pr(ω) that encourages each mixing

weight ωl to be small. This can be done with a Dirichlet

prior Pr(ω) = Dir(ω |α0) with 0 < α0 < 1. Since we must

have
∑
ωl = 1, the prior thus chooses a few large mixing

weights to explain the data.

We now show how, by making hl dependent on ωl, we

can can incorporate a Dirichlet-like prior on ω using our

energy (23). First consider this prior Pr(ω) when applied to

the weighted K-means posterior (20):

Pr(f, ω, θ |X) ∼
∏

p∈P
ωfp

·Pr(xp |θfp
)
∏

l∈L
ωα0−1

l . (43)

The negative-log is the sum of (22) and an extra term de-

pendent on ω:
(1−α0)

∑

l∈L
lnωl. (44)

So, with this prior, K-means can no longer estimate ω by

simply setting each ωl = Nl

|P| where Nl is the number of

fp = l in the labeling. Instead, we must find ω minimizing

∑

p∈P
− lnωfp

+ (1−α0)
∑

l∈L
lnωl

=
∑

l∈L
(1−α0−Nl)·lnωl (45)

subject to
∑
ωl = 1. Notice that for α0 < 1 and Nl ≤ 1,

this objective function is unbounded below so, in practice,

we must add constrains ωl ≥ ε to (45) where ε > 0 is

some constant lower bound on the mixing coefficients5. Us-

ing (45) to re-estimate ω for fixed f , the weightedK-means

algorithm can then optimize over this prior.

There is good reason, with this prior, to improve the seg-

mentation step in K-means. The naı̈ve way to re-estimate

f for fixed ω does not take the additive term (44) into ac-

count. If we could optimize over f and ω simultaneously,

even in some restricted sense, then our algorithm would be

strictly more powerful. Label costs allow (44) to be par-

tially optimized simultanously alongside f . Specifically, if

label l loses all support in f , then the corresponding change

in (44) is considered by our algorithm, unlike K-means.

To see how this works, suppose we are estimating f with

respect to current mixing coefficients ω′. Consider some

label l ∈ L that already has support (Nl > 0) in the current

labeling. If we hypothetically knew that Nl = 0 (i.e. label l
lost all support in f ) then the optimal ωl would be ε. So,

during the estimation step for f , we use a label cost hl that

encodes the drop in (44) if Nl becomes zero in f :

hl(ωl) = (1−α0) lnω′
l − (1−α0) ln ε

= (1−α0) ln

(
ω′

l

ε

)

. (46)

Since hl(ωl) ≥ 0 the algorithms from Section 2 apply. We

can thereby optimize simultaneously over f and ω such that

each ωl makes a discrete jump from ω′
l to ε if it loses support

in the labeling.

The fact that ω is not normalized during this step is not

a problem when α0 < 1. This is because an expansion

move can only over-estimate the true cost of any move, and

therefore can never increase the energy. The algorithms in

Section 2 along with (46) are a strict improvement in the

sense that they can jump out of local minima that a naı̈ve

algorithm could not.
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