ECCV 2006 tutorial on Graph Cuts vs. Level Sets

part III **Connecting Graph Cuts and Level Sets**

Daniel Cremers Yuri Boykov Vladimir Kolmogorov

University of Western Ontario

University of Bonn University College London

Graph Cuts versus Level Sets

- Part I: Basics of graph cuts
- Part II: Basics of *level-sets*
- Part III: Connecting graph cuts and level-sets
- Part IV: Global vs. local optimization algorithms

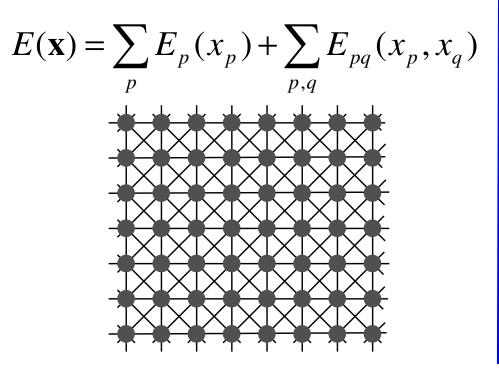
Graph Cuts versus Level Sets

Part III: Connecting graph cuts and level sets

- Minimal surfaces, global and local optima (VK)
- Integral and differential approaches (YB)
- Metrics on the space of contours, learning and shape prior in graph cuts and level-sets (DC)

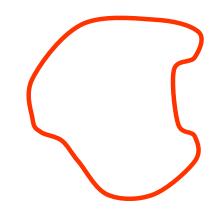
Discrete vs. continuous functionals

Graph cuts



Geodesic active contours

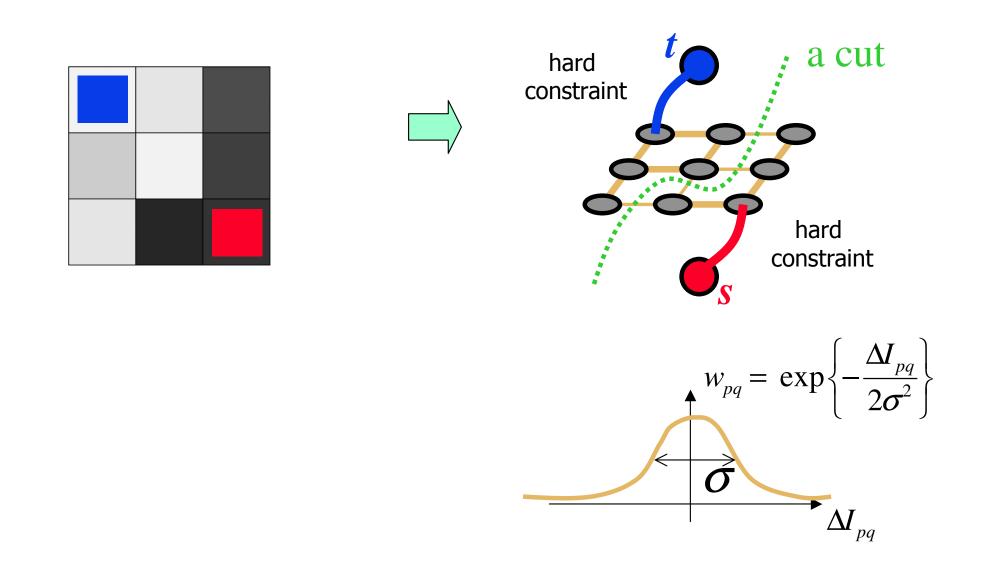
$$E(C) = \int_{C} g(C(s), \vec{N}) \, ds$$



Both can incorporate basic segmentation cues

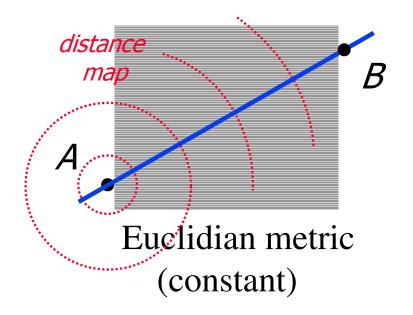
- Image contrast
- Regional bias
- Alignment (flux)

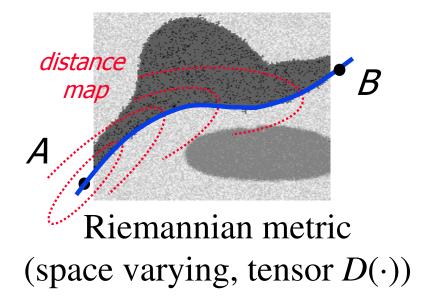
Incorporating image contrast: graph cuts [Boykov&Jolly'01]



Incorporating image contrast: geodesic active contours [Caselles,Kimmel,Sapiro'97]

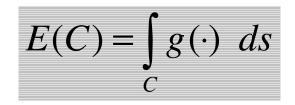
Define *Riemannian metric* from image gradient



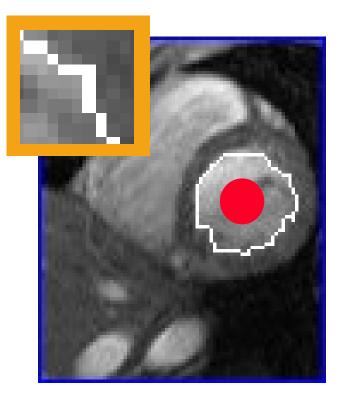


Compute geodesics

• shortest curve between two points



Metrication errors on graphs



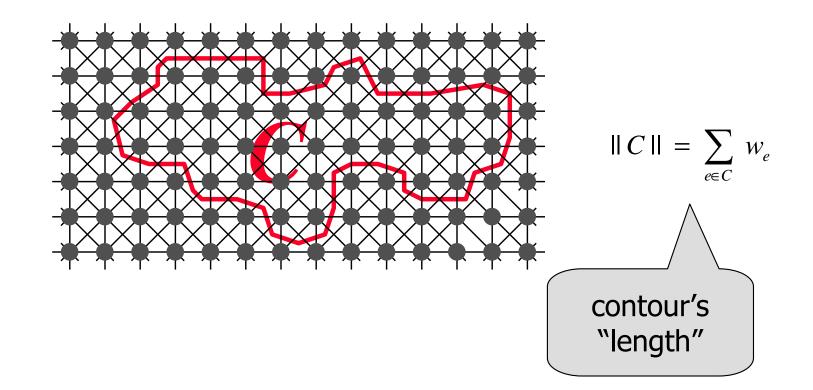
Minimum cost cut (standard 4-neighborhoods)

discrete metric ???

Minimum length **geodesic** contour (image-based Riemannian metric)

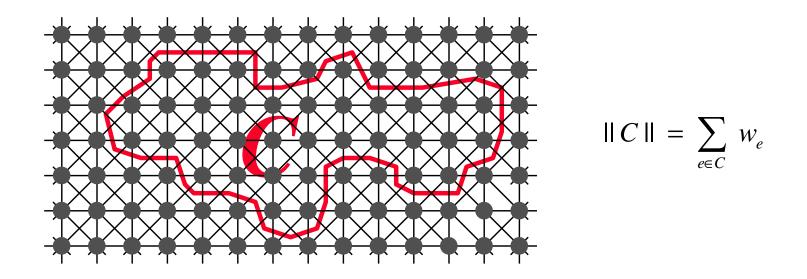
Continuous metric space (no geometric artifacts!)

Cut Metrics : cuts impose *metric* properties on graphs

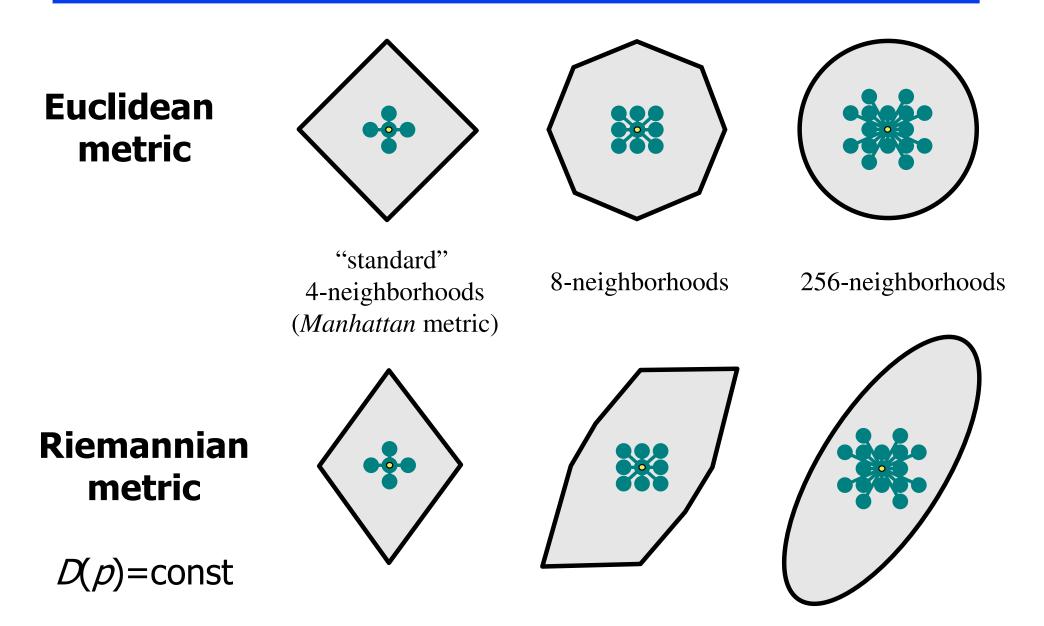


"Cut metrics" and "Riemannian metrics" allow to compute contour "length" in 2D (or "area" in 3D)

Geo-cuts [Boykov,Kolmogorov'03]: Combining graph cuts and geodesic active contours

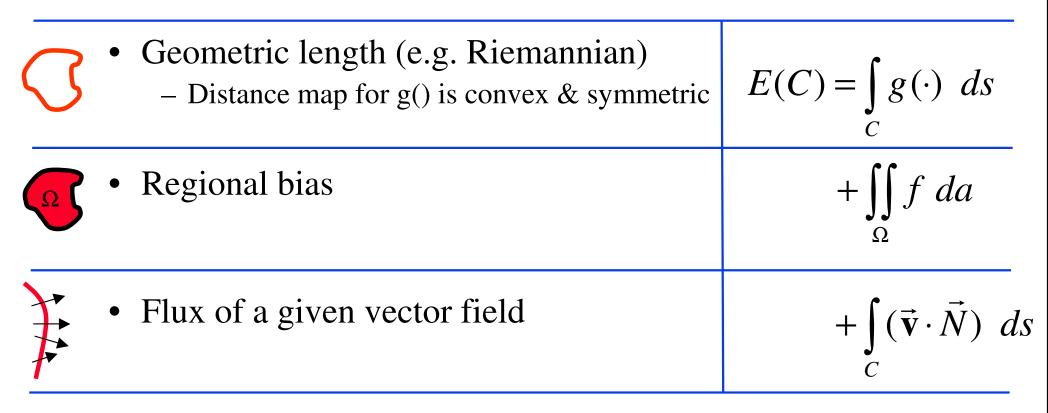


Given geometric functional, e.g. $E(C) = \int_{C} g(C(s), \vec{N}) ds$ construct graph such that $E(C) \approx ||C|| \equiv \sum_{e \in C} w_e$



What metrics can be approximated?

- Question: What continuous functionals can be approximated with geo-cuts?
 - [Kolmogorov,Boykov'05]:



Geometric measures used in *level set* segmentation [Acknowledgement: Ron Kimmel's presentation]

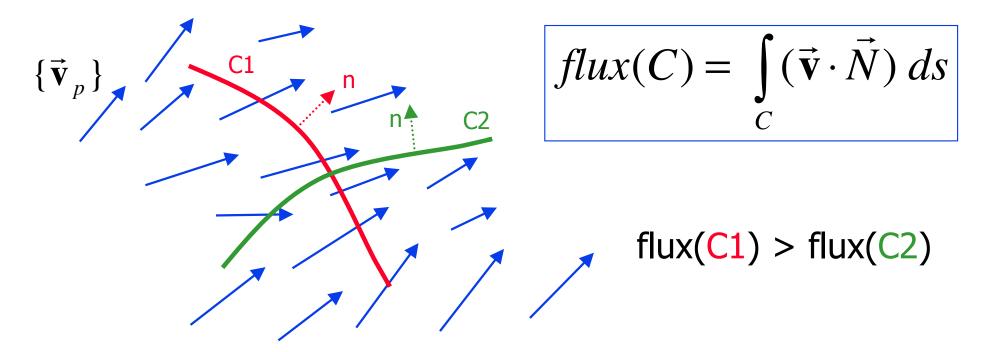
<u>functional</u>		evolution equation
weighted arc-lengt	th $E(C) = \int_C g(\cdot) ds$	$C_t = \left(g - \nabla g \cdot \vec{N}\right) \vec{N}$
weighted area	$E(C) = \iint_{\Omega} f \ da$	$C_t = f \vec{N}$
alignment (flux)	$E(C) = \int_C (\vec{\mathbf{v}} \cdot \vec{N}) ds$	$C_t = -(\operatorname{div} \vec{\mathbf{v}}) \vec{N}$
robust alignment	$E(C) = \int_C - \vec{\mathbf{v}} \cdot \vec{N} ds$	$C_t = \operatorname{sign}(\vec{\mathbf{v}} \cdot \vec{N})(\operatorname{div} \vec{\mathbf{v}}) \vec{N}$

Flux

• *vector field*: some vector $\vec{\mathbf{v}}_p$ defined at each point p

• "stream of water" with a given speed at each location

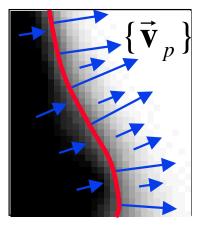
flux: "amount of water" passing through a given contour



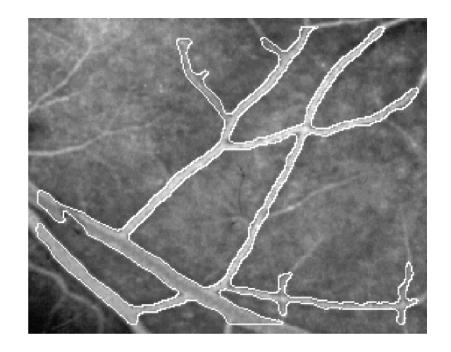
• Changes sign with orientation

Segmentation of thin objects [Vasilevskiy,Siddiqi'02]

• Vector field:
$$\vec{\mathbf{v}} = \nabla I$$



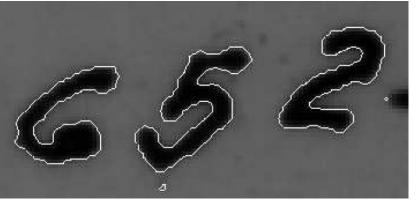




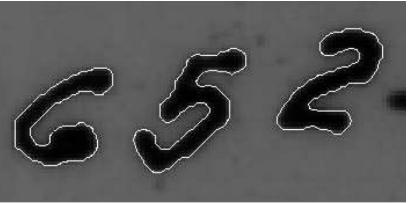
Riemannian length + Flux [Kimmel,Bruckstein'03]

Riemannian length

Flux of abla I



Riemannian length + Flux



Robust alignment

$$E(C) = \int_{C} (\nabla I \cdot \vec{N}) \, ds$$

assumes bright object, dark background

$$E(C) = \int_{C} -|\nabla I \cdot \vec{N}| \, ds$$

no such assumption

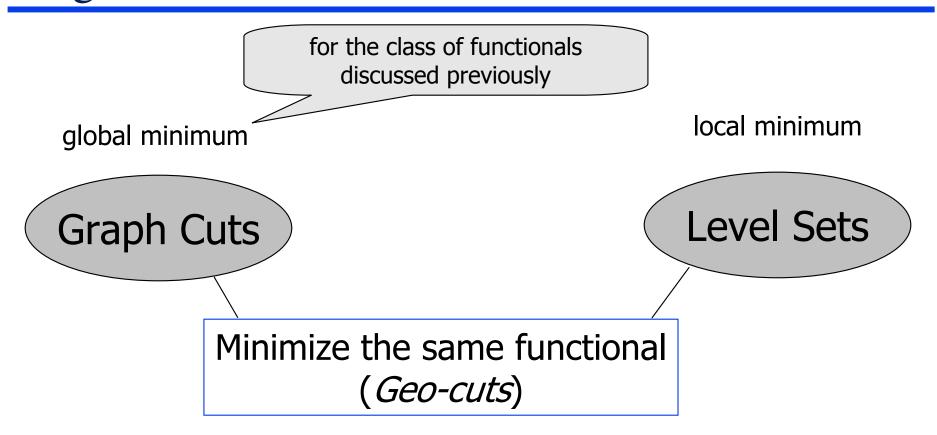
"Robust alignment" [Kimmel,Bruckstein'03]

Geometric measures used in *level set* segmentation [Acknowledgement: Ron Kimmel's presentation]

functional

weighted arc-length
$$E(C) = \int_{C} g(\cdot) ds$$
weighted area $E(C) = \iint_{\Omega} f da$ alignment
(flux) $E(C) = \int_{C} (\vec{\mathbf{v}} \cdot \vec{N}) ds$ robust alignment
 $E(C) = \int_{C} -|\vec{\mathbf{v}} \cdot \vec{N}| ds$ non-submodular

Graph cuts vs. level sets for geodesic active contours



- Connection only approximate: $E(C) \approx ||C||$
- Even stronger connection: *continuous maxflow*

Continuous maxflow

[Iri'79],[Strang'83],[Appleton,Talbot'03]

- Analogue of discrete maxflow
- Solves continuous problem in subset of R^n
- Flow = vector field

Discrete maxflow

Flow defined on graph edges

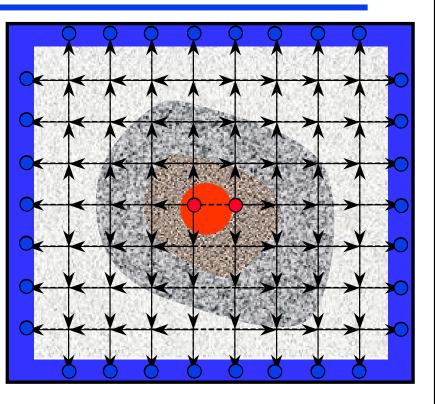
• $f_{pq} = -f_{qp}$

Capacity constraint:

$$f_{pq} \leq w_{pq}$$

Flow conservation: (for $p \neq s, t$)

$$\sum_{q} f_{pq} = 0$$



4-neighbourhood system

<u>Maximize flow out of the source(s)</u>:

$$\sum_{q} f_{sq} \to \max$$

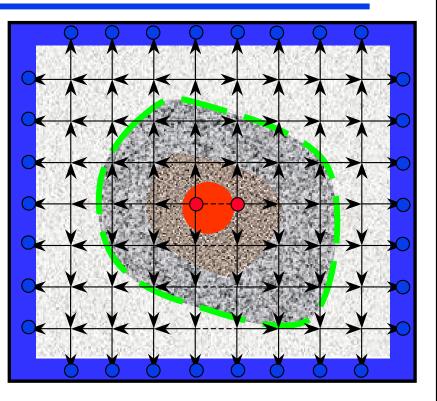
Discrete maxflow

Flow defined on graph edges

• $f_{pq} = -f_{qp}$ Capacity constraint: $f_{pq} \le w_{pq}$

Flow conservation: (for $p \neq s, t$)

$$\sum_{q} f_{pq} = 0$$



[Ford&Fulkerson theorem]:

Maximum flow saturates minimum cut

Continuous maxflow

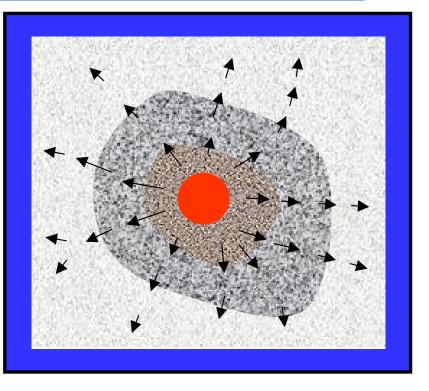
■ Flow = vector field

Capacity constraint:

$$|\vec{f}_p| \leq g$$

Flow conservation: (for $p \notin s,t$)

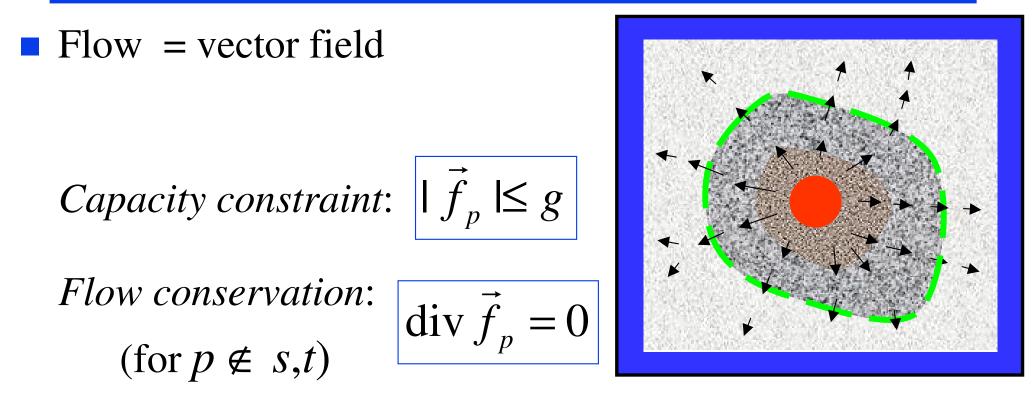
$$\operatorname{div} \vec{f}_p = 0$$



Maximize flow out of the source:

 $\int (\operatorname{div} \vec{f}_p) \, da \to \max$

Continuous maxflow



Maximum flow saturates minimum cut

$$\vec{f}_p = g_p \vec{N}$$
 (for $p \in C^*$)

Solving continuous maxflow

- [Appleton,Talbot'03,06]: numerical algorithm
 - Vector field stored on *edges*
 - Horizontal edges => x-component
 - Vertical edges => y-component
 - Flow conservation similar to the discrete case
 - <u>But</u> capacity constraint:

$$f_x^2 + f_y^2 \le g^2$$

 f_{1x}

$$f_{2y} = \int f_{3y}$$

• Report 0.1 pixels accuracy (on average)