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Graph Cuts versus Level Sets

� Part  I:  Basics of graph cuts

� Part II:  Basics of level-sets

� Part III: Connecting graph cuts and level-sets

� Part IV: Global vs. local optimization algorithms
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Graph Cuts versus Level Sets

� Part  III:  Connecting graph cuts and level sets

• Minimal surfaces, global and local optima (VK)

• Integral and differential approaches (YB)

• Metrics on the space of contours, learning and shape 

prior in graph cuts and level-sets (DC)
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Discrete vs. continuous functionals

Geodesic active contours
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Graph cuts

� Both can incorporate basic segmentation cues

• Image contrast

• Regional bias

• Alignment (flux)
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Incorporating image contrast: 

graph cuts [Boykov&Jolly’01]
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Riemannian metric

(space varying, tensor D(·))

Euclidian metric

(constant)

distance 
map distance 

map

Incorporating image contrast: 

geodesic active contours [Caselles,Kimmel,Sapiro’97]
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� Define Riemannian metric from image gradient

� Compute geodesics

• shortest curve between two points
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Metrication errors on graphs

discrete metric ???

Minimum cost cut 

(standard 4-neighborhoods)

Continuous metric space

(no geometric artifacts!)

Minimum length geodesic contour 

(image-based Riemannian metric)
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C

� “Cut metrics” and “Riemannian metrics” allow to compute 

contour “length” in 2D (or “area” in 3D)

Cut Metrics :

cuts impose metric properties on graphs
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Geo-cuts [Boykov,Kolmogorov’03]:

Combining graph cuts and geodesic active contours
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“Distance maps” for cut metric

“standard” 

4-neighborhoods

(Manhattan metric)

256-neighborhoods8-neighborhoods

Euclidean 
metric

Riemannian
metric

D(p)=const
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What metrics can be approximated?

� Question: What continuous functionals can be 
approximated with geo-cuts?

� [Kolmogorov,Boykov’05]:

• Geometric length (e.g. Riemannian)
– Distance map for g() is convex & symmetric

• Regional bias

• Flux of a given vector field
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Geometric measures used in level set segmentation
[Acknowledgement: Ron Kimmel’s presentation]
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Flux

� vector field:  some vector       defined at each point  p

• “stream of water” with a given speed at each location
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� flux: “amount of water” passing through a given contour 

flux(C1) > flux(C2)
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• Changes sign with orientation



European Conference on Computer Vision 2006 :  “Graph Cuts vs. Level Sets”,  Y. Boykov (UWO), D. Cremers (U. of Bonn), V. Kolmogorov (UCL) 

Segmentation of thin objects [Vasilevskiy,Siddiqi’02]

• Vector field: I∇=v
r

}{ pv
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Riemannian length + Flux [Kimmel,Bruckstein’03]

Riemannian
length

Flux of 

Riemannian
length
+
Flux

I∇



European Conference on Computer Vision 2006 :  “Graph Cuts vs. Level Sets”,  Y. Boykov (UWO), D. Cremers (U. of Bonn), V. Kolmogorov (UCL) 

Robust alignment
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assumes bright object, dark background
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no such assumption

“Robust alignment” 

[Kimmel,Bruckstein’03]
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Geometric measures used in level set segmentation
[Acknowledgement: Ron Kimmel’s presentation]
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Graph cuts vs. level sets

for geodesic active contours

Graph Cuts Level Sets

Minimize the same functional
(Geo-cuts)

global minimum local minimum

for the class of functionals
discussed previously

• Connection only approximate: E(C) ≈ ||C||

• Even stronger connection: continuous maxflow
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Continuous maxflow

� [Iri’79],[Strang’83],[Appleton,Talbot’03]

• Analogue of discrete maxflow

• Solves continuous problem in subset of Rn

• Flow = vector field
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Discrete maxflow

� Flow defined on graph edges 

•

Capacity constraint:

Flow conservation:

(for p ≠ s,t)

Maximize flow out of the source(s):
max→∑

q

sqf

4-neighbourhood system
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Discrete maxflow

� Flow defined on graph edges 

•

Capacity constraint:

Flow conservation:

(for p ≠ s,t)

[Ford&Fulkerson theorem]:

Maximum flow saturates minimum cut
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Continuous maxflow

� Flow  = vector field

Capacity constraint:

Flow conservation:

(for p ∉ s,t)

Maximize flow out of the source:
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Continuous maxflow

gf p ≤||
r

� Flow  = vector field

Capacity constraint:

Flow conservation:

(for p ∉ s,t)

Maximum flow saturates minimum cut

Ngf pp
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( for p ∈ C* )
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Solving continuous maxflow

� [Appleton,Talbot’03,06]: numerical algorithm

• Vector field stored on edges

– Horizontal edges => x-component

– Vertical edges     => y-component

• Flow conservation similar to the discrete case

• But - capacity constraint:

• Report 0.1 pixels accuracy (on average) 
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