
Synchronizing without Locks and Concurrent Data
Structures

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS 4435 - CS 9624

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 1 / 50

Plan

1 Synchronization of Concurrent Programs

2 Lock-free protocols

3 Reducer Hyperobjects in Cilk++

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 2 / 50

Synchronization of Concurrent Programs

Plan

1 Synchronization of Concurrent Programs

2 Lock-free protocols

3 Reducer Hyperobjects in Cilk++

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 3 / 50

Synchronization of Concurrent Programs

Memory consistency model (1/4)

MOV [a], 1 ;Store
MOV EBX [b] ;Load
MOV [a], 1 ;Store
MOV EBX [b] ;Load

MOV [b], 1 ;Store
MOV EAX [a] ;Load
MOV [b], 1 ;Store
MOV EAX [a] ;Load

Processor 0 Processor 1

MOV EBX, [b] ;LoadMOV EBX, [b] ;Load MOV EAX, [a] ;LoadMOV EAX, [a] ;Load

Assume that, initially, we have a = b = 0.

What are the final values of the registers EAX and EBX after both
processors execute the above codes?

It depends on the memory consistency model: how memory
operations behave in the parallel computer system.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 4 / 50

Synchronization of Concurrent Programs

Memory consistency model (2/4)

This is a contract between programmer and system, wherein the
system guarantees that if the programmer follows the rules, memory
will be consistent and the results of memory operations will be
predictable.

In concurrent programming, a system provides causal consistency if
memory operations that potentially are causally related are seen by
every node of the system in the same order. However, concurrent
writes that are not causally related may be seen in different order by
different nodes.

Causal consistency is weaker than sequential consistency, which
requires that all nodes see all writes in the same order

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 5 / 50

Synchronization of Concurrent Programs

Memory consistency model (3/4)

Sequential consistency was defined by Leslie Lamport (1979) for
concurrent programming, as follows: the result of any execution is the
same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.

The sequence of instructions as defined by a processor’s program are
interleaved with the corresponding sequences defined by the other
processors’s programs to produce a global linear order of all
instructions.

A load instruction receives the value stored to that address by the
most recent store instruction that precedes the load, according to the
linear order.

The hardware can do whatever it wants, but for the execution to be
sequentially consistent, it must appear as if loads and stores obey the
global linear order.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 6 / 50

Synchronization of Concurrent Programs

Memory consistency model (4/4)

P 0 P 1
MOV [a], 1 ;Store
MOV EBX, [b] ;Load
MOV [a], 1 ;Store
MOV EBX, [b] ;Load

MOV [b], 1 ;Store
MOV EAX, [a] ;Load
MOV [b], 1 ;Store
MOV EAX, [a] ;Load

1

2

3

4

Processor 0 Processor 1

, [] ;, [] ; , [] ;, [] ;

Interleavings
1 1 1 3 3 3
2 3 3 1 1 4
3 2 4 2 4 1
4 4 2 4 2 2

EAX 1 1 1 1 1 0EAX 1 1 1 1 1 0
EBX 0 1 1 1 1 1

Sequential consistency implies that no execution ends with
EAX = EBX = 0.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 7 / 50

Synchronization of Concurrent Programs

Mutual exclusion (1/4)

Mutual exclusion (often abbreviated to mutex) algorithms are used in
concurrent programming to avoid the simultaneous use of a common
resource, such as a global variable, by pieces of code called critical
sections.

A critical section is a piece of code where a process or thread accesses
a common resource.

The synchronization of access to those resources is an acute problem
because a thread can be stopped or started at any time.

Most implementations of mutual exclusion employ an atomic
read-modify-write instruction or the equivalent (usually to implement
a lock) such as test-and-set, compare-and-swap, . . .

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 8 / 50

Synchronization of Concurrent Programs

Mutual exclusion (2/4)

A set of operations can be considered atomic when two conditions are
met:

Until the entire set of operations completes, no other process can know
about the changes being made (invisibility); and
If any of the operations fail then the entire set of operations fails, and
the state of the system is restored to the state it was in before any of
the operations began.

The test-and-set instruction is an instruction used to write to a
memory location and return its old value as a single atomic (i.e.
non-interruptible) operation.

If multiple processes may access the same memory, and if a process is
currently performing a test-and-set, no other process may begin
another test-and-set until the first process is done.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 9 / 50

Synchronization of Concurrent Programs

Mutual exclusion (3/4)

#define LOCKED 1

int TestAndSet(int* lockPtr) {

int oldValue;

// Start of atomic segment

// The following statements are pseudocode for illustrative purposes only.

// Traditional compilation of this code will not guarantee atomicity, the

// use of shared memory (i.e. not-cached values), protection from compiler

// optimization, or other required properties.

oldValue = *lockPtr;

*lockPtr = LOCKED;

// End of atomic segment

return oldValue;

}

The test-and-set instruction is an instruction used to write to a memory
location and return its old value as a single atomic (i.e., non-interruptible)
operation. Typically, the value 1 is written to the memory location.
If multiple processes may access the same memory location, and if a process is
currently performing a test-and-set, no other process may begin another
test-and-set until the first process is done.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 10 / 50

Synchronization of Concurrent Programs

Mutual exclusion (4/4)

volatile int lock = 0;

void Critical() {

while (TestAndSet(&lock) == 1);

// only one process can be in this section at a time

critical section

// release lock when finished with the critical section

lock = 0

}

A lock can be built using an atomic test-and-set instruction as above.
In absence of volatile, the compiler and/or the CPU(s) may optimize access to
lock and/or use cached values, thus rendering the above code erroneous.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 11 / 50

Synchronization of Concurrent Programs

Dekker’s algorithm (1/2)

Dekker’s algorithm is the first known correct solution to the mutual
exclusion problem in concurrent programming.

If two processes attempt to enter a critical section at the same time,
the algorithm will allow only one process in, based on whose turn it is.

If one process is already in the critical section, the other process will
busy wait for the first process to exit.

This is done by the use of

two flags f0 and f1 which indicate an intention to enter the critical
section and
a turn variable which indicates who has priority between the two
processes.

Dekker’s algorithm guarantees mutual exclusion, freedom from
deadlock, and freedom from starvation.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 12 / 50

Synchronization of Concurrent Programs

Dekker’s algorithm (2/2)

flag[0] := false flag[1] := false

turn := 1

// p0: // p1:

flag[0] := true flag[1] := true

while flag[1] = true { while flag[0] = true {

if turn <> 0 { if turn <> 1 {

flag[0] := false flag[1] := false

while turn <> 0 { while turn <> 1 {

} }

flag[0] := true flag[1] := true

} }

} }

// critical section // critical section

... ...

turn := 1 turn := 0

flag[0] := false flag[1] := false

// remainder section // remainder section
(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 13 / 50

Synchronization of Concurrent Programs

Peterson’s algorithm (1/3)

Peterson’s algorithm is another mutual exclusion mechanism that
allows two processes to share a single-use resource without conflict,
using only shared memory for communication.

While Peterson’s original formulation worked with only two processes,
the algorithm can be generalized for more than two, which makes it
more powerful than Dekker’s algorithm.

The algorithm uses two variables, flag[] and turn:

A flag[i] value of 1 indicates that the process i wants to enter the
critical section.
The variable turn holds the ID of the process whose turn it is.
Entrance to the critical section is granted for process P0 if P1 does not
want to enter its critical section or if P1 has given priority to P0 by
setting turn to 0.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 14 / 50

Synchronization of Concurrent Programs

Peterson’s algorithm (2/3)

flag[0] = 0;

flag[1] = 0;

P0: flag[0] = 1; P1: flag[1] = 1;

turn = 1; turn = 0;

while (flag[1] == 1 while (flag[0] == 1

&& turn == 1) && turn == 0)

{ {

// busy wait // busy wait

} }

// critical section // critical section

... ...

// end of critical section // end of critical section

flag[0] = 0; flag[1] = 0;

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 15 / 50

Synchronization of Concurrent Programs

Peterson’s algorithm (3/3)

x
widget

widget x; //protected variablewidget x; //protected variable

x

bool she_wants(false);
bool he_wants(false);
enum theirs {hers, his} turn;

bool she_wants(false);
bool he_wants(false);
enum theirs {hers, his} turn;Her His

she_wants = true;
 hi

she_wants = true;
 hi

Her
Thread

His
Thread

he_wants = true;
 h

he_wants = true;
 hturn = his;

while(he_wants && turn==his);
frob(x); //critical section
she_wants = false;

turn = his;
while(he_wants && turn==his);
frob(x); //critical section
she_wants = false;

turn = hers;
while(she_wants && turn==hers);
borf(x); //critical section
he_wants = false;

turn = hers;
while(she_wants && turn==hers);
borf(x); //critical section
he_wants = false;_ ;_ ; _ ;_ ;

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 16 / 50

Synchronization of Concurrent Programs

Instruction Reordering (1/2)

No modern-day processor implements sequential consistency.

All implement some form of relaxed consistency, such as causal
consistency.

MOV [a], 1 ;Store
MOV EBX [b] ;Load
MOV [a], 1 ;Store
MOV EBX [b] ;Load

MOV EBX, [b] ;Load
MOV [a] 1 ;Store
MOV EBX, [b] ;Load
MOV [a] 1 ;StoreMOV EBX, [b] ;LoadMOV EBX, [b] ;Load MOV [a], 1 ;StoreMOV [a], 1 ;Store

Program Order Execution Order

Hardware actively reorders instructions. Compilers may reorder
instructions, too.

This instruction reordering is designed to obtain higher performance
by covering load latency with instruction-level parallelism.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 17 / 50

Synchronization of Concurrent Programs

Instruction Reordering (2/2)

MOV [a], 1 ;Store
MOV EBX [b] ;Load
MOV [a], 1 ;Store
MOV EBX [b] ;Load

MOV EBX, [b] ;Load
MOV [a] 1 ;Store
MOV EBX, [b] ;Load
MOV [a] 1 ;StoreMOV EBX, [b] ;LoadMOV EBX, [b] ;Load MOV [a], 1 ;StoreMOV [a], 1 ;Store

Program Order Execution Order

When is it safe for the hardware or compiler to perform this
reordering?

Two cases:

When a and b are different variables.
When there is no concurrency

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 18 / 50

Synchronization of Concurrent Programs

Hardware reordering

Load Bypass

Memory
SystemProcessor Network

Store Buffer
y

The processor can issue stores faster than the network can handle
them; this requires a store buffer.

Since a load may stall the processor until it is satisfied, loads take
priority, bypassing the store buffer

If a load address matches an address in the store buffer, the store
buffer returns the result.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 19 / 50

Synchronization of Concurrent Programs

x86 memory consistency

MOV [a] 1 ;StoreMOV [a] 1 ;Store MOV [b] 1 ;StoreMOV [b] 1 ;Store1 3

Processor 0 Processor 1
MOV [a], 1 ;Store
MOV EBX, [b] ;Load
MOV [a], 1 ;Store
MOV EBX, [b] ;Load

MOV [b], 1 ;Store
MOV EAX, [a] ;Load
MOV [b], 1 ;Store
MOV EAX, [a] ;Load

1

2

3

4

Loads are not reordered with loads

Stores are not reordered with stores.

Stores are not reordered with prior loads

A load may be reordered with a prior store to a different location but
not with a prior store to the same location.

Loads and stores are not reordered with lock instructions.

Stores to the same location respect a global total order

Lock instructions respect a global total order.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 20 / 50

Synchronization of Concurrent Programs

Impact of reordering

MOV [a] 1 ;Store MOV [b] 1 ;Store1 3

Processor 0 Processor 1
MOV [a], 1 ;Store
MOV EBX, [b] ;Load

MOV [b], 1 ;Store
MOV EAX, [a] ;Load

1

2

3

4

MOV EBX, [b] ;Load
MOV [a], 1 ;Store
MOV EBX, [b] ;Load
MOV [a], 1 ;Store

MOV EAX, [a] ;Load
MOV [b], 1 ;Store
MOV EAX, [a] ;Load
MOV [b], 1 ;Store

2

1

4

3

The ordering 2,4,1,3 produces EAX = EBX = 0.

Instruction reordering violates sequential consistency.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 21 / 50

Synchronization of Concurrent Programs

Further impact of reordering

she_wants = true;

turn his;

she_wants = true;

turn his;

he_wants = true;

turn hers;

he_wants = true;

turn hers;turn = his;

while(he_wants && turn==his);

frob(x); //critical section

turn = his;

while(he_wants && turn==his);

frob(x); //critical section

turn = hers;

while(she_wants && turn==hers);

borf(x); //critical section

turn = hers;

while(she_wants && turn==hers);

borf(x); //critical section

she_wants = false;she_wants = false; he_wants = false;he_wants = false;

The loads of he wants and she wants can be reordered before the
stores of he wants and she wants.

Consequently, both threads can enter their critical sections
simultaneously!

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 22 / 50

Synchronization of Concurrent Programs

Memory fences

she_wants = true;

turn his;

she_wants = true;

turn his;

he_wants = true;

turn hers;

he_wants = true;

turn hers;turn = his;

while(he_wants && turn==his);

frob(x); //critical section

turn = his;

while(he_wants && turn==his);

frob(x); //critical section

turn = hers;

while(she_wants && turn==hers);

borf(x); //critical section

turn = hers;

while(she_wants && turn==hers);

borf(x); //critical section

she_wants = false;she_wants = false; he_wants = false;he_wants = false;

A memory fence (or memory barrier) is a hardware action that
enforces an ordering constraint between the instructions before and
after the fence

A memory fence can be issued explicitly as an instruction (e.g.,
MFENCE) or be performed implicitly by locking, compare-and-swap,
and other synchronizing instructions.

The typical cost of a memory fence is comparable to that of an
L2-cache access.

Memory fences can restore consistency.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 23 / 50

Lock-free protocols

Plan

1 Synchronization of Concurrent Programs

2 Lock-free protocols

3 Reducer Hyperobjects in Cilk++

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 24 / 50

Lock-free protocols

The summing problem

int main()

{

const std::size_t n = 1000000;

extern X myArray[n];

// ...

int result = 0;

for (std::size_t i = 0; i < n; ++i)

{

result += compute(myArray[i]);

}

std::cout << "The result is: "

<< result

<< std::endl;

return 0;

}

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 25 / 50

Lock-free protocols

Mutex for the summing problem

mutex L;

cilk_for (std::size_t i = 0; i < n; ++i)

{

int temp = compute(myArray[i]);

L.lock();

result += temp;

L.unlock();

}

In this scheme, what happens if a loop iteration is somehow stuck
(swapped out by the operating system, . . .) just after acquiring the
lock?

Then all other loop iterations have to wait.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 26 / 50

Lock-free protocols

Compare-And-Swap

int cmpxchg(int *x, int new, int old) {

int current = *x;

if (current == old)

*x = new;

return current;

}

This an atomic instruction provided by the CMPXCHG instruction on
x86.

Note: No instruction comparable to CMPXCHG is provided for
floating-point registers.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 27 / 50

Lock-free protocols

CAS for the summing problem

int result = 0;

cilk_for (std::size_t i = 0; i < n; ++i)

{

temp = compute(myArray[i]);

do {

int old = result;

int new = result + temp;

} while (old != cmpxchg(&result, new, old));

}

In this scheme, what happens if a loop iteration is stuck (swapped by
the operating system, . . .)?

No other loop iterations need wait.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 28 / 50

Lock-free protocols

Lock-free stack

struct Node {

Node* next;

int data;

};

class Stack {

private:

Node* head;

}

7777 7575head:

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 29 / 50

Lock-free protocols

Lock-free push

public:

void push(Node* node) {

do {

node->next = head;

} while (node->next

!= cmpxchg(&head,

node,

node->next));

}

7777 7575head:

8181node: 8181node:

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 30 / 50

Lock-free protocols

Lock-free pop

Node* pop() {

Node* current = head;

while(current) {

if(current == cmpxchg(&head,

current->next,

current)) {

break;

}

current = head;

}

return current;

}

}

1515 9494 2626head:

current:

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 31 / 50

Lock-free protocols

The ABA Problem (1/7)

The ABA Problem occurs when multiple threads (or processes)
accessing shared memory interleave.

Below is the sequence of events that will result in the ABA problem:

Process P1 reads value A from shared memory,
P1 is preempted, allowing process P2 to run,
P2 modifies the shared memory value A to value B and back to A before
preemption,
P1 begins execution again, sees that the shared memory value has not
changed and continues.

Although P1 can continue executing, it is possible that the behavior
will not be correct due to the hidden modification in shared memory.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 32 / 50

Lock-free protocols

The ABA Problem (2/7)

1515 9494 2626head:

current:

1 Thread 1 begins to pop 15, but stalls after reading current->next.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 33 / 50

Lock-free protocols

The ABA Problem (3/7)

15151515 9494 2626head:

current:

1 Thread 1 begins to pop 15, but stalls after reading current->next.

2 Thread 2 pops 15.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 34 / 50

Lock-free protocols

The ABA Problem (4/7)

949494941515 2626head:

current:

1 Thread 1 begins to pop 15, but stalls after reading current->next.

2 Thread 2 pops 15.

3 Thread 2 pops 94

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 35 / 50

Lock-free protocols

The ABA Problem (5/7)

15151515 9494 2626head:

current:

1 Thread 1 begins to pop 15, but stalls after reading current->next.

2 Thread 2 pops 15.

3 Thread 2 pops 94

4 Thread 2 pushes 15 back on.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 36 / 50

Lock-free protocols

The ABA Problem (6/7)

1515 9494 2626head:

current:

1 Thread 1 begins to pop 15, but stalls after reading current->next.

2 Thread 2 pops 15.

3 Thread 2 pops 94

4 Thread 2 pushes 15 back on.

5 Thread 1 resumes, and the compare-and- swap completes, removing
15, but putting the garbage 94 back on the list.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 37 / 50

Lock-free protocols

The ABA Problem (7/7)

Work-arounds:

Associate a reference count with each pointer.

Increment the reference count every time the pointer is changed.

Use a double-compare-and-swap instruction (if available) to
atomically swap both the pointer and the reference count.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 38 / 50

Reducer Hyperobjects in Cilk++

Plan

1 Synchronization of Concurrent Programs

2 Lock-free protocols

3 Reducer Hyperobjects in Cilk++

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 39 / 50

Reducer Hyperobjects in Cilk++

Recall the summing problem

int main()

{

const std::size_t n = 1000000;

extern X myArray[n];

// ...

int result = 0;

for (std::size_t i = 0; i < n; ++i)

{

result += compute(myArray[i]);

}

std::cout << "The result is: "

<< result

<< std::endl;

return 0;

}

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 40 / 50

Reducer Hyperobjects in Cilk++

Reducer solution for the summing problem (1/3)

int main()

{

const std::size_t ARRAY_SIZE = 1000000;

extern X myArray[ARRAY_SIZE];

// ...

cilk::reducer_opadd<int> result;

cilk_for (std::size_t i = 0; i < ARRAY_SIZE; ++i)

{

result += compute(myArray[i]);

}

std::cout << "The result is: "

<< result.get_value()

<< std::endl;

return 0;

}

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 41 / 50

Reducer Hyperobjects in Cilk++

Reducer solution for the summing problem (2/3)

int main()

{

const std::size_t ARRAY_SIZE = 1000000;

extern X myArray[ARRAY_SIZE];

// ...

cilk::reducer_opadd<int> result;

cilk_for (std::size_t i = 0; i < ARRAY_SIZE; ++i)

{

result += compute(myArray[i]);

}

std::cout << "The result is: "

<< result.get_value()

<< std::endl;

return 0;

}

Declare result to be a summing reducer over int.

Updates are resolved automatically without races or contention.

At the end the underlying int value can be extracted.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 42 / 50

Reducer Hyperobjects in Cilk++

Reducer hyperobjects (1/4)

x: 42 x: 14 x: 33Example:
summing

d
89

reducer

A variable x can be declared as a reducer for an associative operation,
such as addition, multiplication, logical AND, list concatenation, etc.

Strands can update x as if it were an ordinary nonlocal variable, but x
is, in fact, maintained as a collection of different copies, called views.

The Cilk++ runtime system coordinates the views and combines
them when appropriate.

When only one view of x remains, the underlying value is stable and
can be extracted.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 43 / 50

Reducer Hyperobjects in Cilk++

Reducer hyperobjects (2/4)

x: 42 x: 14 x: 33Example:
summing

d
89

reducer

Conceptually, a reducer is a variable that can be safely used by
multiple strands running in parallel.

The runtime system ensures that each worker has access to a private
copy of the variable, eliminating the possibility of races and without
requiring locks.

When the strands synchronize, the reducer copies are merged (or
”reduced”) into a single variable. The runtime system creates copies
only when needed, minimizing overhead.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 44 / 50

Reducer Hyperobjects in Cilk++

Reducer hyperobjects (3/4)

In the simplest form, a reducer is an object that has a value, an
identity, and a reduction function.

Consider the two possible executions of a cilk spawn, with and
without a steal

If no steal occurs, the reducer behaves like a normal variable.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 45 / 50

Reducer Hyperobjects in Cilk++

Reducer hyperobjects (4/4)

55

Noet: Reducers are objects. As a result, they cannot be copied directly. The results are
unpredictable if you copy a reducer object using memcpy(). Instead, use a copy constructor.

HOW REDUCERS WORK

In this section, we discuss in more detail the mechanisms and semantics of reducers. This
information should help the more advanced programmer understand more precisely what rules
govern the use of reducers as well as provide the background needed to write custom reducers.

In the simplest form, a reducer is an object that has a value, an identity, and a reduction function.

The reducers provided in the reducer library provide additional interfaces to help ensure that the
reducers are used in a safe and consistent fashion.

In this discussion, we refer to the object created when the reducer is declared as the "leftmost"
instance of the reducer.

In the following sections, we present a simple example and discuss the run-time behavior of the
system as this program runs.

First, consider the two possible executions of a cilk_spawn, with and without a steal. The
behavior of a reducer is very simple:

� If no steal occurs, the reducer behaves like a normal variable.
� If a steal occurs, the continuation receives a view with an identity value, and the child

receives the reducer as it was prior to the spawn. At the corresponding sync, the value in the
continuation is merged into the reducer held by the child using the reduce operation, the new
view is destroyed, and the original (updated) object survives.

The following diagrams illustrate this behavior:

No steal
If there is no steal after the cilk_spawn indicated by (A):

In this case, a reducer object visible in strand (1) can be directly updated by strand (3) and (4).
There is no steal, thus no new view is created and no reduce operation is called.

Steal
If strand (2), the continuation of the cilk_spawn at (A), is stolen:

If a steal occurs, the continuation receives a view with an identity
value, and the child receives the reducer as it was prior to the spawn.

At the corresponding sync, the value in the continuation is merged
into the reducer held by the child using the reduce operation, the new
view is destroyed, and the original (updated) object survives.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 46 / 50

Reducer Hyperobjects in Cilk++

Reducer solution for the summing problem (3/3)

x = 0;
x + 3;

x1 = 0;
x1 + 3;

original equivalent

x += 3;
x++;
x += 4;
x++;

x1 += 3;
x1++;
x1 += 4;
x1++; Can executex++;

x += 5;
x += 9;
x 2;

x1++;
x1 += 5;
x2 = 0;
x2 + 9;

Can execute
in parallel

with no races!
x -= 2;
x += 6;
x += 5;

x2 += 9;
x2 -= 2;
x2 += 6;
x2 + 5;x2 += 5;
x = x1 + x2;

If you dont look at the intermediate values, the result is uniquely defined,
because addition is associative.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 47 / 50

Reducer Hyperobjects in Cilk++

Defining a reducer (1/2)

In Cilk++, a monoid over a type T is a class that inherits from
cilk::monoid base<T> and defines:

a member function reduce() that implements the binary operation of
the monoid,
a member function identity() that constructs a fresh copy of the
identity element of the monoid.

struct sum_monoid : cilk::monoid_base<int> {

void reduce(int* left, int* right) const {

*left += *right; // order is important!

}

void identity(int* p) const {

new (p) int(0);

}

};

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 48 / 50

Reducer Hyperobjects in Cilk++

Defining a reducer (2/2)

struct sum_monoid : cilk::monoid_base<int> {

void reduce(int* left, int* right) const {

*left += *right; // order is important!

}

void identity(int* p) const {

new (p) int(0);

}

};

A reducer over sum monoid may now be defined as follows:
cilk::reducer<sum monoid> x;

The local view of x can be accessed as x().

It is generally inconvenient to replace every access to x in a legacy
code by x().

A wrapper class solves this probblem. Moreover, Cilk++’s
hyperobject library contains many commonly used reducers.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 49 / 50

Reducer Hyperobjects in Cilk++

References

Reducers and Other Cilk++ Hyperobjects by Matteo Frigo, Pablo Halpern,
Charles E. Leiserson and Stephen Lewin-Berlin. Best paper at SPAA 2009.

(Moreno Maza) Synchronizing without Locks and Concurrent Data StructuresCS 4435 - CS 9624 50 / 50

	Synchronization of Concurrent Programs
	Lock-free protocols
	Reducer Hyperobjects in Cilk++

