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Local Submodularization
for Binary Pairwise Energies

Lena Gorelick, Yuri Boykov, Olga Veksler, Ismail Ben Ayed, Andrew Delong

Abstract—Many computer vision problems require optimization of binary non-submodular energies. We propose a general
optimization framework based on local submodular approximations (LSA). Unlike standard LP relaxation methods that linearize the
whole energy globally, our approach iteratively approximates the energy locally. On the other hand, unlike standard local optimization
methods (e.g., gradient descent or projection techniques) we use non-linear submodular approximations and optimize them without
leaving the domain of integer solutions. We discuss two specific LSA algorithms based on trust region and auxiliary function principles,
LSA-TR and LSA-AUX. The proposed methods obtain state-of-the-art results on a wide range of applications such as binary
deconvolution, curvature regularization, inpainting, segmentation with repulsion and two types of shape priors. Finally, we discuss a
move-making extension to the LSA-TR approach. While our paper is focused on pairwise energies, our ideas extend to higher-order
problems. The code is available online.

Index Terms—Discrete optimization, graph cuts, trust region, auxiliary functions, local submodularization.
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1 INTRODUCTION

W E address a general class of binary pairwise non-
submodular energies, which are widely used in applica-

tions like segmentation, stereo, inpainting, deconvolution, and
many others. Without loss of generality, the corresponding binary
energies can be transformed into the form1

E(S) = STU + STMS, S ∈ {0, 1}Ω (1)

where S = (sp ∈ {0, 1} | p ∈ Ω) is a vector of binary indicator
variables defined on pixels p ∈ Ω, vector U = (up ∈ R | p ∈ Ω)
represents unary potentials, and symmetric matrix M = (mpq ∈
R | p, q ∈ Ω) represents pairwise potentials. Note that in many
practical applications matrix M is sparse since elements mpq = 0
for all non-interacting pairs of pixels. We seek solutions to the
following integer quadratic optimization problem

min
S∈{0,1}Ω

E(S). (2)

When energy (1) is submodular, i.e., mpq ≤ 0 ∀(p, q), globally
optimal solution for (2) can be found in a low-order polynomial
time using graph cuts [1]. The general non-submodular case of
problem (2) is NP hard.

1.1 Standard linearization methods

Integer quadratic programming is a well-known challenging class
of optimization problems with extensive literature in the combi-
natorial optimization community, e.g., see [1], [2], [3]. It often
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1. Note that such transformations are up to a constant, see Sec. 3.1.
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Fig. 1. Standard linearization approaches for (1)-(2). Black dots are
integer points and ∗ corresponds to the global optimum of (2). Colors
in (b) show iso-levels of the quadratic energy (1). This energy can be
linearized by introducing additional variables and linear constraints, see
a schematic polytope in (a) and [6]. Vector ∇E is the gradient of the
global linearization of (1) in (a) and the gradient of the local linear
approximation of (1) at point S0 in (b).

appears in computer vision where it can be addressed with
many methods including spectral and semi-definite programming
relaxations, e.g., see [4], [5].

Methods for solving (2) based on LP relaxations, e.g., QPBO
[7] and TRWS [8], are considered among the most powerful in
computer vision [9]. They approach integer quadratic problem
(2) by global linearization of the objective function at a cost
of introducing a large number of additional variables and linear
constraints. These methods attempt to optimize the relaxed LP or
its dual. However, the integer solution can differ from the relaxed
solution circled in Fig.1(a). This is a well-known integrality gap
problem. Most heuristics for extracting an integer solution from
the relaxed solution have no a priori quality guarantees.

Our work is more closely related to local linearization tech-
niques for approximating (2), e.g., parallel ICM, IPFP [10], and
other similar methods [11]. Parallel ICM iteratively linearizes
energy E(S) around current solution S0 using Taylor expansion
and makes a step by computing an integer minimizer Sint of
the corresponding linear approximation, see Fig.1(b). However,
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similarly to Newton’s methods, this approach often gets stuck
in bad local minima by making too large steps regardless of
the quality of the approximation. IPFP attempts to escape such
minima by reducing the step size. It explores the continuous line
between integer minimizer Sint and current solution S0 and finds
optimal relaxed solution Srlx with respect to the original quadratic
energy. Similarly to the global linearization methods, see Fig.1(a),
such continuous solutions give no quality guarantees with respect
to the original integer problem (2).

1.2 Overview of submodularization

Linearization is a popular approximation approach to integer
quadratic problem (1)-(2), but it often requires relaxation leading
to the integrality gap problem. We propose a different approxi-
mation approach that we call submodularization. The main idea
is to use submodular approximations of energy (1). We propose
several approximation schemes that keep submodular terms in (1)
and linearize non-submodular potentials in different ways leading
to different optimization algorithms. Standard truncation of non-
submodular pairwise terms2 and some existing techniques for
high-order energies [12], [13], [14], [15] can be seen as submod-
ularization examples, as discussed later. Common properties of
submodularization methods is that they compute globally optimal
integer solution of the approximation and do not leave the domain
of discrete solutions avoiding integrality gaps. Sumbodularization
can be seen as a generalization of local linearization methods since
it uses more accurate higher-order approximations.

One way to linearize non-submodular terms in (1) is to com-
pute their Taylor expansion around current solution S0. Taylor’s
approach is similar to IPFP [10], but they linearize all terms in-
cluding submodular ones. In contrast to IPFP, our overall approx-
imation of E(S) at S0 is not linear; it belongs to a more general
class of submodular functions. Such non-linear approximations
are more accurate while still permitting efficient optimization in
the integer domain.

We also propose a different mechanism for controlling the step
size. Instead of exploring relaxed solutions on continuous interval
[S0, Sint] in Fig.1, (b), we obtain discrete candidate solution
S by minimizing local submodular approximation over {0, 1}Ω
under additional distance constraint ||S − S0|| < d. Thus, our
approach avoids integrality gap issues. For example, even linear
approximation model in Fig.1, (b) can produce solution S∗ if
Hamming distance constraint ||S − S0|| ≤ 1 is imposed. This
local submodularization approach to (1)-(2) fits a general trust
region framework [4], [12], [16], [17]. We call it LSA-TR.

Another way to linearize the non-submodular terms in (1) is
based on the general auxiliary function framework [13], [15],
[18]3. Instead of Taylor expansion, non-submodular terms in
E(S) are approximated by linear upper bounds specific to current
solution S0. Combining them with submodular terms in E(S)
gives a submodular upper-bound approximation, a.k.a. an auxil-
iary function, for E(S) that can be globally minimized within the
integer domain. This approach does not require to control the step
size as the global minimizer of an auxiliary function is guaranteed
to decrease the original energyE(S). We refer to this type of local
submodular approximation approach as LSA-AUX.

2. Truncation is known to give low quality results, e.g. Fig.4, Tab.1.
3. Auxiliary functions are also called surrogate functions or upper bounds.

The corresponding approximate optimization technique is also known as the
majorize-minimize principle [18].

Recently both trust region [4], [16], [17] and auxiliary function
[18] frameworks proved to work well for optimization of energies
with high-order regional terms [12], [15]. They derive specific
linear [12] or upper bound [15] approximations for non-linear
cardinality potentials, KL and other distances between segment
and target appearance models. To the best of our knowledge, we
are the first to develop trust region and auxiliary function methods
for integer quadratic optimization problems (1)-(2).

In the context of multilabel energy minimization, there is a
series of works [19], [20], [21] that overestimate the intractable
energy with a tractable modified version within a move making
framework. Interestingly, instead of using linear (modular) upper
bounds as in [13], [15], they change pairwise or higher-order
terms to achieve a submodular upper bound. Their approach is
iterative due to the move-making strategy for multi-label energy
optimization, and would converge in a single step if reduced to
our binary energy. In contrast, our approach is designed for binary
energies and is iterative by definition.

In the context of binary high-order energies, more related to
our to work are the auxiliary functions proposed in [13], [15]. In
[15], Jensen inequality was used to derive linear upper bounds for
several important classes of high-order terms that gave practically
useful results. Their approach is not directly applicable to our
energy, as it is not clear which continuous function to use in the
Jensen inequality for our discrete pairwise energy.

The work in [13] is most related to ours. They divide the
energy into submodular and supermodular parts and replace the
latter with a certain permutation-based linear upper-bound. The
corresponding auxiliary function allows polynomial-time solvers.
However, experiments in [14] (Sec. 3.2) demonstrated limited
accuracy of the permutation-based bounds [13] on high-order
segmentation problems. Our LSA-AUX method is first to ap-
ply auxiliary function approach to arbitrary (non-submodular)
pairwise energies. We discuss possible linear upper bounds for
pairwise terms and study several specific cases. One of them
corresponds to the permutation bounds [13] and is denoted by
LSA-AUX-P. Recently [22] propose a generalization of [13] for
higher order binary energies. In the pairwise case, their approach
is equivalent to LSA-AUX-P.

In [23] they relax the upper-bound condition and replace it
with a family of pseudo-bounds, which can better approximate the
original energy. According to their evaluation, LSA-TR performs
better than their approach in most cases.

Our contributions can be summarized as follows:
• A general submodularization framework for solving in-

teger quadratic optimization problems (1)-(2) based on
local submodular approximations (LSA). Unlike global
linearization methods, LSA constructs an approximation
model without additional variables. Unlike local lineariza-
tion methods, LSA uses a more accurate approximation.

• In contrast to the majority of standard approximation
methods, LSA works strictly within the domain of discrete
solutions and requires no rounding.

• We develop move making extension to the LSA approach,
which can perform better on difficult energies.

• We propose a novel Generalized Compact shape prior that
requires optimization of binary non-submodular energy.

• State-of-the-art results on a wide range of applications.
Our LSA algorithms outperform QPBO, LBP, IPFP,
TRWS, its latest variant SRMP, and other standard tech-
niques for (1)-(2).
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2 DESCRIPTION OF LSA ALGORITHMS

In this section we discuss our framework in detail. Section 2.1
derives local submodular approximations and describes how to
incorporate them in the trust region framework. Section 2.2 briefly
reviews auxiliary function framework and shows how to derive
local auxiliary bounds.

2.1 LSA-TR

Trust region methods are a class of iterative optimization algo-
rithms. In each iteration, an approximate model of the optimization
problem is constructed near the current solution S0. The approx-
imation is assumed to be accurate only within a small region
around the current solution called “trust region”. The approximate
model is then globally optimized within the trust region to obtain
a candidate solution. This step is called trust region sub-problem.
The size of the trust region is adjusted in each iteration based
on the quality of the current approximation. For a review of TR
framework see [17].

Below we provide details of our trust region approach to
the binary pairwise energy optimization (see pseudo-code in
Algorithm 1). The goal is to minimize E(S) in (1). This energy
can be decomposed into submodular and supermodular parts
E(S) = Esub(S) + Esup(S) such that

Esub(S) = STU + STM−S

Esup(S) = STM+S

where matrix M− with negative elements m−pq ≤ 0 represents
the set of submodular pairwise potentials and matrix M+ with
positive elements m+

pq ≥ 0 represents supermodular potentials.
Given the current solution St energy E(S) can be approximated
by submodular function

Et(S) = Esub(S) + STUt + const (3)

where Ut = 2M+St. The last two terms in (3) are the first-order
Taylor expansion of supermodular part Esup(S).

While the use of Taylor expansion may seem strange in the
context of functions of integer variables, Fig. 2, (a,b) illustrates its
geometric motivation. Consider individual pairwise supermodular
potentials f(x, y) in

Esup(S) =
∑
pq

m+
pq · spsq =

∑
pq

fpq(sp, sq).

Coincidentally, Taylor expansion of each relaxed supermodular
potential f(x, y) = α·xy produces a linear approximation (planes
in b) that agrees with f at three out of four possible discrete
configurations (points A,B,C,D).

The standard trust region sub-problem is to minimize approx-
imation Et within the region defined by step size dt

S∗ = argmin
||S−St||<dt

Et(S). (4)

Hamming, L2, and other useful metrics ||S − St|| can be repre-
sented by a sum of unary potentials [24]. However, optimization
problem (4) is NP-hard even for unary metrics4. One can solve
Lagrangian dual of (4) by iterative sequence of graph cuts as
in [25], but the corresponding duality gap may be large and the
optimum for (4) is not guaranteed.

4. By a reduction to the balanced cut problem.

Instead of (4) we use a simpler formulation of the trust
region subproblem proposed in [12]. It is based on unconstrained
optimization of submodular Lagrangian

Lt(S) = Et(S) + λt · ||S − St|| (5)

where parameter λt controls the trust region size indirectly. Each
iteration of LSA-TR solves (5) for some fixed λt and adaptively
changes λt for the next iteration (Alg.1 line 27), as motivated
by empirical inverse proportionality relation between λt and dt
discussed in [12].

Once a candidate solution S∗ is obtained, the quality of the
approximation is measured using the ratio between the actual and
predicted reduction in energy. Based on this ratio, the solution is
updated in line 24 and the step size (or λ) is adjusted in line
27. It is common to set the parameter τ1 in line 24 to zero,
meaning that any candidate solution that decreases the actual
energy gets accepted. The parameter τ2 in line 27 is usually set
to 0.25 [17]. Reduction ratio above this value corresponds to good
approximation model allowing increase in the trust region size.

Algorithm 1: GENERAL TRUST REGION APPROACH

1 Initialize t = 0, St = Sinit, λt = λinit, convergedFlag = 0
2 While !convergedFlag
3 //Approximate E(S) around St

4 Et(S) = Esub(S) + STUt as defined in (3)
5 //Solve Trust Region Sub-Problem
6 S∗ ←− argminS∈{0,1}Ω Lt(S) // as defined in (5)
7 //Evaluate Reduction in Energy
8 P = Et(St)− Et(S

∗) //predicted reduction in energy
9 R = E(St)− E(S∗) //actual reduction in energy

10 If P = 0 // meaning S∗ = St and λ > λmax
11 //Try smallest discrete step possible
12 λt ←− λmax
13 //Solve Trust Region Sub-Problem
14 S∗ ←− argminS∈{0,1}Ω Lt(S) // as defined in (5)
15 //Evaluate Reduction in Energy
16 P = Et(St)− Et(S

∗) //predicted reduction in energy
17 R = E(St)− E(S∗) //actual reduction in energy
18 //Update current solution

19 St+1 ←−
{
S∗ if R/P > τ1
St otherwise

20 //Check Convergence
21 convergedFlag←− (R ≤ 0)
22 Else
23 //Update current solution

24 St+1 ←−
{
S∗ if R/P > τ1
St otherwise

25 End
26 //Adjust the trust region

27 λt+1 ←−
{
λt/α if R/P > τ2
λt · α otherwise

28 End

In each iteration of the trust region, either the energy decreases
or the trust region size is reduced. When the trust region is so
small that it does not contain a single discrete solution, namely
S∗ = St (Line 10), one more attempt is made using λmax, where
λmax = sup {λ|S∗ 6= St} (see [12]). If there is no reduction in
energy with smallest discrete step λmax (Line 21), we are at a local
minimum [26] and we stop.

2.2 LSA-AUX
Bound optimization techniques are a class of iterative optimiza-
tion algorithms constructing and optimizing upper bounds, a.k.a.
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(a) Supermodular potential  α ·xy (b)  “Taylor” based local linearization (c) Upper bound linearization 

Fig. 2. Local linearization of supermodular pairwise potential f(x, y) = α · xy for α > 0. This potential defines four costs f(0, 0) = f(0, 1) =
f(1, 0) = 0 and f(1, 1) = α at four distinct configurations of binary variables x, y ∈ {0, 1}. These costs can be plotted as four 3D points A, B, C, D
in (a-c). We need to approximate supermodular potential f with a linear function v · x+w · y+ const (plane or unary potentials). LSA-TR: one way
to derive a local linear approximation is to take Taylor expansion of f(x, y) = α · xy over relaxed variables x, y ∈ [0, 1], see the continuous plot in
(a). At first, this idea may sound strange since there are infinitely many other continuous functions that agree with A, B, C, D but have completely
different derivatives, e.g., g(x, y) = α · x2√y. However, Taylor expansions of bilinear function f(x, y) = α · xy can be motivated geometrically. As
shown in (b), Taylor-based local linear approximation of f at any fixed integer configuration (i, j) (e.g., . blue plane at A, green at B, orange at C,
and striped at D) coincides with discrete pairwise potential f not only at point (i, j) but also with two other closest integer configurations. Overall,
each of those planes passes exactly through three out of four points A, B, C, D. LSA-AUX: another approach to justify a local linear approximation
for non-submodular pairwise potential f could be based on upper bounds passing through a current configuration. For example, the green or orange
planes in (b) are the tightest linear upper bounds at configurations (0, 1) and (1, 0), correspondingly. When current configuration is either (0, 0) or
(1, 1) then one can choose either orange or green plane in (b), or anything in-between, e.g., the purple plane passing though A and D in (c).

auxiliary functions, for energy E. It is assumed that those bounds
are easier to optimize than the original energy E. Given a current
solution St, the function At(S) is an auxiliary function of E if it
satisfies the following conditions:

E(S) ≤ At(S) (6a)

E(St) = At(St) (6b)

To approximate minimization of E, one can iteratively minimize
a sequence of auxiliary functions:

St+1 = arg min
S

At(S) , t = 1, 2, . . . (7)

Using (6a), (6b), and (7), it is straightforward to prove that the
solutions in (7) correspond to a sequence of decreasing energy
values E(St). Namely,

E(St+1) ≤ At(St+1) ≤ At(St) = E(St).

The main challenge in bound optimization approach is design-
ing an appropriate auxiliary function satisfying conditions (6a) and
(6b). However, in case of integer quadratic optimization problem
(1)-(2), it is fairly straightforward to design an upper bound for
non-submodular energy E(S) = Esub(S) + Esup(S). As in
Sec.2.1, we do not need to approximate the submodular part Esub

and we can easily find a linear upper bound for Esup as follows.
Similarly to Sec.2.1, consider supermodular pairwise poten-

tials f(x, y) = α · xy for individual pairs of neighboring pixels
according to

Esup(S) =
∑
pq

m+
pq · spsq =

∑
pq

fpq(sp, sq) (8)

where each fpq is defined by scalar α = m+
pq > 0. As shown

in Fig. 2, (b,c), each pairwise potential f can be bound above by
linear function u(x, y)

f(x, y) ≤ u(x, y) := v · x+ w · y

for some positive scalars v and w. Assuming current solution
(x, y) = (xt, yt), the table below specifies linear upper bounds
(planes) for four possible discrete configurations

(xt, yt) upper bound u(x, y) plane in Fig.2(b,c)
(0,0) α

2 x+ α
2 y purple

(0,1) αx green
(1,0) αy orange
(1,1) α

2 x+ α
2 y purple

We denote the approach that uses bounds in the table above
as LSA-AUX. As clear from Fig.2, (b,c), there are many other
possible linear upper bounds for pairwise terms f . Interestingly,
the “permutation” approach to high-order supermodular terms in
[13] reduces to linear upper bounds for f(x, y) where each config-
uration (0,0) or (1,1) selects either orange or green plane randomly
(depending on a permutation). We denote permutation based upper
bounds LSA-AUX-P. Our tests showed inferior performance of
such bounds for pairwise energies compared to LSA-AUX on most
applications. The upper bounds using purple plane for (0,0) and
(1,1), as in the table, work better in practice.

Summing upper bounds for all pairwise potentials fpq in (8)
using linear terms in this table gives an overall linear upper bound
for supermodular part of energy (1)

Esup(S) ≤ STUt (9)

where vector Ut = {utp|p ∈ Ω} consists of elements

utp =
∑
q

m+
pq

2
(1 + stq − stp)

and St = {stp|p ∈ Ω} is the current solution configuration for all
pixels. Defining our auxiliary function as

At(S) := STUt + Esub(S) (10)

and using inequality (9) we satisfy condition (6a)

E(S) = Esup(S) + Esub(S) ≤ At(S).

Since STt Ut = Esup(St) then our auxiliary function (10) also
satisfies condition (6b)

E(St) = Esup(St) + Esub(St) = At(St).
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Fig. 3. Binary deconvolution of an image created with a uniform 3 × 3
filter and additive Gaussian noise (σ ∈ {0.05, 0.1, 0.15, 0.2}). No length
regularization was used. We report mean energy (+/-2std.) and time as
a function of noise level σ. TRWS, SRMP and LBP are run for 5000
iterations.

Function At(S) is submodular. Thus, we can globally optimize it
in each iteration guaranteeing an energy decrease.

3 APPLICATIONS

Below we apply our method in several applications such as binary
deconvolution, segmentation with repulsion, curvature regulariza-
tion, inpainting and two different shape priors, one of which is a
novel contribution by itself. We report results for both LSA-TR
and LSA-AUX frameworks and compare to existing state of the
art methods such as QPBO [7], LBP [27], IPFP [10], TRWS and
SRMP [8] in terms of energy and running time5. For the sake
of completeness, and to demonstrate the advantage of non-linear
submodular approximations over linear approximations, we also
compare to a version of LSA-TR where both submodular and
supermodular terms are linearized, denoted by LSA-TR-L.

In the following experiments, all local approximation methods,
e.g., IPFP, LSA-AUX, LSA-AUX-P, LSA-TR, LSA-TR-L are
initialized with the entire domain assigned to the foreground. All
global linearization methods, e.g., TRWS, SRMP and LBP, are
run for 50, 100, 1000 and 5000 iterations. For QPBO results,
unlabeled pixels are shown in gray color. Running time is shown in
log-scale for clarity. Our preliminary experiments showed inferior
performance of the Hamming distance compared to Euclidean.
See example in Sec. 3.5. Therefore, we used L2 distance for all
the experiments below.

5. We used http://pub.ist.ac.at/∼vnk/software.html code for SRMP and
www.robots.ox.ac.uk/∼ojw code for QPBO, TRWS, and LBP. The correspond-
ing version of LPB is sequential without damping.
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QPBO QPBO-I LBP w/o repuls.

LSA-TR-L

IPFP

Pairwise
Potentials

Unary 
Potentials

Img

100 102
-300

-200

-100

0

100

200

Time

E
ne

rg
y

 

 

 

 

LBP
QPBO-I
IPFP
LSA-AUX-P
LSA-AUX
LSA-TR
TRWS
Lower Bound TRWS
SRMP
Lower Bound SRMP
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Fig. 4. Segmentation with repulsion and attraction. We used µfg=0.4,
µbg=0.6, σ=0.2 for appearance, λreg=100 and c=0.06. Repulsion po-
tentials are shown in blue and attraction - in red.

3.1 Energy Transformation

For some applications, instead of defining the energy as in (1), it
is more convenient to use the following form:

E(S) =
∑
p∈Ω

Dp(sp) +
∑

(p,q)∈N

Vpq(sp, sq), (11)

where Dp is the unary term, Vpq is the pairwise term and N is a
set of ordered neighboring pairs of variables. We now explain how
to transform the energy in (11) to the equivalent form in (1).

Transformation of the unary terms Dp results in a linear term
(i.e., vector) J = (jp|p ∈ Ω), where jp = Dp(1)−Dp(0).

Let the pairwise terms Vpq(sp, sq) be as follows:

sp sq Vpq
0 0 apq
0 1 bpq
1 0 cpq
1 1 dpq

Transformation of the pairwise terms Vpq results in two linear
terms H,K one quadratic term M and a constant. Term H
accumulates for each variable p all Vpq in which p is the first
argument. That is,

H = (hp|p ∈ Ω),where hp =
∑

(p,q)∈N

(cpq − apq).

Term K does the same for the second argument of Vpq . That is,

K = (kq|q ∈ Ω),where kq =
∑

(p,q)∈N

(bpq − apq).

We define quadratic termM in (1) asmpq = apq−bpq−cpq+dpq .
Letting U = J + H + K and M as defined above, it is easy

to show that the energy in (11) can be written in the form of (1)
up to a constant C =

∑
pDp(0) +

∑
(p,q)∈N apq .
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Fig. 5. Curvature regularizer [28] is more difficult to optimize when regularizer weight is high. We show segmentation results for λcurv = 0.1 (top
row), λcurv = 0.5 (middle row), λcurv = 2 (bottom row) as well as energy plots. We used µfg = 1, µbg = 0, λapp = 1.

3.2 Binary Deconvolution

Figure 3, (top-left) shows a binary image after convolution with a
uniform 3×3 combined with Gaussian noise (σ = 0.05). The goal
of binary deconvolution is to recover the original binary image.
The energy is defined as

E(S) =
∑
p∈Ω

(Ip −
1

9

∑
q∈Np

sq)
2 (12)

HereNp denotes the 3×3 neighborhood window around pixel
p and all pairwise interactions are supermodular. We did not use
length regularization, since it would make the energy easier to
optimize. Figure 3 compares the performance of LSA-TR and
LSA-AUX to standard optimization methods such as QPBO, LBP,
IPFP, TRWS and SRMP. In this case LSA-TR-L and LSA-TR
are identical since energy (12) has no submodular pairwise terms.
The bottom of Fig. 3 shows the mean energy as a function of
noise level σ. For each experiment the results are averaged over
ten instances of random noise. The mean time is reported for the
experiments with σ = 0.05.

3.3 Segmentation with Repulsion

In this section we consider segmentation with attraction and
repulsion pairwise potentials. Adding repulsion is similar to cor-
relation clustering [29] and multiway cut [30], where data points
either attract or repulse each other. Using negative repulsion in
segmentation can avoid the bias of submodular length regularizer
to short-cutting, whereby elongated structures are shortened to
avoid high length penalty. Figure 4 (top-left) shows an example

of an angiogram image with elongated structures. We use 16-
neighborhood system and the pairwise potentials are defined as
follows:

ω(p, q) =
−∆(p, q) + c

dist(p,q)
.

Here dist(p,q) denotes the distance between image pixels p and
q and ∆(p, q) is the difference in their respective intensities
(see pairwise potentials in Fig. 4, bottom-left). The constant c
is used to make neighboring pixels with similar intensities attract
and repulse otherwise. Being supermodular, repulsions potentials
make the segmentation energy more difficult to optimize, but are
capable to extract thin elongated structures. To demonstrate the
usefulness of “repulsion” potentials we also show segmentation
results with graph-cut a la Boykov-Jolly [31] where negative
pairwise potentials were removed/truncated (top-right).

3.4 Curvature

Below we apply our optimization method to curvature regular-
ization. We focus on the curvature model proposed in [28]. The
model is defined in terms of 4-neighborhood system and accounts
for 90 degrees angles. In combination with appearance terms, the
model yields discrete binary energy that has both submodular and
non-submodular pairwise potentials. Originally, the authors of [28]
proposed using QPBO for optimization of the curvature regular-
izer. We show that our method significantly outperforms QPBO
and other state-of-the-art optimization techniques, especially with
large regularizer weights.

First, we deliberately choose a toy example (white circle on a
black background, see Fig. 5), where we know what an optimal
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solution should look like. With the 4-neighborhood system, as
the weight of the curvature regularizer increases, the solution
should minimize the number of 90 degrees angles (corners) while
maximizing the appearance terms. Therefore, when the weight of
curvature regularizer is high, the solution should look more like a
square than a circle. Consider the segmentation results in Fig. 5.
With low curvature weight, λcurv = 0.1 , all compared methods
perform equally well (see top row). In this case appearance
data terms are strong compared to the non-submodular pairwise
terms. However, when we increase the curvature weight and set
λcurv = 0.5 or 2 there is a significant difference between the
optimization methods both in terms of the energy and the resulting
solutions (see Fig. 5 middle and bottom).

Next, we selected an angiogram image example from [28] and
evaluate the performance6 of the optimization methods with two
values of regularizer weight λcurv = 19 and λcurv = 21 (see
Fig. 6). Although the weight λ did not change significantly, the
quality of the segmentation deteriorated for all global linearization
methods, namely QPBO, TRWS, LBP. The proposed methods
LSA-TR and LSA-AUX seem to be robust with respect to the
weight of the supermodular part of the energy.

3.5 Chinese Characters Inpainting

Below we consider the task of in-painting in binary images of
Chinese characters, dtf-chinesechar [9]. We used a set of pre-
trained unary and pairwise potentials provided by the authors with
the dataset. While each pixel variable has only two possible labels,
the topology of the resulting graph and the non-submodularity of
its pairwise potentials makes this problem challenging. Figure 7
shows two examples of inpainting. Table 1 reports the performance
of our LSA-TR and LSA-AUX methods on this problem and
compares to other standard optimization methods reported in [9],
as well as, to truncation of non-submodular terms. LSA-TR is
ranked second, but runs four orders of magnitudes faster.

3.6 Segmentation of Multi-Region Objects

Many objects can be described by a combination of spatially
coherent and visually distinct regions. Such objects can often
be segmented using multi-label segmentation framework, where a
separate appearance-boundary model is maintained for each label.
Recently a multi-label segmentation model has been proposed
in [32] that uses a separate binary graph layer for each label
and allows encoding many useful geometric interactions between
different parts of an object. For example inclusion of an object
part within another part while enforcing a minimal margin around
the interior part is modeled using submodular pairwise interac-
tions between corresponding nodes in different layers. Exclusion
constraints are in general supermodular.

In this section we focus on one particular example of multi-part
model designed for segmentation of liver on an MRI image, see
Fig. 9, (a-left). The image contains one foreground object (liver)
with four distinct mutually exclusive interior parts (tumors). Below
we formally define the energy for our model using the form in (11).
To convert this energy to the form in (1) see details in Sec. 3.1.

Given an image with N pixels, we construct a graph with
five layers of binary variables. The layers correspond to liver

6. For QPBO, we only run QPBO-I and do not use other post-processing
heuristics as suggested in [28], since the number of unlabeled pixel might be
significant when the regularization is strong.

Alg.
Name

Mean
Runtime

Mean
Energy

#best
/100 Rank

MCBC 2053.89
sec

-49550.1 85 1

BPS (LBP)∗ 72.85 sec -49537.08 18 3
ILP 3580.93

sec
-49536.59 8 6

QPBO 0.16 sec -49501.95 0 8
SA NaN sec -49533.08 13 4
TRWS 0.13 sec -49496.84 2 7
TRWS-LF 2106.94

sec
-49519.44 11 5

Truncation 0.06 sec -16089.2 0 9
LSA-AUX 0.30 sec -49515.95 0 9
LSA-AUX-P 0.16 sec -49516.63 0 9
LSA-
TR(Euc.)

0.21 sec -49547.61 35 2

LSA-
TR(Ham.)

0.23 sec -49536.76 1 8

TABLE 1
Chinese characters in-painting database [9]. We tested three methods
(at the bottom) and compared with other techniques (above) reported

in [9]. * - To the best of our knowledge, BPS in [9] is the basic
sequential version of loopy belief-propagation without damping that we

simply call LBP in this paper.

(Fg), and four tumors (A, B, C, D). Each layer has N nodes and
each node has a corresponding binary variable. We use a standard
Potts regularization on each layer to account for boundary length
between object parts. In addition we employ pairwise inclusion
and exclusion constraints between the layers to enforce correct
geometric interactions between the different parts of the object, see
Fig. 8, (b). Finally we derive unary terms for the binary variables
so that they correspond to the correct multilabel appearance energy
term.

Each graph node p has three coordinates (rp, cp, lp) and a
corresponding binary variable sp. The first two coordinates denote
the row and column of the corresponding pixel in the image (top-
left corner as origin) and the last coordinate lp denotes the layer
of the node, lp ∈ {Fg,A,B,C,D}.

For length regularization, we use 8-neighborhood system
within each layer and the pairwise potentials are defined as
follows. Let p, q be neighboring nodes in some layer l ∈
{A,B,C,D}, then

V 1
p,q(sp, sq) = λPotts

−∆(p, q)

dist(p,q)
· [sp 6= sq].

Here dist(p,q) =
√

(rp − rq)2 + (cp − cq)2 denotes the distance
between the corresponding image pixels in the image domain,
∆(p, q) is the distance between in their respective colors in the
RGB color space and λPotts is the weight.

Next, we explain how to implement inclusion and exclusion
constraints, see Fig. 8, (b). Let p and q be two nodes corresponding
to the same pixel such that node p is in the liver (Fg) layer and
node q is in a tumor layer. That is (rq = rp)∧(cq = cp) and (lp =
Fg)∧(lq ∈ {A,B,C,D}). Inclusion pairwise potential V 2

p,q forces
any interior tumor part to be geometrically inside the foreground
object by penalizing configuration (0, 1) for the corresponding
nodes p, q. That is

V 2
p,q(sp, sq) = λsub ·

{
∞ if (sp, sq) = (0, 1)

0 otherwise.
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Fig. 6. Curvature regularizer [28]: we show segmentation results and energy plots for λcurv=19 (left), λcurv=21 (right).

LSA-TRInput Img Ground Truth

Fig. 7. Examples of Chinese characters inpainting.

The tumor parts are mutually exclusive, see Fig. 8, (b). Let p
and q be two nodes corresponding to the same image pixel but in
different tumor layers. That is (rq = rp)∧ (cq = cp) and lp 6= lq
where lp, lq ∈ {A,B,C,D}. Then the supermodular exclusion
pairwise potential V 3

p,q penalizes illegal configuration (1, 1). Each
pixel can only belong to one tumor. That is,

V 3
p,q(sp, sq) = λsup ·

{
∞ if (sp, sq) = (1, 1)

0 otherwise.

Since for each image pixel (r, c) we have five binary vari-
ables (one in each layer), there are 25 possible configurations of
labels for each quintuple. However, our inclusion and exclusion
constraints render most of the configurations illegal, i.e., having
infinite cost. Figure 8, (c) summarizes all legal configurations
for each quintuple of variables, their interpretation in terms of
image segmentation and the respective multilabel appearance
cost Dr,c(l). Below, we define the unary terms Dp in (11) for
our binary graph so that the binary energy corresponds to the
multilabel energy in terms of appearance cost. Let p = (r, c, l) be
a node in our graph and let Dr,c(l) be the multilabel appearance
term at image pixel (r, c) for label l. Then,

Dp(sp) =



Drp,cp(Fg) if lp = Fg ∧ sp = 1

Drp,cp(Bg) if lp = Fg ∧ sp = 0

Drp,cp(lp)−Drp,cp(Fg) if lp ∈ {A,B,C,D}
∧sp = 1

0 otherwise.

excludes

Bg

A
B C

D

Fg

A B

D

C

Bg

Fg

Five Binary Labels
per Pixel in 
Our Graph 

Img
Pixel
Label

Multilabel
Cost
D(r,c) (.)

Fg A B C D

0 0 0 0 0 Bg Dr,c(Bg)

1 0 0 0 0 Fg Dr,c(Fg)

1 1 0 0 0 A Dr,c (A)

1 0 1 0 0 B Dr,c (B)

1 0 0 1 0 C Dr,c (C)

1 0 0 0 1 D Dr,c (D)

Any other 
configuration

∞

(a)

(b) (c)

Fig. 8. Multi-part object model for liver segmentation: (a) schematic
representation of the liver containing four distinct and mutually excluding
tumors. (b) each part of the object is represented with a separate binary
layer in the graph. Each image pixel has a corresponding node in all five
layers, resulting in a quintuple (FG, A, B, C, D). Interactions between
corresponding nodes of different layers are shown with black solid lines
for inclusion and blue dashed lines for exclusion. (c) summarizes six
legal configurations for each pixel’s quintuple and the associated multi-
label cost. All other configurations have an infinite cost due to inclusion
or exclusion violations.

If each pixel’s quintuples is labeled with legal configuration, the
unary appearance term on our graph is equal to the multilabel
appearance term for image pixels.

Below we apply our multi-part object prior model in the task of
multi-label segmentation of liver with tumors on an MRI image.
Figure 9, (a) shows an input image containing one foreground
object (liver) with four distinct interior parts (tumors). User
scribbles are used to obtain appearance models for the liver and the
tumors and as hard constraints. The liver is scribbled with the blue
brush stroke and the tumors are scribbled with the green, cyan,
yellow and magenta. Background is scribbled with the red color.
While in theory our model has infinity constraints, in practice we
need to select a finite weight for our submodular and supermodular
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pairwise potentials. Here, we used λsub = λsup = 100 for the
inclusion and exclusion terms respectively and λPotts = 25. For
appearance we used histograms with 16 bins per color channel.

Figure 9, (b) shows segmentation results and compares differ-
ent methods. For each compared method we show the final image
segmentation, color coded as in the legend. We chose not to color
the background pixels red for clarity, but rather leave them light
gray. Dark gray pixels in QPBO denote pixels that were unlabeled
at least in one of the five layers.

Figure 9, (c-right) compares the methods in terms of energy
and the running time (shown in log-scale). The graph in (c-left)
zooms in on the most interesting part of the plot. All the compared
methods arrived at poor or very poor solutions that have violations
of inclusion and exclusion constraints. This is due to the large
number of the supermodular terms. LSA-TR achieves the lowest
energy and the best segmentation.

3.7 Generalized Compact Shape Prior

In this section we propose a novel shape prior that is formulated
as a multilabel energy and is subsequently reduced to a binary
non-submodular pairwise energy using reduction similar to that
in Sec. 3.6. Our new model generalizes compact shape prior
proposed in [33]. Compact shape prior is useful in industrial part
detection and medical image segmentation applications.

The compact shape prior in [33] assumes that an object can
be partitioned into four quadrants around a given object center,
provided by the user. Within each quadrant an object contour is
either a monotonically decreasing or increasing function in the
allowed direction for each quadrant. Figure 10, (a-top), shows an
example of an object (along with user provided center) that can be
segmented using the model in [33]. Allowed orientations for each
quadrant are shown with blue arrows.We propose a more general
model. It does not require user interaction, nor it assumes an object
center, allowing for a larger class of object shapes.

Instead of dividing the whole object into four quadrants, our
new model explicitly divides the background into four regions
as in Fig. 10, (a-bottom), corresponding to four labels: top-
left (TL), top-right (TR), bottom-left (BL), bottom-right (BR).
There is an additional label for the foreground object (Fg). Each
background label allows discontinuities only in certain orientation
as is illustrated with the blue arrows. For example, the red region
can have discontinuity only in the up-right orientation. Our model
includes the model proposed in [33] as a special case when the
transitions between different background labels are horizontally
and vertically aligned as in (a-bottom). However, our model is
more general because the discontinuities between the background
regions do not need to align. For example, the object in (b-top) can
be segmented using our model (b-bottom), but not the model in
[33]. Below we formally define the energy for our model using the
form in (11). To convert this energy to the form in (1) see details
in Sec. 3.1.

Given an image with N pixels, we construct a graph with
four binary layers: TL, TR, BL, BR. Each layer has N nodes
and each node has a corresponding binary variable. Each layer is
responsible for the respective region of the background and allows
discontinuities only in a certain direction. In addition, there are
also exclusion constraints between the layers to enforce a coherent
foreground object, see Fig. 10, (c).

Each graph node p has three coordinates (rp, cp, lp) and a
corresponding binary variable sp. The first two coordinates denote

the row and column of the corresponding pixel in the image (top-
left corner as origin) and the last coordinate denotes the layer of
the node, l ∈ {TL,TR,BL,BR}.

There are two types of pairwise potentials in our model. The
first type of potentials is defined between nodes within the same
layer. It maintains the allowed orientation of the corresponding
region boundary. For example, top-left layer TL allows switching
from label 0 to 1 in the right and upward directions. Formally,

V TL
pq(sp, sq) =

=


∞ if (sp, sq) = (1, 0) ∧ (rq = rp) ∧ (cq = cp + 1)

∞ if (sp, sq) = (1, 0) ∧ (rq = rp + 1) ∧ (cq = cp)

0 otherwise.

Similar intra-layer pairwise potentials are defined on the other
three layers.

The other type of pairwise potentials is defined between
corresponding nodes of different layers. They are responsible for
exclusion constraint between the different background labels, see
Fig. 10, (c). For example the red region (TL) in Fig. 10, (a-bottom)
cannot overlap any of the other background regions (TR, BL, BR).
Such pairwise potentials are super-modular.

Let p and q be two nodes corresponding to the same image
pixel but in different graph layers. That is (rq = rp) ∧ (cq =
cp) and lp 6= lq where lp, lq ∈ {TR,TL,BR,BL}. Then the
supermodular exclusion pairwise potential V ex

p,q penalizes illegal
configuration (0, 0). That is

V ex
pq(sp, sq) =

{
∞ if (sp, sq) = (0, 0)

0 otherwise.
(13)

To interpret the optimal solution on our graph in terms of
binary image segmentation, for each pixel we consider a quadruple
of corresponding binary variables on layers TR, TL, BR and
BL. We assign image pixel to foreground object (fg) if all its
corresponding graph nodes have label one, and to the background
(bg) otherwise, see table in Fig. 10, (d). As in [33], our model
can incorporate any unary term in (11) defined on image pixels,
e.g., appearance terms. We now define the corresponding unary
terms on the nodes of our four layers binary graph.

Let Dr,c(fg) and Dr,c(bg) be the costs of assigning image
pixel (r, c) to the foreground (fg) and background (bg) respec-
tively. For each image pixel (r, c) we have a set of four corre-
sponding graph nodes {p = (rp, cp, lp)|(rp = r) ∧ (cp = c)}.
All these nodes have the same unary term:

Dp(sp) =

{
Drp,cp(fg) if sp = 1

Drp,cp(bg) if sp = 0.

With the infinity constraints in our model, each image pixel (r, c)
can have only two possible label configurations for the correspond-
ing four graph nodes. It will either have three foreground and one
background labels, in which case the image pixel is assigned to
the background with a cost of 3 ·Dr,c(fg)+Dr,c(bg). Or, all four
nodes will have foreground labels, in which case the image pixel
is assigned to the foreground with the cost of 4 ·Dr,c(fg). In both
cases, each image pixel will pay the additional constant cost of
3 ·Dr,c(fg). This constant does not affect optimization.

Finally, we switch the meaning of zeros and ones for layers
TR and BL. Labels 0 and 1 mean background and foreground
in layers TR and BL and switch their meaning in layers TL
and BR. While the switch is not necessary, it reduces the total
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Fig. 9. Multi-part object model for liver segmentation - results and comparison. Top-left: input image containing one foreground object (liver) with
four distinct interior parts (tumors). Top-right: appearance models for the liver and the tumors are obtained from user scribbles. The liver is scribbled
with blue brush stroke and the tumors are scribbled with green, cyan, yellow and magenta. Background is scribbled with red color. For each method
we show the resulting segmentation, color coded as in legend shown in top-right. (We chose not to color the background pixels red for clarity). Dark
gray pixels in QPBO show pixels that were unlabeled at least in one of the layers.

number of supermodular terms V ex in (13) to the one third of the
original number. Note, that there is prior work on switching the
meaning of binary variables to obtain better optimization, e.g., [1],
[34], however there is no known algorithm for finding the optimal
switching of labels in energies that are not permuted-submodular.

Our model has strong regularizing properties as it does not
allow complex segmentation boundary. At the same time, due
to zero costs in our intra-layer potentials, our model does not
have a shrinking bias as opposed to the popular length based
regularization models. This is similar to the lack of shrinking bias

in convexity shape prior [35]. The trade-off is that our model does
not encourage alignment of the boundary with the image edges.

Below we apply our compact shape prior model in the task of
binary image segmentation. Figure 11, ( top-left) shows an exam-
ple of an input image with a hot-air balloon. Below we show user
scribbles and the resulting appearance terms. Blue colors denote
preference for the background and cyan-red colors - preference
for the foreground. Again, we replace infinity constraints of our
submodular and supermodular pairwise potentials with a finite
weight Here, we used λsub = 250 and λsup = 500 for the
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Fig. 10. Compact Shape Prior Illustration: (a-top) the model in [33],
(a-bottom) our multilabel model, (b-top) - an input silhouette that can
be modeled with our model but not with the model in [33] (see text
for details), (b-bottom) demonstrates how we split the image into five
regions in our new model, (c) schematic representation of the geometric
exclusion constraints between the layers of our graph for our model. (d)
unary terms for each layer used in our graph

submodular and supermodular terms respectively. To better illus-
trate the effect of using compact shape prior, in this experiment we
did not utilize hard constraints on user scribbles. The optimization
relies completely on the given appearance model and the compact
shape prior. For each compared method, we show the final image
segmentation along with the corresponding labeling on each of the
four layers: TL, TR, BR, BL (clock-wise from top-left).

Figure 11, (bottom) compares the methods in terms of energy
and the running time (shown in log-scale). Most of the methods
arrived at poor or very poor solutions that have violations of
monotonicity and coherence of the segment boundary. This is due
to the high weight and large number of the supermodular terms.
LSA-TR is the only method that could optimize such energy. It
achieved the lowest energy and the most satisfying result.

3.8 Trust Region with Expansion Moves
We now suggest a move making extension for the LSA algorithms
based on expansion moves [36]. While the extension is general,
here we focus on LSA-TR due to its superior performance com-
pared to LSA-AUX. We call this extension LSA-TR-EXP.

In move making optimization [36] one seeks a solution that is
optimal only within a restricted search space around the current
solution. Expansion moves restrict the search space in such a way
that approximation of supermodular terms is more accurate. This
is because many configurations for which our linear approximation
is not exact are ruled out.

Given binary label a ∈ {0, 1}, an a-expansion move allows
each binary variable sp to either stay unchanged or switch to label
a. Thus we have 0- and 1-expansion moves.

As described in Fig. 2 in each iteration of LSA-TR, each
pairwise supermodular term α · xy is linearized so that the
approximation coincides with the original energy term on current
configuration of (x, y) and two out of three remaining configura-
tions. The green line in Fig. 12 specifies approximation for each
of four possible current configurations (x, y).This approximation
is used to evaluate all possible new configurations. There are
four possible approximations are four possible new configurations,
yielding in total 16 cases, see table in Fig. 12, gray section.
LSA-TR computes approximation that is exact in twelve out of

sixteen cases. In contrast, during 0-expansion (pink section) or 1-
expansion (blue section), only nine out of sixteen cases are valid
moves. The advantage of the smaller search space is that the same
approximation is now accurate in eight out of nine possible cases.

Similarly to other move making algorithms, LSA-TR-EXP
starts with an initial solution and applies a sequence of 0- and 1-
expansion until convergence. Each a-expansion is optimized with
standard LSA-TR alg. 1. For simplicity, in a-expansion, we use
hard constraint to prevent variables currently labeled with a from
changing their label. More efficient implementation would exclude
variables that are currently labeled with a from optimization.

Below we focus on the squared curvature regularization model
proposed in [37]. The model is defined in terms of n × n neigh-
borhood system, where larger n corresponds to higher angular
resolution. In combination with appearance terms, the model
yields discrete binary energy that has both submodular and non-
submodular pairwise potentials. The weight of curvature term
relative to appearance term is controlled by parameter λcurv. In
[37] they show that LSA-TR outperforms all other currently avail-
able optimization methods for non-submodular binary energies.
Therefore, in this section we only compare LSA-TR with the
proposed move making LSA-TR-EXP.

For this application we selected a synthetic image example
where foreground object has an osculating contour. We vary the
weight λcurv and compare the performance of LSA-TR and LSA-
TR-EXP. Figure 13 shows the input image in top-left and the
comparison graph in top right. When the weight of supermodular
curvature terms increases, LSA-TR-EXP (red line) consistently
outperforms LSA-TR (blue line) when starting from the same
initial solution. LSA-TR-EXP-improve (green line) attempts and
often succeeds to improve the final solution of LSA-TR. The
energy of the initial solution for each λcurv is shown in black.

Figure. 13, bottom shows the final results of the three different
methods for three different values of λcurv. The red outline within
each image denotes the final solution. Blue, red and green frames
correspond to results of LSA-TR, LSA-TR-EXP and LSA-TR-
EXP-improve respectively.

4 OPTIMIZATION LIMITATIONS

The proposed LSA-TR and LSA-AUX methods belong to a more
general class of local iterative optimization and therefore can only
guarantee a local minimum at convergence, see Sec. 2.1 and 2.2.
Figure 14 demonstrates some sensitivity with respect to initial-
ization. The trivial initialization with all pixels in the foreground,
denoted by“init 1” and delineated by the red contour, leads to
a poor local minimum. Using the appearance based maximum
likelihood label per pixel as initialization, denoted by “init 2”,
results in a much lower optimum. From empirical observations,
we obtain better results starting with appearance based maximum
likelihood labels when possible.

5 CONCLUSIONS AND FUTURE WORK

We proposed two specific LSA algorithms based on trust region
and auxiliary function principles. Our methods obtain state-of-the-
art results on a wide range of applications that require optimization
of binary non-submodular energies. Our methods outperform
many standard techniques such as LBP, QPBO, and TRWS. In
addition, we proposed a move-making extension to the LSA-TR
approach. In the future, we plan to explore other variants of move
making algorithms in combination with LSA.
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LSA-AUX
E=0
T=3.38s

LSA-AUXP
E=0
T=2.86s

IPFP
E= -167540
T= 105s

LBP
E= -309556
T= 262s

QPBO
3.8% labeled 

QPBO-I
E= -77752
T=55.3s

SRMP
E= -316122
T=1118s

TRWS
E= -184754
T=253s

LSA-TR
E= -336486
T= 31s

Input Img

User Scribbles for 
Appearance

Appearance Terms

Fig. 11. Compact Shape Prior results and comparison with other methods. The left column shows input image, user scribbles and resulting
appearance terms. Red colors show preference to foreground and blue colors show preference to background. The remaining columns show for
each method the final image segmentation along with the corresponding labeling on each of the four layers in the graph. Gray color in QPBO results
denotes unlabeled pixels. In the bottom we compare the methods in terms of energy and the running time (shown in log-scale).

We also plan to research additional applications that can bene-
fit from efficient optimization of binary non-submodular pairwise
energies. For instance, our experiments show that our approach
can improve non-submodular α-expansion and fusion moves for
multilabel energies.

Moreover, while our paper focuses on pairwise interactions,
our approach naturally extends to high-order potentials that appear
in computer vision problems. We already successfully applied
LSA to optimization of convexity shape prior [35]. We further
plan to explore other high-order energies such as visibility and
silhouette consistency in multi-view reconstruction, connectivity
shape prior and absolute curvature regularization.
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[5] J. Keuchel, C. Schnörr, C. Schellewald, and D. Cremers, “Binary parti-
tioning, perceptual grouping, and restoration with semidefinite program-
ming,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 11, pp. 1364–1379, 2003. 1

[6] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential
families, and variational inference,” Foundations and Trends in Machine
Learning, vol. 1, no. 1-2, pp. 1–305, 2008. 1

[7] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, “Optimizing
binary MRFs via extended roof duality,” in IEEE conference on Com-
puter Vision and Pattern Recognition (CVPR), 2007, pp. 1–8. 1, 5

[8] V. Kolmogorov and T. Schoenemann, “Generalized seq. tree-reweighted
message passing,” arXiv:1205.6352, 2012. 1, 5

[9] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnorr, S. Nowozin,
D. Batra, S. Kim, B. X. Kausler, J. Lellmann, N. Komodakis, and
C. Rother, “A comparative study of modern inference techniques for
discrete energy minimization problem,” in IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2013, pp. 1328–1335. 1, 7

[10] M. Leordeanu, M. Hebert, and R. Sukthankar, “An integer projected
fixed point method for graph matching and map inference.” in Neural
Information Processing Systems (NIPS), 2009, pp. 1114–1122. 1, 2, 5

[11] W. Brendel and S. Todorovic, “Segmentation as maximum-weight inde-
pendent set,” in Neural Information Processing Systems (NIPS), 2010,
pp. 307–315. 1

[12] L. Gorelick, F. R. Schmidt, and Y. Boykov, “Fast trust region
for segmentation,” in IEEE conference on Computer Vision and
Pattern Recognition (CVPR), Portland, Oregon, June 2013, pp.
1714–1721. [Online]. Available: http://www.csd.uwo.ca/∼yuri/Abstracts/
cvpr13-ftr-abs.shtml 2, 3

[13] M. Narasimhan and J. A. Bilmes, “A submodular-supermodular proce-
dure with applications to discriminative structure learning,” in UAI, 2005,
pp. 404–412. 2, 4

[14] C. Rother, V. Kolmogorov, T. Minka, and A. Blake, “Cosegmentation of
Image Pairs by Histogram Matching - Incorporating a Global Constraint
into MRFs,” in Computer Vision and Pattern Recognition (CVPR), 2006,
pp. 993 – 1000. 2

[15] I. Ben Ayed, L. Gorelick, and Y. Boykov, “Auxiliary cuts for
general classes of higher order functionals,” in IEEE conference
on Computer Vision and Pattern Recognition (CVPR), Portland,
Oregon, June 2013, pp. 1304–1311. [Online]. Available: http:
//www.csd.uwo.ca/∼yuri/Abstracts/cvpr13-auxcut-abs.shtml 2

Input Image

λ=500

λ=1200

λ=1200

λ=1200λ=500

λ=500 λ=2000

λ=2000

λ=2000λ=2000

Fig. 13. Optimization of squared curvature model. Top-left: input image
with one foreground object. Top-right: Comparison of optimization ener-
gies as a function of increasing curvature weight λcurv . LSA-TR (blue
line) optimizes the energy starting from the maximum likelihood solution
based on appearance terms. We used normal distributionN (µ, σ2) with
(µ = 0, σ = 0.2) for the foreground and (µ = 1, σ = 0.2) for the
background respectively. We used 7 × 7 neighborhood for the angular
resolution. LSA-TR-EXP-improve (green line) attempts to improve the
final solution of LSA-TR using expansion moves. LSA-TR-EXP (red
line) performs expansion moves starting from the same initial solution
as LSA-TR. The energy of the initial solution is shown in black. In the
bottom of the figure we show final solution of the three methods for three
different values of λcurv . Blue, red and green frames correspond to re-
sults of LSA-TR, LSA-TR-EXP and LSA-TR-EXP-improve respectively.

[16] R. Fletcher, Practical Meth. of Opt. Wiley & Sons, 1987. 2
[17] Y. Yuan, “A review of trust region algorithms for optimization,” in Pro-

ceedings of the Fourth International Congress on Industrial & Applied
Mathematics (ICIAM), 1999. 2, 3

[18] K. Lange, D. R. Hunter, and I. Yang, “Optimization transfer using
surrogate objective functions,” Journal of Computational and Graphical
Statistics, vol. 9, no. 1, pp. 1–20, 2000. 2

[19] M. P. Kumar, O. Veksler, and P. H. Torr, “Improved moves for truncated
convex models,” J. Mach. Learn. Res., vol. 12, pp. 31–67, 2011. 2

[20] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake, “Digital tapestry,” in
Proc. IEEE Computer Vision and Pattern Recognition (CVPR), January
2005. 2

[21] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr, “Graph cut based
inference with co-occurrence statistics,” in Proceedings of the 11th
European Conference on Computer Vision: Part V, ser. ECCV’10, 2010,
pp. 239–253. 2

[22] T. Taniai, Y. Matsushita, and T. Naemura, “Superdifferential cuts for

http://www.csd.uwo.ca/~yuri/Abstracts/cvpr13-ftr-abs.shtml
http://www.csd.uwo.ca/~yuri/Abstracts/cvpr13-ftr-abs.shtml
http://www.csd.uwo.ca/~yuri/Abstracts/cvpr13-auxcut-abs.shtml
http://www.csd.uwo.ca/~yuri/Abstracts/cvpr13-auxcut-abs.shtml


IN IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), 2017 - TO APPEAR 14

E=62491 E=56028 E=56028

LSA-TR LSA-TR-EXP improve LSA-TR-EXP LSA-AUX

E=250618

E=38576 E=35210 E=31368 E=33412

Init 1

E=250618

E=67540

Init 2

Fig. 14. Local optimization of squared curvature might yield different
segmentation results for different initializations. First row - starting with
all pixels assigned to foreground, second row - starting with appearance
based ML labeling. Here we used λcurv = 1000.

binary energies,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, 2015, pp.
2030–2038. 2

[23] M. Tang, I. B. Ayed, and Y. Boykov, “Pseudo-bound optimization for
binary energies,” in Computer Vision - ECCV 2014 - 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V, 2014, pp. 691–707. 2

[24] Y. Boykov, V. Kolmogorov, D. Cremers, and A. Delong, “An integral
solution to surface evolution PDEs via Geo-Cuts,” in European Conf. on
Comp. Vision (ECCV), 2006. 3

[25] J. Ulen, P. Strandmark, and F. Kahl, “An efficient optimization frame-
work for multi-region segmentation based on Lagrangian duality,” IEEE
Transactions on Medical Imaging, vol. 32, no. 2, pp. 178–188, 2013. 3

[26] Y. Boykov, V. Kolmogorov, D. Cremers, and A. Delong, “An Integral
Solution to Surface Evolution PDEs via Geo-Cuts,” ECCV, LNCS 3953,
vol. 3, pp. 409–422, May 2006. 3

[27] J. Pearl, “Reverend bayes on inference engines: A distributed hierarchical
approach,” in National Conference on Artificial Intelligence, 1982, pp.
133–136. 5

[28] N. El-Zehiry and L. Grady, “Fast global optimization of curvature,” in
IEEE conference on Computer Vision and Pattern Recognition (CVPR),
no. 3257-3264, 2010. 6, 7, 8

[29] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” in Machine
Learning, vol. 56, no. 1-3, 2004, pp. 89–113. 6

[30] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr, “Higher-order
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[37] C. Nieuwenhuis, E. Töppe, L. Gorelick, O. Veksler, and Y. Boykov,
“Efficient squared curvature,” in 2014 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June
23-28, 2014, 2014, pp. 4098–4105. 11

Lena Gorelick received the BSc degree cum
laude in computer science from Bar-Ilan Univer-
sity in 2001, the MSc degree summa cum laude
in computer science and applied mathematics
from the Weizmann Institute of Science in 2004
and PhD degree in computer science and ap-
plied mathematics from the Weizmann Institute
of Science in 2009. From 2009 to 2014 she
was a postdoctoral fellow at computer science
department of the University of Western Ontario
and since 2014 she is a research scientist there.

Her current research interests lie in computer vision, specifically in
the area of shape analysis, image segmentation and discrete energy
minimization methods.

Olga Veksler received BS degree in mathemat-
ics and computer science from New York Uni-
versity in 1995 and a PhD degree from Cornell
University in 1999. She was a postdoctoral as-
sociate at NEC Research Institute. She is cur-
rently a full professor with Computer Science De-
partment University of Western Ontario. Her re-
search interests are energy minimization meth-
ods, graph algorithms, stereo correspondence,
motion, and segmentation. She is a receiver of
the early researcher award from Ontario Ministry

of Research and Innovation, NSERC-DAS award, and Helmholtz Prize
(Test of Time) awarded at the International Conference on Computer
Vision, 2011.

Yuri Boykov received ”Diploma of Higher Ed-
ucation” with honors at Moscow Institute of
Physics and Technology in 1992 and completed
his Ph.D. at the department of Operations Re-
search at Cornell University in 1996. He is cur-
rently a full professor at the department of Com-
puter Science at the University of Western On-
tario. His research is concentrated in the area of
computer vision and biomedical image analysis.
In particular, he is interested in problems of early
vision, image segmentation, restoration, regis-

tration, stereo, motion, model fitting, feature-based object recognition,
photo-video editing and others. He is a recipient of the Helmholtz Prize
(Test of Time) awarded at International Conference on Computer Vision
(ICCV), 2011 and Florence Bucke Science Award, Faculty of Science,
The University of Western Ontario, 2008.

Andrew Delong received the B.Math. degree
in computer science from the University of Wa-
terloo in 2003 and the M.Sc. and Ph.D. degree
in computer science from Western University in
2006 and 2011, respectively. He is a Postdoc-
toral Fellow at the University of Toronto. Prior to
entering academia he worked in the computer
graphics industry. His research interests include
machine learning, computer vision, combinato-
rial optimization, and computational biology. Dr.
Delong was awarded a NSERC Postgraduate

Scholarship, an NSERC Postdoctoral Fellowship, a Heffernan Commer-
cialization Fellowship, and a 2016 Invention of the Year Award from the
University of Toronto.

Ismail Ben Ayed received the PhD degree (with
the highest honor) in computer vision from the
INRS-EMT, Montreal in 2007. He is currently
an Associate Professor at the TS, University of
Quebec. Before joining the TS, he worked for 8
years as a research scientist at GE Healthcare,
London, ON. He also holds an adjunct professor
appointment at Western University (since 2012).
Ismails research interests include computer vi-
sion, optimization, machine learning and their
potential applications in medical image analysis.

He co-authored a book, over seventy peer-reviewed publications, mostly
published in the top venues in these subject areas, and six US patents.


