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Abstract
Geometric model fitting is a typical chicken-&-egg problem: data points

should be clustered based on geometric proximity to models whose un-
known parameters must be estimated at the same time. Most existing meth-
ods, including generalizations of RANSAC, greedily search for models with
most inliers (within a threshold) ignoring overall classification of points.

We formulate geometric multi-model fitting as an optimal labeling prob-
lem with a global energy function balancing geometric errors and regular-
ity of inlier clusters. Regularization based on spatial coherence (on some
near-neighbor graph) and/or label costs is NP hard. Standard combinatorial
algorithms with guaranteed approximation bounds (e.g. α-expansion) can
minimize such regularization energies over a finite set of labels, but they are
not directly applicable to a continuum of labels, e.g. R2 in line fitting. Our
proposed approach (PEARL) combines model sampling from data points
as in RANSAC with iterative re-estimation of inliers and models parame-
ters based on a global regularization functional. This technique efficiently
explores the continuum of labels in the context of energy minimization. In
practice, PEARL converges to a good quality local minima of the energy au-
tomatically selecting a small number of models that best explain the whole
data set. Our tests demonstrate that our energy-based approach significantly
improves the current state of the art in geometric model fitting currently
dominated by various greedy generalizations of RANSAC.
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(a) low noise (b) high noise

Figure 1: Blue dots are data points supporting 8 lines. In multi-model cases,
detecting models by maximizing the number of inliers may work for low levels
of noise (a). Higher noise levels require larger thresholds to detect inliers (b), but
then, some random model (red) may have far more inliers than the true model
(green). The integers show the number of model inliers for selected thresholds.

1 Introduction
We study a general case of geometric multi-model fitting problem where data
is a mixture of outliers with points supporting unspecified number of models of
some known type1. The majority of existing algorithms treat inlier classification
and parameter estimation as isolated subproblems. Typically, each model is se-
lected greedily by maximizing inliers within some fixed threshold. Popularized
by RANSAC [10], this approach works well when data supports a single model,
but we argue that it is fundamentally flawed in multi-model cases, see Fig.1.

RANSAC [10] is a well-known robust method for dealing with large number
of outliers when data supports only one model. The main idea is to generate a
number of model proposals by randomly sampling data points and then select one
model with the largest set of inliers (a.k.a. consensus set) with respect to some
fixed threshold. Many publications [24, 27, 30] proposed various generalizations
of RANSAC for multi-model fitting. For example, [24, 27] run RANSAC se-
quentially. Each iteration of these methods selects one randomly sampled model
maximizing either the number of inliers or some similar threshold-based measure.
Thereby identified model’s inliers are removed from the set of data points before

1For simplicity, we assume (parametric) models of same type. This is not essential.
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(a) fitting homographies (stereo) (b) estimation accuracy vs. λ

Figure 2: Motivating spatial regularization in geometric model fitting. In many
vision problems combining geometric errors and spatial coherence terms in energy
(3) can be justified generatively because clusters of inliers are generated by regular
objects (a). More over, spatial regularization can also be justified discriminatively.
Plot (b) shows an average deviation from the ground truth for optimal models
obtained in 100 randomly generated line-fitting tests as in Fig.4d. Each point in
this plot corresponds to some fixed smoothness parameter λ in (3). Clearly, spatial
coherence term significantly reduces estimation errors for some λ > 0 .

the next iteration looks for the next model. Other methods rely on different forms
of greedy clustering, e.g. J-linkage [21], explicitly or implicitly maximizing the
number of inliers within given threshold. One can also apply Hough transform to
formulate multi-model fitting as a clustering problem in the space of model pa-
rameters and use mean-shift [6] to identify the modes in this Hough space. It is
easy to see that this approach also greedily maximizes the number of inliers.

We argue that greedy maximization of inliers is a flawed criteria for detecting
a model if data supports multiple models. Figure 1 shows simple examples illus-
trating the main problem: if the level of noise is increased, any random model can
easily have a larger number of inliers than the true models. This also explains our
experimental results in Section 3 (Figs.7-9) demonstrating that existing methods
work reliably only for examples with very low levels of noise and clutter.

1.1 Towards energy optimization
This paper argues that geometric multi-model fitting is better formulated as an
optimization problem with a global energy functional describing the quality of



Tech.Rep.#735, CS dept., UWO, London, Canada, ISBN: 978-0-7714-2830-2 p.4

the overall solution. An energy function sets some specific “goodness” criterion
for different solutions and the sought optima can be seen as “objectively” the
best solution with respect to this criterion. There are many problems in computer
vision (e.g. segmentation, optical flows, stereo) routinely solved as optimiza-
tion problems. Yet, we know only a few examples in vision [24, 2, 16] where
some specific geometric multi-model fitting problems were approached using an
energy-based formulation. Perhaps, limitations of these methods (see Sec.1.2) re-
strict their general use and explain why many researchers in the community still
use greedy heuristics for geometric multi-model fitting problems. Our goal is a
general energy-based framework for geometric multi-model fitting problems with
efficient algorithms and wide applicability in computer vision.

There are several reasons why standard energy-based methods for mixture
models, such as EM or K-means, are not very common in geometric multi-model
fitting in vision. In general, these methods may not be robust to outliers/noise.
More importantly, they depend on a priori knowledge of the number of mod-
els. For example, EM framework in MLESAC [23] is fixed to 2 models (in-
liers/outliers), and [11] estimate known number of motions in cases with relatively
low noise2. Soft assignment of inliers by EM algorithm could be questioned as
a valid approach to geometric problems in vision where models must have spa-
tially non-overlapping support, see Fig.2a. K-means is also known to have a bias
towards equally dividing the points among the models.

In order to motivate our general approach, we first demonstrate some energy-
based interpretation of the basic RANSAC algorithm [10]. This interpretation is
limited to a simple case when data supports only one model (e.g. one line). The
main goal of RANSAC is to find parameters L of the model with the largest num-
ber of inliers within some threshold T . This can be represented as minimization
of energy

E(L) =
∑
p

||p− L||

where

||p− L|| =
{

0 if dist(p, L) < T
1 otherwise

and dist(p, L) is Euclidean distance between data point p and the nearest point on
model L. In this paper ||p − L|| will generally denote an arbitrary error measure
for point p and geometric model L. RANSAC’s energy E(L) counts inliers for

2From personal communications with A. Gruber.
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L using 0-1 measure ||p− L|| above. Typically, RANSAC also includes an addi-
tional step refining model parameters L by minimizing the sum of squared errors
for inliers. Thus, a more principled optimization-based formulation of RANSAC
leads to MSAC energy [23] using truncated Euclidean errors

||p− L|| =
{
dist2(p, L) if dist2(p, L) < T

T otherwise.

Note that RANSAC or MSAC optimize E(L) only over model parameters L and
inliers are identified implicitly from threshold T in the corresponding error mea-
sures ||p− L||.

Now assume that data supports multiple models. If the number of models is
known (say K) it could be possible to formulate geometric model-fitting as opti-
mization of energy E(L1, L2, ...LK) over K model parameters. As in the earlier
example with a single model, this approach needs some implicit assignment of
inliers to models. In multi-model case, however, this could be non-trivial. As
shown in Fig.3b, simple thresholding may assign a point to several models. Inter-
estingly, the EM framework for mixture models [3, 23, 11] corresponds to energy
E(L1, L2, ...LK). EM uses implicit “soft” classification of inliers computed in an
intermediate optimization step. Even though the standard version of EM algo-
rithm needs the number of models to be known, there are many generalizations
of EM that could be worth studying in the context of geometric applications in
vision. However, we prefer to focus on a fairly different energy formulation based
on explicit “hard” classification of inliers. As shown in Fig.2a, in many problems
in computer vision geometric models have non-overlapping spatial support, which
better corresponds to hard assignment of inliers.

We formulate geometric multi-model fitting as an optimal labeling problem.
Consider the general case when the data supports some unknown number of mod-
els. In principle, in this case each data point p can have a separate model Lp.
Model fitting could be formulated as minimization of energy E(L) over labeling
L = {Lp|p ∈ P} of points in data set P . Since labeling L explicitly assigns
models to data points, inliers support {p|Lp = L} for any specific model L does
not have to be implicitly deduced from some threshold.

If the only goal is to minimize the model fitting errors, as in the example with
one model, then

E(L) =
∑
p

||p− Lp||. (1)

where ||p − L|| could be an arbitrary error measure. Obviously, this functional
would not work well as the globally optimal solution will independently fit some
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(a) one line thresholding (b) three lines thresholding

Figure 3: Examples of inlier classification from thresholding. If data is known
to support one model (a) then thresholding identifies inliers (blue) for any model
without ambiguity. In case of 3 models (b), simple thresholding may not disam-
biguate inliers (red) between the models.

model Lp to each point p. This corresponds to overfitting: every point is assigned
some perfectly fit model and there are no outliers. It is clear that model fitting
errors (1) must be combined with some energy term regularizing the labeling.
One special “outlier” label could be added as well.

One form of regularization for (1) could be to fix the number of allowed dis-
tinct models/labels. Then, energy (1) corresponds to the standard K-means algo-
rithm. This approach, however, does not work if the exact number of models is
not known a priori. Recently, Li [16] proposed a soft form of regularization for
the number of models by combining geometric errors with the label count penalty

E(L) =
∑
p

||p− Lp||+ β · |LL| (2)

where LL is the set of distinct models (labels) assigned to points by labeling L.
Ten year earlier Torr [24] suggested even more general form of such regularization
where each distinct model (label) gets a penalty defined by the model’s complexity
instead of some fixed constant β. This approach allows to fit models of different
types. In general, geometric model-fitting using energies like (2) is a very inter-
esting idea, but specific algorithms for minimizing such energies proposed in [24]
and [16] are fairly limited, see Sec.1.2. We also argue that spatial regularity of
inliers is required in many typical vision problems, see Fig.2a.

This paper proposes two specific general forms of regularization in the context
of geometric model fitting. In particular, we consider spatial regularization (3)

E(L) =
∑
p

||p− Lp||+ λ ·
∑

(p,q)∈N

wpq · δ(Lp 6= Lq),
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where N is some neighborhood (e.g. edges on some near-neighbor graph), and a
more general combination of spatial smoothness with label counts (5)

E(L) =
∑
p

||p− Lp||+ λ ·
∑

(p,q)∈N

wpq · δ(Lp 6= Lq) + β · |LL|.

While spatial regularization is very common in vision in general, it is not com-
mon in geometric model fitting. In part, this could be explained by the fact that
spatial coherence is hard to justify generatively in applications where data points
are i.i.d. samples. But in computer vision, see Figure 2a, one can defend genera-
tive models of spatial regularity. Figure 2b also suggests that spatial regularization
may work discriminatively even for i.i.d. data3.

Summary of contributions This work demonstrates significance of efficient
combinatorial optimization methods for a wide range of geometric applications in
computer vision. Surprisingly, such methods are overlooked in geometric model
fitting, even though they are very common in segmentation, dense stereo, optical
flows, and other problems. We believe that we contribute a new approach and
significant algorithmic ideas specific to general geometric multi-model fitting. We
see our two main contributions as follows:

• We propose a general practical energy-based framework for geometric model
fitting particularly suitable for a wide range of applications in vision. To
the best of our knowledge, energies (3) and (5) were not used for general
geometric model fitting problems in the past. We demonstrate conceptual
advantages and significant practical improvements over the state-of-the-art
methods on a large number of generic applications in vision (line/plane
fitting, homography estimation, rigid motion detection). In particular, we
argue against typical greedy heuristics currently dominating in geometric
model fitting and hope that our work would encourage a wider use of en-
ergy optimization methods well known in other areas of computer vision.

• Energies like (3) and (5) can be addressed with existing powerful combi-
natorial optimization techniques with guaranteed optimality bounds (e.g.
α-expansion [5]) only in cases of finite set of labels. This limits their use

3One can not expect spatial regularization to work well for i.i.d. data, in general. Line fitting
examples in Section 2 are a special case where it does work for i.i.d. points. We use these line
fitting examples only to illustrate the basic operations of our algorithm. The primary target of our
model fitting approach are applications in vision (Sec.3) where spatial coherence is well-founded.
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for geometric model fitting where the typical space of model parameters is a
continuum, e.g. R2 in line fitting. We propose a practical method (PEARL)
for efficiently exploring the continuum of labels (model parameters) in the
context of energy-based geometric model fitting.

Our approach alleviates dependence of many previous geometric model fitting
methods on thresholding. The proposed methods for optimizing energies (3) and
(5) work quite differently from greedy selection of models by the largest number
of inliers. Our approach is robust to high levels of noise and clutter. It automati-
cally computes on optimal set of labels/models with a good fit to data points.

In order to apply standard discrete optimization algorithms to energies (3) and
(5), we generate a large number of proposed labels (models) by sampling data
points as in RANSAC. The goal of this step is to prune the search space (the
continuum) of model parameters. As in RANSAC, the number of sampled mod-
els should be sufficiently large to guarantee with some level of confidence that
at least one sample was generated from inliers for each true model. Such finite
pool of labels is likely to contain good model candidates. However, in contrast
to RANSAC-style methods we rely on optimization of a global energy functional
to select some small subset of models from this large (but finite) pool of propos-
als. Exploration of the continuum of labels (model parameters) is further sig-
nificantly improved by iterating inlier segmentation for a finite set of labels and
re-estimation of these labels (model parameters) from their inliers. Both steps
minimize the same energy E(L) and correspond to a coordinate descent converg-
ing to a local minimum of the energy. Such iterative refinement of model parame-
ters and inlier classification allows to generate better solutions from a smaller set
of initial samples even in single model fitting, see Fig.6.

1.2 Related work
Our work proposes, justifies, and validates a wide class of regularization energies
and a powerful iterative optimization technique as a general framework for geo-
metric multi-model fitting particularly suitable in vision. Other geometric model
fitting works have used separate elements of our approach such as RANSAC-style
random sampling [24, 16] or EM-style iterations [2], but none have combined
them in a single optimization framework. We also use a more general form of reg-
ularization (5) than any earlier geometric fitting methods. Our experiments show
that our general energy-based approach beats many state-of-the-art algorithms in
this area. In other settings (segmentation, stereo) some elements of our framework
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have been used in various application-specific ways [29, 2, 20, 28].
Probably the earliest effort to formulate some general energy-based framework

for geometric model fitting in vision is due to Torr [24] who carefully justifies a
general version of energy like (2) from an information criterion. The specific
optimization algorithm in [24] was a greedy heuristic very similar to sequential
RANSAC also described in [27] a few years later. Figures 1 and 9 show that such
heuristics can generate solutions arbitrarily worse than good minima of the energy.

Birchfield & Tomasi [2] estimate affine geometric models in a way fairly spe-
cific to dense narrow base-line stereo. They combine photoconsistency of pixels
with spatial regularization (as in (3)) on a grid. The method is initialized from a
disparity map generated by another stereo algorithm. The most noticeable overlap
of our approach and [2] is iterative use of α-expansion and model re-estimation
steps. After [2] and [20] such EM-style optimization became fairly common for
different problems in vision. In contrast to [2], however, our framework is suit-
able for a significantly more general set of geometric problems. For example,
instead of photoconsistency we optimize geometric errors and combine them with
more general forms of regularization, e.g. (5). Our method is more concerned
with fitting to sparse data. Finally, we do not need to run other algorithms to ini-
tialize. Our experiments in Sec.3.1 show noticeable improvement of accuracy on
examples from [2].

Zabih & Kolmogorov [28] also use iterative optimization as in [2, 20] specif-
ically in the context of image segmentation. They use spatial regularization (as
in (3)) to cluster image pixels into spatially coherent segments with automatically
estimated color models. The color models are initialized in an application specific
way. In contrast, we work with a very different problem of geometric model fitting
studying more general regularization functional (5). In fact, our recent work [8]
with additional coauthors demonstrates that energy (5) may significantly improve
image segmentation results. Minimum description length (MDL) interpretation of
(5) is well known in segmentation literature for some time [15, 29].

The paper by Li [16] is probably the most closely related prior work. Similar
to [24], it formulates general geometric model fitting functional (2) and studies
it in the context of rigid motion estimation, which we also consider as one of
the applications in Sec.3.3. Instead of the greedy approach of [24], [16] uses
LP relaxation of (2). This could be slow. To speed up the method, [16] uses
several application specific heuristics to significantly prune the set of proposed
models. More importantly, [16] does not guarantee any optimality of the discrete
solution obtained after rounding and the quality of such optimization could be an
issue. These problems do not allow [16] to use EM-style iterative optimization
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that, in our experience, can significantly improve model fitting results. A better
optimization of energy (2) with some optimality guarantees is discussed in [8].

In this paper, we argue that (5) is generally a better energy for geometric model
fitting problems in vision. We found that per-label regularization term proposed
in [24, 16] is a practically useful addition to standard spatial regularization (3).
Fig.10 shows one illustrative example where penalty for using each distinct label
encourages the merging of isolated clusters supporting nearly identical models.
Similarly, the results on real motion detection sequences in Figure 19 fail to merge
spatially isolated background clusters into one motion if label counts are not a part
of the energy. To optimize the third term in energy (5) one can use a simple and
fast merging step in combination with standard α-expansion optimizing the first
two terms in the energy. This merging heuristic is discussed at the end of Sec.2.
Alternatively, [8] provides an extension of α-expansion algorithm that automati-
cally accounts for the third term in (5) incorporating it into each expansion step
as a high-order clique. The technical details of such extension is a subject of [8].
The main focus of this paper is to demonstrate that a general algorithmically solid
optimization approach to geometric model fitting with either (3) or (5) is a signifi-
cantly better alternative to greedy generalizations of RANSAC-style thresholding
currently dominant in geometric problems in vision.

The structure of our paper Section 2 presents our general method for fitting
multiple models to sparse data points. For simplicity, most of the details are ex-
plained in the context of energy (3). Energy (5) is introduced in the end of the
section. Section 3 provides evaluation on real data in narrow-base stereo, wide-
base stereo/reconstruction, and rigid motion estimation.

2 Our approach (PEARL)
This section described our algorithm for geometric model fitting in detail. For
simplicity, the main ideas are illustrated in the context of synthetic multi-line fit-
ting examples. Section 3 validates our approach for estimating affine transforma-
tions, homographies, and rigid motion models in the context of computer vision.

We use regularization labeling framework to assign models to data points.
Regularization energy can combine geometric fit errors with spatial smoothness
term (3) and a label count penalty (5). As long as the number of labels is finite (≤
10000 or so), such approach can be handled by graph-based optimization methods,
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e.g. a-expansion [5, 8]. In our case the labels are models described by n real-
valued parameters. Therefore, we should find a practical way to restrict the huge
search space of labels Rn. The first step is to propose a finite set of plausible
models (labels). In the next step each label is expanded to estimate its spatial
support, or to classify inliers. Once the inliers are fixed, the models (labels) can
be re-estimated by minimizing the geometric errors - the first term in our energy
functionals. As both expand and re-estimate are guaranteed to decrease the energy,
one can converge to a local minima by iterating over these two steps. One can also
iterate propose steps either by further sampling the data points, or by generating
some new proposed labels (models) from the currently supported models, e.g. by
merging them. Below we provide more details about our model-fitting algorithm
mostly in the context of energy (3). Energy (5) is introduced in the end of the
section.

2.1 Propose initial labels L0

First, our method uses random sampling of data points to propose an initial finite
set of models L0 ⊂ Rn, where n is the number of parameters describing each
model (n = 2 for lines and n = 6 for affine models). The idea of generating
models by sampling the data points is borrowed from RANSAC [10]. The re-
quired number of initial models |L0| is one of the parameters of RANSAC-based
methods. It depends on the number of data points, the number of outliers, the
number of estimated models, the minimum number of points requited to estimate
each model, and on desired level of confidence. The exact analysis for the case
of estimating a single model is given in [10]. Its adaptation to multi-model case
is in [27, 30]. The number of initial models |L0| for PEARL is analyzed in [14].
Our experiments suggest that in practice PEARL needs far fewer samples than the
theoretical estimate due to converging iterations that significantly improve proba-
bility of an accurate model reconstruction from rough initial guesses.

2.2 Energy formulation
Once initial finite set of proposed models L0 ⊂ Rn is known (see Fig.4(a)), we
can expand the models to estimate their spatial support. We use MRF-based
regularization framework and a-expansion optimization [5] to assign models to
data points. The set of current models in L0 is interpreted as a set of current
labels. Assume that P is a set of data points and that Lp ⊂ Rn is a label (model)
assigned to a given data point p ∈ P . Then, PEARL method estimates models
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(a) initial 25 model proposals (b) models & inliers (iteration 1)

(c) models & inliers (iteration 2) (d) at convergence (iteration 5)

Figure 4: Illustration of PEARL’s iterations. (a) proposals generated by random
sampling, (b-d) re-estimation of models and their inliers after several iterations of
expand and re-estimate steps for energy (3). Note that the algorithm can converge
to good model estimates from a small number of rough guesses.

and their spatial support (inliers) by optimizing the following energy of labeling
L = {Lp|p ∈ P}

E(L) =
∑
p

||p− Lp||+ λ ·
∑

(p,q)∈N

wpq · δ(Lp 6= Lq). (3)

The first term ||p − L|| in (3) measures geometric error between point p and
model L. For example, the line fitting examples in this section use “perpendicular
distance” between 2D point p = (x, y) and line L = (a, b)

||p− L|| =
(
|y − ax− b|√

a2 + 1

)2
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which is the distance from p to the nearest point on lineL. Robust (truncated) mea-
sures are also possible. Term ||p−L|| corresponds to the log-likelihood ln Pr(p|L)
when energy (3) is interpreted as an MRF-based posterior energy. Thus, the use of
quadratic distance for ||p−L|| is equivalent to assuming Gaussian distribution for
errors. Clearly, optimal labeling L for (3) depends on specific choice of geometric
measure ||p− L||.

The second term of energy (3) is a smoothness prior. It assumes some specific
neighborhood system N for the data points. For example, the neighborhood sys-
tem could be based on a triangulation of points, see Fig.5. In this paper we use the
Potts model, e.g. [5], where δ(·) is 1 if the specified condition inside parenthesis
holds, and 0 otherwise. Weights wpq set discontinuity penalties for each pair of
“neighboring” data points. For example, the synthetic line fitting examples in this
section use weights wpq inversely proportional to the distance between points p
and q because closer points are a priori more likely to fit the same model

wpq = exp−||p− q||
2

σ2
.

In all of our experiments σ was constant and it was chosen heuristically to be
5. Examples in Section 3 use constant weights wpq = 1. Besides Potts (piece-
wise constant) prior, one can also consider piece-wise smooth priors. Such priors
would allow small variation of model parameters between data points.

2.3 Expand and re-estimate labels
Energy (3) can be minimized using α-expansion algorithm [5] for labels α ∈ L0.
In this case, it is possible to interpret α-expansions as a competition among model-
labels for spatial support; models with the best-fit to data points find the largest
number of spatially coherent “inliers”, while most of the “erroneous” models get
no inliers.

Once inliers are computed, model labels in L0 ⊂ Rn with non-empty set of
inliers can be re-estimated as follows. Note that the first term of energy (3) can be
represented as ∑

p

||p− Lp|| =
∑
L∈L0

∑
p∈P (L)

||p− L||

where P (L) = {p ∈ P |Lp = L} denotes a set of inliers for label L. Clearly, we
can minimize this expression by re-estimating parameters of each model L ∈ L0

L̂ = argmin
l

∑
p∈P (L)

||p− l||. (4)
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(a) “Lines” data, Fig.8 a (b) “Clorox” data, Fig.12 b

Figure 5: We use Delaunay triangulations of data points. Other techniques can be
used, particularly for higher dimensional data.

We replace each label Lwith non-empty support P (L) by label L̂ ∈ Rn which has
a better fit to points in P (L). Finally, after discarding all labels with no inliers, we
obtain a new set of labels L1. Note that this operation does not affect the second
(smoothness) term in (3) unless two labels L,L′ become equal after re-estimation
L̂ = L̂′ (in this case, the smoothness energy also decreases). Clearly, the described
operation of changing the set of labels

L0 → L1

can only decrease the energy (3).
There are many known methods for optimizing the sum of geometric errors

||p − L|| in (4). Optimization method may depend on specific choice of measure
||p − L||. For example, to minimize the sum of squares of vertical-shift errors in
our lines-fitting examples we use standard SVD-based methods. A large number
of other examples of geometric or algebraic error measures ||p−L|| and different
methods for optimizing them are widely discussed in computer vision literature,
e.g. see [13]. Our approach can incorporate many of these error functions ||p−L||.

Figure 4 (b) visualizes clusters of inliers and re-estimated models L1 obtained
in two separate steps described above: expand (inlier classification) and reestimate
(model parameters). In some cases it could be useful to iterate the propose step as
well. For example, new labels can be generated by merging or splitting clusters
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of inliers. One interesting example of “merging” is described in the context of
example in Figure 10 in the end of this section.

2.4 Algorithm and its properties
Both expansion (inlier classification) and reestimation steps decrease energy (3).
Thus, we can iterate over these steps until convergence, see Fig.4 (b-d). We can
stop the iterations when a new round of a-expansion does not change inliers. As
soon as the spatial support of the current models (labels) stops changing, re-
estimation of the models (4) can not improve geometric error term. It is clear
that this iterative algorithm converges to some local minima. PEARL algorithm
(Propose Expand and Re-estimate Labels) is summarized here:

1) Propose:
— at initialization, randomly sample data to obtain L0, set i=0
—* (optional for i > 0) sample more or merge/split current models in Li

2) Expand:
— run α-expansion [5]4 for energy (3) and α ∈ Li
— if the energy does not decrease, stop

3) Re-estimate Labels:
— solve (4) and obtain a new set of labels Li+1

— set i = (i+1), go to step 2 (or optional to *).

Figure 6 shows an empirical plot showing how accuracy of the estimated
model depends on the number of random samples. The errors are averaged over
many randomly generated line-fitting examples. In these tests the data supported
only one line model so that we can compare our approach with standard RANSAC.
Our point is that iterations of expand and re-estimate steps can converge to a good
estimate of the model from a rough initial guess. In contrast, RANSAC relies on
a larger number of samples to find an accurate estimate.

Figures 7-9 compare PEARL to existing geometric multi-model fitting meth-
ods [30, 21] and mean-shift [6] which were discussed in the introduction. The
synthetic multi-line examples were generated using different levels of Gaussian
noise and different number of uniformly distributed outliers. The previous meth-
ods were tuned to get the best results for each specific level of noise and clutter.

4Using extension of α-expansion [8], this step also works for energy (5) introduced later.
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Figure 6: PEARL vs RANSAC for data sets with one line model. X-axis is the
number of randomly sampled models. Y-axis shows estimation errors for the line
parameters, which are averaged over 400 randomly generated tests. As illustrated
in Figure 4, PEARL can converge to a good model estimate from a rough initial
guess by iterating expand and re-estimate steps. In contrast, RANSAC relies on a
larger number of samples to find an accurate estimate.

To demonstrate robustness of PEARL, we only changed one parameter σ in the
geometric error measure ||p − L|| = − lnGσ(p − L) where Gσ(·) is a Gaussian
distribution function and p − L is the distance from point p to line L. Note that
PEARL obtains very similar results when parameter σ is automatically estimated
as described in the context of example in Figure 11.

For PEARL and multiRANSAC the data points were uniformly sampled while
for J-linkage and mean-shift we used distance-based sampling which helps J-
linkage and mean-shift algorithms. Sampling closer points increases the proba-
bility that the sampled model is closer to one of the peaks in the Hough transform.

Mean-shift and J-linkage have no constraints on the number of models they
generate. Figures 7-9 show their strongest 7 models. MultiRANSAC had to
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(a) The data points (200 outliers) (b) The Hough transform of the data

(c) MultiRANSAC result (d) mean-shift result

(e) J-Linkage result (f) PEARL result

Figure 7: Comparing the results for fitting lines to noisy data points. The data
points were perturbed with a low level of Gaussian noise ( σ = 0.01) and 200
outliers were added. Outliers represent 25% of the data.
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(a) The data points (300 outliers) (b) The Hough transform of the data

(c) MultiRANSAC result (d) mean-shift result

(e) J-Linkage result (f) PEARL result

Figure 8: Comparing the results for fitting lines to noisy data points. The data
points were perturbed with a low level of Gaussian noise ( σ = 0.02) and 300
outliers were added. Outliers represent 25% of the data.
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(a) The data points (600 outliers) (b) The Hough transform of the data

(c) MultiRANSAC result (d) mean-shift result

(e) J-Linkage result (f) PEARL result

Figure 9: Comparing the results for fitting lines to noisy data points. The data
points were perturbed with a low level of Gaussian noise ( σ = 0.025) and 600
outliers were added. Outliers represent 45% of the data.
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(a) data (300 outliers) (b) minima of energy (3) (c) merging, energy (5)

Figure 10: Intersecting lines example. Optimization of energy (3) may leave spa-
tially isolated groups of inliers assigned to 2 models even if their parameters are
infinitesimally close (b). Per-label costs in energy (5) justify our postprocessing
merging step (c). This example may also suggest EM-style soft assignments of
labels to points near the intersection. However, in vision (Sec.3) we get occlusions
(not intersections), which better motivate our “hard” assignments of labels.

be given the exact number of models. Compared to mean-shift and J-linkage,
PEARL finds a very small number of models giving with the optimal fit to the
data. But, in addition to correctly identified true models, it can “hallucinate” a
few models among outliers (as in Fig.4d). Such weak models can be automati-
cally filtered out by setting a very conservative limit on the minimum number of
inliers.

Figures 7-9 confirm that detecting models by maximizing the number of inliers
is a flawed criteria in multi-model cases. As illustrated in Figure 1, random models
may have more inliers than the true ones. This explains why the previous methods
work relatively well only for the low noise example in Figure 7.

As we discussed in the introduction, coherence between inliers is often a good
assumption particularly for problems in vision. Figure 10 shows one typical ex-
ample where this assumption could be violated. Clearly, one of the intersecting
lines cannot be assigned spatially connected group of inliers. More over, optimal
solution for energy (3) can not merge two models with very similar parameters
if their inliers are spatially separated (Fig.10b). However, a simple postprocess-
ing step can merge separated groups of inliers with similar models (Fig.10c) if
the “average” optimal model increases the sum of geometric errors by no more
than some predefined threshold β. In fact, this merging operation can be seen as
an optimization step if the energy function gets an additional term penalizing the
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(a) models with different noise levels (b) PEARL result based on (6)

Figure 11: Fitting lines with different noise levels. The inliers in (a) were gener-
ated with different levels of Gaussian noise. 40% of the data are outliers. In (b)
PEARL estimated labels combining geometric model parameters with unknown
noise variances using error measure (6). Previous multi-model fitting methods use
fixed thresholds to identify inliers, which would not work in this case.

number of models/labels with non empty support |LL|

E(L) =
∑
p

||p− Lp||+ λ ·
∑

(p,q)∈N

wpq · δ(Lp 6= Lq) + β · |LL|. (5)

Instead of the proposed merging heuristic, energy (5) can be also minimized us-
ing an extension of α-expansion algorithm [8]. Note that ideas in [24] allow to
generalize the label costs in energy (5) in order to work with models of different
complexities. This extension of our optimization framework is straightforward
and left as a simple exercise for the reader.

Figure 11 demonstrates another interesting feature of our optimization ap-
proach. Unlike many previous multi-model fitting methods [27, 30, 27] using
fixed thresholds, PEARL can identify multiple models with different levels of
noise. For example, this can be achieved as follows. Assuming that geometric er-
rors for inliers correspond to Gaussian noise, one can set geometric error penalty
||p− Lp|| according to the negative logarithm of the normal distribution function

||p− Lp|| = − lnGσ(p− Lp)

where p− Lp is the distance from p to the assigned model Lp. Here one assumes
some known σ parameter corresponding to the distribution’s variance. If models
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come with unknown different levels of noise, one can estimate extended labels
L̃p = {Lp, σp} combining geometric model parameters Lp with the corresponding
unknown noise-level σp. In this case one can use error measure

||p− L̃p|| = − lnGσp(p− Lp). (6)

Figure 11 shows that this approach can correctly estimate both geometric and
statistical noise-level parameters for each model.

3 Experimental results
This section validates our model fitting technique (PEARL) on multi-view recon-
struction data sets supporting multiple models. Our experiments used affine mod-
els (Sec.3.1) and homographies (Sec.3.2). Data points were obtained by matching
SIFT[17] features on rectified image pairs in narrow-based stereo, and on uncali-
brated wide-base pairs.

3.1 Estimating multiple affine models
In this section we apply PEARL to estimate affine transformation in the context
of rectified narrow-base stereo. We use SIFT [17] features as points of interest,
since they are scale and rotation invariant. They are also partially invariant to illu-
mination and 3D camera view point changes. Matches between pairs of points in
two images are found using exhaustive search along the corresponding scan line.
In principle, it is possible to replace exhaustive search with ”smarter” methods as
in [1, 19].

We will use the notation (xl, yl), (xr, yr) to describe the coordinates of the
image feature on the left image pl and right image pr.The symbol p denotes a pair
of matching points (xl, yl, xr, yr).

A planar homography has only three degrees of freedom, in case of rectified
images. As the epipole e = [1 0 0]T in that case is at infinity. In turn the fun-
damental matrix could be formulated as F = [e]x , we use the notation [e]x to
describe the skew-symmetric matrix of the vector e. Since a planar homography
must satisfy the following constrain HTF + F TH = 0 [9].That will enforce the
planar homography for rectified stereo pair to be a special case of an affine trans-
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formation, with only degrees of freedom as follows

A =

 a b c
0 1 0
0 0 1


we will refer to that special affine transformation as affine transformation for sim-
plicity.

That type of transformation requires only three matching pairs to be uniquely
identified.We first generate the finite set of initial model proposals A0 by random
sampling three matching pairs and computing their corresponding model param-
eters. One way to measure geometric error between a matching pair of points p
and a given model A is

||p− A|| = (axl + byl + c− xr)2 (7)

which is a horizontal shift (along the epipolar line) between pr and Apl.
The next step is to triangulate the features of one of the images (e.g. the right

image). Then we apply PEARL to energy

E(A) =
∑
p

||p− Ap||+ λ
∑

(p,q)∈N

δ(Ap 6= Aq)

where A = {Ap|p ∈ P} is an assignment of affine models to data points p.
Figures 12 (a-c) compare affine model fitting results regenerated by BT [2] and

two results generated by PEARL for different geometric error measures ||p−A||.
BT [2] use dense segmentation of pixels based on photoconsistency. This measure
does not work well in texturelss regions and they have to rely on intensity edges
(static cues) to detect the boundaries between regions supporting different models.
In contrast, PEARL labels a sparse set of distinct features based on geometric (or
algebraic) errors and spatial proximity.

Our results in Figures 12 (b,c) demonstrate that specific choice of geometric
measure ||p−A|| affects the results. For example, horizontal shift error in equation
(7) worked well for all vertical planes in the scene, but it split the ground plane
into two separate planes, see Fig.12(b). The problem with horizontal error (7) is
illustrated in Figure 13. Basically, it can significantly overestimate the distance
between a triangulated point and non-vertical planes in the 3D scene. Note that
the ground plane in “Clorox” data set is the only non-vertical plane in the scene.
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(a) BT [2] (b) PEARL (7) (c) PEARL (8)
segmentation of pixels classification of inliers classification of inliers

Figure 12: Results for ”Clorox” stereo pair [2]. (a) Dense pixel segmentation by
BT [2] uses photoconsistency. (b,c) Sparse inlier classification by PEARL using
geometric fit measures (7,8).

To improve the results for this plane, we computed PEARL result (Fig.12(c)) for
a different geometric error measure

||p− A|| = (axl + byl + c− xr)2

1 + w · b2
(8)

that weights down the horizontal shift error for non-vertical planes (b > 0). This
error is derived from the fact that allowing some vertical shift for both corre-
sponding points pr and pl to a different epipolar line adds an additional degree of
freedom in computing the shortest distance to the perfect alignment with affine
model A. This significantly reduces the error for non-vertical planes while not
changing the error for vertical ones (b = 0).

In order to provide some quantitative comparison between the affine models
generated by BT [2] and PEARL, we used a “ground truth” image (Fig.14(a))
where we manually extracted the lines corresponding to intersecting planes. As-
suming that two intersecting planes π1 and π2 are represented by the affine models
Aπ1 and Aπ2 , the homogenous vector representing the line of intersection is de-
fined as the first row of the matrix (Aπ1 − Aπ2). Therefore, such lines can be
computed from the models estimated by either BT or PEARL. Table 1 compares
geometrically the accuracy of these lines.

3.2 Estimating multiple homographies
In this section we apply PEARL to estimate multiple homographies for uncal-
ibrated wide-base stereo image pairs. We use SIFT [17] features as points of



Tech.Rep.#735, CS dept., UWO, London, Canada, ISBN: 978-0-7714-2830-2 p.25

Figure 13: Interpretation of horizontal shift error (7). The 3D scene is displayed
from a side view-point orthogonal to images’ optical axis. Assuming that two red
points are at the same distance from the image plane, one can easily check that
error (7) is proportional to d1 and d2 shown above. Therefore, even if two points
are at the same distance d from planes π1 and π2, the horizontal shift error is much
larger for the horizontal plane.

Line BT [2] PEARL (7) PEARL (8)

L1 34.55 8.80 9.46
L2 16.83 4.82 3.66
L3 5.56 13.27 6.26
L4 5.99 4.46 12.05

Total 62.94 31.37 31.45

Table 1: Geometric errors for lines in Fig.14 where affine models intersect. Er-
rors are computed as the sum of distances between the ground truth line segment
corners and the computed lines.
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(a) “Ground truth” (b) BT [2]

(c) PEARL (7) (d) PEARL (8)

Figure 14: Comparison of results by BT [2] and PEARL. Lines are computed for
all pairs of intersecting planes (affine models).
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Figure 15: Stereo images from VGG (Oxford) Merton College I

interest. The set of all matching pairs P is found using exhaustive search.
One way to measure geometric error between a matching pair of points p and

a given model H is the Symmetric Transfer Error (STE) [13]. We generate our
finite set of initial model proposalsH0 by randomly sampling four matching pairs.
Then compute the model parameters as descried in [13] by minimizing the non-
linear STE error using Levenberg-Marquard. The initial solution for the non-
linear minimization is found using the Direct Linear Transform method.

The next step is to triangulate the features of one of the images (e.g the right
image).Then we apply PEARL to energy

E(H) =
∑
p

||p−Hp||+ λ
∑

(p,q)∈N

δ(Hp 6= Hq)

where H = {H|p ∈ P} is an assignment of models to data points p.
In the example shown in Fig.15 PEARL was able to identify 8 planes with

large and small spatial support. Unlike multiRANSAC [30] PEARL does not
require the prior knowledge of the number of planes. Also PEARL produces
spatially coherent set of inliers for each plane compared to multiRANSAC. In
[30] multiRANSAC required 11604 iterations for the same image set, in each
of these iterations 4 random samples were drawn sequentially, meaning that the
multiRANSAC required a total of 46416 random samples in order to find just 4
planes. On the other hand PEARL using only 900 initial random samples was
able to identify 8 planes. PEARL required only three iterations to converge.
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Figure 16: Stereo images from VGG (Oxford) Merton College III.

In the example shown in Fig.16 PEARL was able to identify 8 planes. Only
3000 initial labels were used, PEARL converged after four iterations. Notice how
planes with varying number of inliers could easily be identified using PEARL.
The roof of the building on the left (shown in light green) was supported only by
13 inliers, while the two neighboring large planes (shown in blue and pink) were
supported by 786 and 581 inliers respectively.

Figure 17 shows Raglan Castle Tower. Using 6000 initial labels and only four
iterations to convergence. PEARL was able to identify 13 planes. The use of
relatively large number of initial labels allowed PEARL to identify very small
planes, e.g the top planes of the third floor. Later on we found out from another
picture for Raglan Castle Tower on flicker, that each of the second and third floors
are shifted to the inside by one step from the floor underneath it.

3.3 Motion Segmentation
In this section we aim to solve the multibody motion segmentation problem using
multiple-views. This problem is also referred to in literature as the multibody
structure from motion problem [4, 22, 7]. The goal of this problem is to cluster
the scene trackable features among distinct motions, then to estimate the motions’
parameters and finally to recover the 3D structure of the points. In our case we
are only interested in estimating the multiple motions and clustering the image
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(a) Multiple planes detected by PEARL

(b) A different point of view (by anonymous Flicker photographer)

Figure 17: In this Raglan Castle example from VGG (Oxford) we used the same
color more than once to represent different planes (a). Only spatially connected
planes are shown in different colors. An image of the same scene from a different
view (b) confirms that each floor of the building corresponds to different planes.
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features among them.

3.3.1 Using two-views

Assuming that the multiple bodies are rigid and each body undergoes a different
motion. Each distinct rigid-body motion (R,t) could be described by a corre-
sponding fundamental matrix F = [K ′t]xK

′RK−1 between the two views. That
fundamental matrix satisfies the epipolar constrain (pTr Fpl = 0) such that pr and
pl are two matching features of a 3D point that belongs to the rigid body [18, 16].

We apply PEARL to estimate multiple fundamental matrices for uncalibrated
image pairs. Matching pairs are found using the same procedure mentioned in
section 3.2. One way to measure geometric error between a matching pair of
points p and a given model F is the squared Sampsons distance (SSD) [13]

||p− F || =
(
pTr Fpl

)2
(Fpl)

2
1 + (Fpl)

2
2 + (F Tpr)

2
1 + (F Tpr)

2
2

(9)

where the (Fpl)
2
j represents the square of the j-th entry of the vector (Fpl) . We

generate our finite set of initial model proposals F0 by random sampling eight
matching pairs. Then compute the model parameters as descried in [13] by mini-
mizing the non-linear SSD error using Levenberg-Marquard. The initial solution
for the non-linear minimization is found using the normalized 8-point algorithm
[12]. The next step is to triangulate the features of one of the images (e.g the right
image).Then we apply PEARL to energy

E(F) =
∑
p

||p− Fp||+ λ
∑

(p,q)∈N

δ(Fp 6= Fq) + β · |F|

where F = {F |p ∈ P} is an assignment of models to data points p, results are
shown in Fig. 18.

3.3.2 Using multiple-views

Assuming that the cameras are affine then it could be proved that the motion of a
rigid body i.e. the trajectory of its features will live in a 4D subspace [4, 22, 26].
Let P be a set of 3D points that belong to a rigid body which undergoes a motion
over F frames. The image feature of a point i in the frame f is defined by pfi.
Stacking all pfi measurements ∀f ∈ F and ∀i ∈ P will form the measurement
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(a) kanatani1 (b) people1

(c) three-cars (d) people2

(e) 1R2RC (f) 1R2RCR

(g) 1RT2RCR (h) 1R2RCT A

Figure 18: PEARL’s results for eight different motion sequences from Rene Vi-
dal’s data set [25]. Our motion estimation based on the mixture of fundamental
matrices uses only two frames (the first and the last).
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Figure 19: Optimal solution for energy (3). In contrast to results for energy (5) in
Fig.18e-h, it fails to generate one background motion from yellow, green, and red
clusters. These clusters correspond to infinitesimally close motions, but they are
spatially isolated. The third term in (5) addresses this issue.

matrix

W =

p11 · · · p1P
...

...
pF1 · · · pFP


2F×P

(10)

which has rank 4 [4, 22].
First, we project these feature trajectories from R2F to R5. The extra di-

mension is needed to discriminate between different motions [26]. Then we use
PEARL to fit multiple 4D hyperplanes (motions). In contrast to [26], PEARL
does not require the prior knowledge of the number of motions.

We generate our finite set of initial proposals M0 by randomly sampling five
points from the projected trajectories. Then we find the best fitting 4D hyperplane
by minimizing the orthogonal distance ||p −M ||. The next step is to triangulate
the 2D image features on one of the frames (e.g the last frame). Finally, we apply
PEARL to the following energy

E(M) =
∑
p

||p−Mp||+ λ
∑

(p,q)∈N

δ(Mp 6=Mq) + β · |M|

where M = {M |p ∈ P} is an assignment of models to data points p, results are
shown in Fig. 20.
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(a) 1R2RC (b)1R2RCR

(c) 1RT2RCR (d) 1R2RCT A

Figure 20: These are PEARL’s results for four different motion sequences from
Rene Vidal’s data set [25] based on multiple-views, see Sec.3.3.2. This method
makes use of all frames in the motion sequence unlike the mixture of fundamental
matrix method.
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