
Toward High-performance Polynomial System
Solvers Based on Triangular Decompositions

Ph.D. Candidate: Xin Li
Supervisors: Marc Moreno Maza, Stephen M. Watt

Computer Science, University of Western Ontario
April 20, 2009

PART I: Introduction

◮ Motivations.

◮ Related Work.

◮ Goals and Contributions.

PART I / Motivations

◮ Solving polynomial systems is a driving subject for symbolic
computation.

◮ Symbolic solvers require high computational power for large
examples.

◮ Triangular decompositions are a highly promising technique
for solving systems of algebraic equations symbolically.

◮ Asymptotically fast algorithms for polynomial arithmetic have
been proven to be practically efficient.

◮ Designing and implementing high performance symbolic
solvers based on triangular decompositions with the support of
asymptotically fast algorithms is a very appealing subject.

PART I / Related Work (1/3)

◮ Gröbner bases and triangular decompositions are the main
theoretical frameworks in symbolic polynomial system solving.

◮ Gröbner bases reveal the algebraic properties of the input
system while triangular decomposition exhibits the geometry
of its solution set.

◮ For a system with finitely many solutions, triangular
decompositions can be computed within the same time bound
as lexicographic Gröbner bases (Lazard 92) but space
complexity seems to play in favor of triangular decompositions
(Dahan 09).

◮ Regular chains (Kalkbrener 91) (Yang & Zhang 91)
Polynomial GCDs modulo regular chains (Moreno Maza 2000)
Equiprojectable decompositions (Dahan, Moreno Maza,
Schost, Wu & Xie 05) are concepts which have contributed to
improve methods for computing triangular decompositions.

PART I / Related Work (2/3)

• Let us consider the following system:

F :







f1 = x2 + y + z − 1
f2 = x + y2 + z − 1
f3 = x + y + z2 − 1

for x > y > z .

• The lexicographical Gröbner basis of {f1, f2, f3} is:














g1 = x + y + z2 − 1
g2 = y2 − y − z2 + z

g3 = 2yz2 + z4 − z2

g4 = −z2 − 4z4 + 4z3 + z6

• A possible triangular decomposition of {f1, f2, f3} is:






z = 0
y = 1
x = 0

⋃







z = 0
y = 0
x = 1

⋃







z = 1
y = 0
x = 0

⋃







z2 + 2z − 1 = 0
y = z

x = z

PART I / Related Work (3/3)

◮ Fast arithmetic algorithms are well developed since the 60’s
for univariate polynomials over fields (Gathen & Gerhard 99)

◮ Software offering fast polynomial arithmetic
◮ Magma, fast multivariate arithmetic (but not open source)
◮ NTL, highly efficient FFT-based univariate arithmetic (but

with some technical constraints).

◮ Other software which have inspired or supported our work:
◮ SPIRAL, FFTW, automatically tuned code for numerical

computations
◮ the computer algebra system AXIOM,
◮ the RegularChains library in Maple.

PART I / Contributions

◮ We have designed a set of improved algorithms: fast modular
multiplication, fast bivariate solver, fast regular GCD, and fast
regularity test.

◮ We have systemically investigated a set of implementation
techniques adapted for asymptotically fast polynomial
algorithms supporting triangular decompositions.

◮ We have realized a high performance software library in C

language which implements all our reported new algorithms in
this thesis. We made this library available for Maple system
thus it can directly support Maple pre-existing higher level
solvers in RegularChains.

PART I / Source of the following slides

◮ Part II Fast polynomial arithmetic Implementation techniques for

fast polynomial arithmetic in a high-level programming environment.

(A. Filatei, X. Li, M. Moreno Maza, É. Schost ISSAC 06)

◮ Part III Supporting Higher Level Algorithms in AXIOM

Efficient implementation of polynomial arithmetic in a

multiple-level programming environment. (X. Li, M. Moreno

Maza ICMS 06).
◮ Part IV Operations Modulo a Triangular Set Fast arithmetic for

triangular sets: From theory to practice. (X. Li, M. Moreno Maza,

É. Schost ISSAC 97) Multithreaded parallel implementation of

arithmetic operations modulo a triangular set. (X. Li,

M. Moreno Maza PASCO-07)

◮ PART V Computations Modulo Regular Chains Computations

modulo regular chains. (X. Li, M. Moreno Maza, W. Pan ISSAC’09)

◮ PART VI Software Library The Modpn library: Bringing fast

polynomial arithmetic into Maple. (X. Li, M. Moreno Maza,

R. Rasheed, É. Schost MICA’08)

PART II: Fast Polynomial Arithmetic

◮ What is fast polynomial arithmetic.

◮ Historical notes for the use of fast polynomial arithmetic.

◮ Implementation effort on fast polynomial arithmetic.

◮ Performance of the implementation.

PART II / Fast Polynomial Arithmetic

◮ What is this?
Univariate polynomial multiplication, division, GCD, etc. with
quasi-linear complexity, i.e O(d log d), where d is the degree
bound of the input polynomials.

◮ Multiplication time:
M(d) number of coefficient operations conducted for a
univariate polynomial multiplication in degree less than d.

Classical Multiplication M(d) = 2d2

Karatsuba Multiplication M(d) = 9d1.59

FFT over an arbitrary ring M(d) = C d log d log log d

◮ Example: Extended Euclidean Algorithm:

EEA O(d2)

FEEA 33M(d) log d

PART II / Fast Arithmetic: Historical Notes

◮ Asymptotically fast algorithms for polynomial and matrix
arithmetic have been known for more than forty years, such as
Karatsuba multiplication (1962), Cooley and Tukey FFT
(1965), and Strassen (1969).

◮ Unfortunately, their impact on computer algebra systems has
been reduced until recently.

◮ In the last decade, several software such as Magma, NTL,
LinBox for performing symbolic computations have put a
great deal of effort on high performance based on
asymptotically fast arithmetic.

◮ Why did we start our implementation from the scratch?

PART II / Implementation Effort

◮ Implementation levels:
Fp→Fp[X]→Fp[X1, · · ·, Xn]→Fp[X1, · · ·, Xn]/〈T 〉.

◮ Fp: new integer reduction tricks.

◮ Fp[X]: use of FFT/TFT, fast division, GCD, fast
interpolation etc., code optimization such as reducing cache
misses, pipeline hazard, memory consumption, loop overhead
also thread-level parallelism.

◮ Fp[X1, · · ·, Xn]: Extending the univariate arithmetic to
multidimensional FFT/TFT, interpolation, subresultants etc.

◮ Fp[X1, · · ·, Xn]/〈T 〉: New algorithms such as multiplication
modulo a monic triangular set,GCD and regularity test
modulo regular chains (introduced in later slides).

PART II / Specialized Montgomery Reduction Trick

◮ Let p = c2n + 1 be a prime for c < 2n. E.g p = 5∗215 + 1.
◮ Let ℓ = ⌈log2(p)⌉ and let R = 2ℓ.
◮ Input: a and ω, both reduced modulo p,
◮ Output: A such that A ≡ aω/R mod p and

−(p − 1) < A < 2(p − 1).

1. M1 = aω

2. (q1, r1) = (M1 div R, M1 mod R)

3. M2 = r1c2n

4. (q2, r2) = (M2 div R, M2 mod R)

5. M3 = r2c2n

6. q3 = M3 div R

7. A = q1 − q2 + q3.

Proposition

We use 3 single precision multiplications. The original trick uses 2

single and 1 double precision.

PART II / Univariate Multiplication over Fp

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0 20 40 60 80 100 120 140 160 180 200

T
im

e

Degree

Plain Mul
Our FFT
NTL FFT

Figure: Univariate Multiplication Plain vs. Our FFT vs. NTL FFT.

PART II / Univariate Division over Fp

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 100 200 300 400 500 600

T
im

e

Degree

Plain Uni-Div.
NTL 1 Prime Fast Div.

OUR 1 Prime Fast Div.

Figure: Univariate (Dense) Division Plain vs. Our Fast vs. NTL Fast

PART II / Truncated Fourier Transform

◮ Truncated Fourier Transform (TFT) (van der Hoeven 04).

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 50 100 150 200 250 300 350

T
im

e

Degree

FFT
TFT

Figure: Univariate FFT vs. TFT

PART II / Multivariate Multiplication

◮ Compute the product of f1 and f2 in Z/pZ[x1, x2, x3], p is
64-bit precision prime number.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14 16 18 20

T
im

e

Partial degree

Plain Mul.
TFT Mul

Figure: Plain vs. FFT

PART III: Supporting Higher Level Algorithms in
AXIOM

◮ Why use AXIOM as the experimentation environment?

◮ Impact of the different data represenations.

◮ Impact of the programming languages.

◮ Can our fast arithmetic implementation speed up AXIOM

high level pre-exsiting algorithms?

PART III / Speed Up Higher Level Pre-existing
Algorithms in AXIOM

• Focus on implementation issues in AXIOM.
• Open AXIOM has a multiple-language level construction.

Spad

Lisp

C

Assembly code

• Mixed code at each level for high performance.

PART III / Languages, types

Benchmark: van Hoeij and Monagan Modular GCD algorithm
Input: f1, f2 ∈ Q(a1, a2, . . . , ae)[y]
Output: GCD(f1, f2)

Multivariate Recursive Univariate

SMP (sparse) in spad SUP (sparse) in spad

DRMP (dense) in spad DUP (dense) in spad

MMA (dense) in lisp SUP (sparse) in spad

MMA (dense) in lisp DUP (dense) in spad

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

T
im

e
[s

ec
]

Coefficients bound

UP(NSMP(Q,[v,w,x,y,z]))
DUP(DMP(Q,[v,w,x,y,z]))
UP(MMA(Q,[v,w,x,y,z]))

DUP(MMA(Q,[v,w,x,y,z]))

PART III / Fast Arithmetics in C Supporting
Higher Level algorithms

◮ Square-free factorization in Fp[x].

◮ Comparing with Maple and Magma.

 0

 5

 10

 15

 20

 25

 30

 35

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
[s

ec
]

Total Degree

AXIOM-Apr-06
Magma-2.11-2

Maple-9.5

PART IV / Arithmetic Modulo Triangular Set

Monic Triangular Sets:
A family of polynomials T = (T1, . . . ,Tn) in R[x1 < · · · < xn],
where R is a ring and each each lc(Ti , Xi) = 1 and each Ti is
reduced w.r.t. {T1, . . . ,Ti−1}.

T

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tn(x1, . . . , xn)
...

T2(x1, x2)
T1(x1)

Fast arithmetic modulo monic triangular set :

◮ Well developed for univariate case. (Sieveking 72) (Kung 74)

◮ Still many challenges in multivariate case.

PART IV / Modular Multiplication

Example of modular multiplication.
Input : P1 = y2 + x , P2 = yx , and T = {x2 + 1, y3 + x}.
Ouput : P1P2 mod T = 1 − y .

Important observation of this operation.

◮ Modular multiplication is efficiency-critical to many other
operations (GCD, inversion, Hensel Lifting), which are
themselves the major sub-algorithm of polynomial system
solvers based on triangular decomposition.

◮ Once optimized, it has the potential to bring huge speed-up
factors to higher level operations.

PART IV / Theorem

Best Known complexity for modular multiplication:

◮ Input: A and B in R[x1, . . . , xn] reduced w.r.t. {T1, . . . ,Tn}.
◮ Output: the product of A B mod 〈T1, . . . ,Tn}.
◮ The size of input is δT = deg(T1, x1) · · · deg(Tn, xn)
◮ The total cost is O (̃knδT), k is a contant. (O˜ means we

neglect log factors).
◮ The best known bound for k ≃ 200

Our improvement.

Theorem. Multiplications modulo T1(x1), . . . ,Tn(x1, . . . , xn)
can be performed in O (̃4nδT) base field operations.

ModMul(A, B, {T1, . . . ,Tn})

1 D := AB computed in R[x1, . . . , xn]

2 return NormalFormn(D, {T1, . . . ,Tn})

PART IV / Algorithm

NormalForm1(A : R[x1], {T1 : R[x1]})

1 S1 := Rev(T1)
−1 mod x

deg(A)−deg(T1)+1
1

2 D := Rev(A)S1 mod x
deg(A)−deg(T1)+1
1

3 D := T1 Rev(D)

4 return A − D

NormalForm2(A : R[x1, x2], {T1 : R[x1], T2 : R[x1, x2]})

1 A := map(NormalForm1, Coeffs(A, x2), {T1})

2 S2 := Rev(T2)
−1 mod T1, x

deg(A,x2)−deg(T2,x2)+1
2

3 D := Rev(A)S2 mod x
deg(A,x2)−deg(T2,x2)+1
2

4 D := map(NormalForm1, Coeffs(D, x2), {T1})

5 D := T2 Rev(D)

6 D := map(NormalForm1, Coeffs(D, x2), {T1})

7 return A − D

PART IV / Performance

[left] comparison of classical (plain) and asymptotically
fast strategies.

[right] comparison with MAGMA.

 60 120 180 240 300 0 20 40 60 80 100 120 0

 5

 10

 15

 20

 25

Time Plain
Fast

d1 d2 d3

Time

 60 120 180 240 300 0 20 40 60 80 100 120
 0
 2
 4
 6
 8

 10
 12
 14
 16

Time
Magma

Our code

d1 d2
d3

Time

◮ Asymptotically fast strategy dominates the classical one.

◮ Our fast implementation is better than Magma’s one (the
best known implementation).

PART IV / Performance

[left] comparison with Maple’s recden package, for GCD
computations modulo a triangular set (over a finite
field).

[right] comparison with AXIOM (our code vs. native
arithmetic), for GCD computations in a number field.

 60
 120

 180 2 4 6 8 10 12 14 16 18 20
 0

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Time
Maple

Our code

d1 d2
d3

Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

T
im

e

Degree

AXIOM modular GCD without fast arithmetic.
AXIOM modular GCD use fast arithmetic.

◮ Huge factor comparing with the Maple’s latest
implementation.

◮ In AXIOM, replacing only the modular multivariate operation.

PART IV / Parallel bottom-up NormalForm

P = number of CPUs. s = number of variables.

Thread-on-demand(f , TS , s)

if (s == 0) return f

S =
∏s

j=1 (deg(f , xj) + 1)

i = 1
while (i≤s) do

ss = S /
∏i

j=1 (deg(f , xj) + 1)

// suppose P divides ss.
q = ss / P
for j from 0 to P − 1 repeat

a = jp; b = (j + 1)p
Task = RS (f , a · · · b, TS , i)
CreateThread (Task)

i = i + 1
DumpThreadPool()

Central-thread-Pool(f , TS , s)

Create P threads, sleep.
if (s == 0) return f

S =
∏s

j=1 (deg(f , xj) + 1)

i = 1
while (i≤s) do

ss = S /
∏i

j=1 (deg(f , xj) + 1)

// suppose P divides ss.
q = ss / P
for j from 0 to P − 1 repeat

a = jp; b = (j + 1)p
Task = RS (f , a · · · b, TS , i)
Wake up a thread to handle Task.

i = i + 1
Finish and terminate all threads.

PART IV / Serial vs. Parallel NormalForm
(central-thread-pool)

• AMD Opteron 4-processor 2.4 GHZ. Input f ∈Fp[x1, x2, x3, x4].

 4 5 6 7 8 9 10 11 12
 200

 400
 600

 800
 1000

 0
 5

 10
 15
 20
 25
 30
 35
 40

Time
Serial.

BULL, central-thread-pool.

d2

d1

Time

• With a small/medium number of relative large tasks,
thread-on-demand and central-thread-pool have very similar performance.

• But, with a large number of relatively small tasks, the latter is slightly

better in our application (shared memory).

PART V / Regular chain and GCD

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ saturated ideal: sat(T) = 〈T 〉 : h∞T with hT := ΠC∈T init(C).

◮ T is regular chain if for each C ∈ T , with v := mvar(C),
init(C) := lc(C , v) is a regular modulo sat(T<v).

◮ Let P, Q, G ∈ k[x1 < · · · < xn][y] be 6= 0 and T regular
chain. G is a regular GCD of P, Q modulo sat(T) if

(i) lc(G , y) is a regular modulo sat(T),
(ii) G ∈ 〈P,Q〉 modulo sat(T),
(iii) degy (G) > 0 ⇒ premy (P,G),premy (Q,G) ∈ sat(T).

◮ One can compute T 1, . . . ,T e and G1, . . . ,Ge such that Gi is
a regular GCD of P, Q modulo sat(Ti) and

√

sat(T) = ∩e
i=0

√

sat(T i).

PART V / Main Result

◮ Let P, Q ∈ k[x1 < · · · < xn][y] with
mvar(P) = mvar(Q) = y .

◮ Let Sj for the j-th subresultant (w.r.t. y) of P, Q. Let
T ⊂ k[x1 < · · · < xn] be regular chain.

◮ Assume
◮ res(P,Q, y) ∈ sat(T),
◮ init(P) and init(Q) are regular modulo sat(T),
◮ Let 1 ≤ d ≤ deg(Q, y) such that Sj ∈ sat(T) for all 0 ≤ j < d .
◮ lc(Sd , y) is regular modulo sat(T),

Theorem
Assume that one of the following conditions holds:

◮ sat(T) is radical,

◮ for all d < k ≤ mdeg(Q), the coefficient of yk in Sk is either

null or regular modulo sat(T).

Then, Sd is a regular GCD of P, Q modulo sat(T).

PART V / Algorithm

◮ Assume that the subresultants Sj for 1 ≤ j < mdeg(Q) are
computed.

◮ Then one can compute a regular GCD of P, Q modulo sat(T)
by performing a bottom-up search.

B

C

A

D

E

O

PART V / Complexity

◮ Let xn+1 := y . Define di := max(deg(P, xi), deg(Q, xi)).

◮ Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

◮ We compute Sj for 1 ≤ j < mdeg(Q) by evaluation (via FFT)
on an n-dimensional grid of points not cancelling init(P) and
init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

◮ Then res(P, Q, y) = S0 is interpolated in time O(B log(B)).

◮ When sat(T) is radical, neglecting the costs for regularity
tests, a regular GCD is interpolated within O(dn+1B log(B)).

◮ If a regular GCD is expected to have degree 1 in y all
computations fit in

O (̃dn+1B).

PART V / Bivariate System Solving

◮ Let P, Q ∈ k[x1 < x2] with deg(P, x2) ≥ deg(Q, x2) > 0.
Assume R := res(P, Q, x2) 6∈ k and
gcd(lc(P, x2), lc(Q, x2)) = 1.

◮ Assume P, Q admits a regular GCD G modulo 〈R〉. Then we
have

V (P, Q) = V (R, G).

◮ If deg(G , y) = 1 then V (P, Q) can be decomposed at the
cost of computing R that is O∼(d2

2d1) operations in k.

◮ Otherwise the decompsition is obtained within O∼(d3
2d1).

PART V / Regularity Test

◮ Input: T regular chain with |T | = n and
Q ∈ k[x1 < . . . < xn].

◮ Output: yes if Q is regular or 0 w.r.t sat(T), a splitting of T

otherwise.

1 Q := NormalFormn(Q, T)
2 if Q ∈ k then return yes
3 v := mvar(Q)
4 R := res(Q, Tv , v)
5 if R ≡ 0 mod sat(T<v) then
6 G := RegularGCD(Q, Tv , T<v)
7 output T<v ∪ G ∪ T>v

8 return T<v ∪ Tv

G
∪ T>v

9 if R regular mod sat(T<v) then return yes
10 if computations split then follow the branches

PART VI / The Modpn library (I)

Modpn is a Maple library implementing Z/pZ[X1, . . . ,Xn]:

◮ highly efficient C implementations of key routines:

- multivariate multiplication
- normal form modulo a 0-dim regular chain
- multivariate evaluation / interpolation
- subresultant chain, iterated resultant
- invertibility test modulo a 0-dim regular chain

◮ conversions to and from Maple representations (DAG /
Recden).

◮ high-level algorithms written in Maple, supported by our C
routines:

- GCD of multivariate polynomials modulo a regular chain
- regularity test of a polynomial modulo a regular chain
- solver of a (square, 0-dim) polynomial systems

PART VI / The Modpn library (II)

Maple−Dag

Maple−

Recursive−

Dense

C−Dag

C−Cube

C level

Maple Level1

6

7

3

2

4

5
C−2−Vector

8
9

- C-Dag for straight-line program.

- C-Cube for FFT-based computations.

- C-2-Vector for compact dense representation.

- Maple-Dag for calling RegularChains library.

- Maple-Recursive-Dense for calling Recden library.

PART VI / Benchmark

◮ Bivariate solver, random generic input systems.
◮ For the largest examples (having about 5700 solutions), the

ratio is about 460/7.

 6 12 18 24 30 36 0 5 10 15 20 25 30 35 40
 0

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Time
Magma

our code

d1
d2

Time

Figure: Generic bivariate systems: Magma vs. us.

PART VI / Benchmark

◮ Bivariate solver, designed examples to enforce many
“splittings” (more branches of computations).

◮ For the largest examples, the ratio is about 5260/80, in our
favor.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

tim
e

d

Magma
our code

Figure: Non-generic bivariate systems: Magma vs. us.

PART VI / Benchmark

◮ Regularity test, brivariate input system, very few “splitting”
(possi . = 2%).

◮ For the largest examples, the ratio is about 72/9, in our favor.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

tim
e

d

Magma
our code

Figure: Bivariate case: timings, possi . = 2%.

PART VI / Benchmark

◮ Regularity test, brivariate input system, intensive “splitting”
(possi . = 50%).

◮ After partial degree 37, our code becomes faster.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

tim
e

d

Magma
our code

Figure: Bivariate case: timings, possi . = 50%.

PART VI / Benchmark

Percentage Maple/C conversion time of the overall computation
time:

◮ The profiling information for previous two benchmark
examples.

◮ For possi . = 2% very few “splitting” case, reaches 60%.
◮ For possi . = 50% intensive “splitting” case, reaches 83%.

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40

tim
e

(%
)

degree

p=0.98
p=0.5

Figure: Bivariate case: time spent in conversions.

PART VI / Benchmark

◮ Regularity test.

◮ For relative small input system, the new fast code is already
hundreds times faster than the pre-exiting code in Maple.

d1 d2 d3 Regularize Fast Regularize
2 2 3 0.292 0.012
3 4 6 1.732 0.028
4 6 9 68.972 0.072
5 8 12 328.296 0.204
6 10 15 >1000 0.652
7 12 18 >1000 2.284
8 14 21 >1000 5.108
9 16 24 >1000 18.501
10 18 27 >1000 31.349
11 20 30 >1000 55.931
12 22 33 >1000 101.642

Table: intensive “splitting” case 3-variable case.

Conclusion

◮ We have investigated and demonstrated that with suitable
implementation techniques, FFT-based asymptotically fast
polynomial arithmetic in practice can outperform the
corresponding classical algorithms in a significant manner.

◮ By integrating our C-level implementation of fast polynomial
arithmetic into AXIOM/Maple, the higher level pre-existing
related libraries has been sped up in large scale.

◮ We have reported new algorithms, i.e. modular multiplication,
regular GCD, and regularity test.

◮ In this research, we have focused on algorithms modulo
regular chains in dimension-zero. Higher dimensional
asymptotically fast triangular decompositions algorithms can
be developed and implemented based on these results.

Reference

J. Grabmeier, E. Kaltofen, and V. Weispfenning, editors.
Computer Algebra Handbook.
Springer, 2003.

K. Geddes, S. Czapor, and G. Labahn.
Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

M. Moreno Maza.
On triangular decompositions of algebraic varieties.
Technical Report TR 4/99, NAG Ltd, Oxford, UK, 1999.
Presented at the MEGA-2000 Conference, Bath, England.

R. T. Moenck.
Practical fast polynomial multiplication.
In SYMSAC ’76: Proceedings of the third ACM symposium on Symbolic and

algebraic computation, pages 136–148, New York, NY, USA, 1976. ACM Press.

D. H. Bailey, K. Lee, and H. D. Simon.
Using Strassen’s algorithm to accelerate the solution of linear systems.
The Journal of Supercomputing, 4(4):357–371, 1990.

X. Li.
Efficient Management of Symbolic Computations with Polynomials.
2005.
University of Western Ontario

Magma: the computational algebra system for algebra, number theory and
geometry.
http://magma.maths.usyd.edu.au/magma/.

NTL: the Number Theory Library.
http://www.shoup.net/ntl.

M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo.
SPIRAL: Code generation for DSP transforms.
Proc’ IEEE, 93(2):232–275, 2005.

M. Frigo and S. G. Johnson.
Fftw.
http://www.fftw.org/.

F. Lemaire, M. Moreno Maza, and Y. Xie.
The RegularChains library.
In I. S. Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

A. Karatsuba and Y. Ofman.
Multiplication of multidigit numbers on automata.
Soviet Physics Doklady, (7):595–596, 1963.

J. Cooley and J. Tukey.
An algorithm for the machine calculation of complex Fourier +series.
Math. Comp., 19:297–301, 1965.

V. Strassen.
Gaussian elimination is not optimal.
Numerische Mathematik., 13:354–356, 1969.

J. Hoeven.
Truncated Fourier transform.
In Proc. ISSAC’04. ACM Press, 2004.

AXIOM: a general-purpose commercial computer algebra system.
http://page.axiom-developer.org.

