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Analysis of Algorithms

• To determine how efficient an algorithm is 

we compute the amount of time that the 

algorithm needs to solve a problem.

• Given two algorithms for the same problem, 

the preferred one is the faster.
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Time Complexity

• The time complexity of an algorithm is a 

function that gives the amount of time that 

the algorithm takes to complete. 

• The time complexity depends on the size of 

the input, or the number of data items in the 

input.
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Time Complexity

• The time complexity of an algorithm is 

denoted as t(n) or f(n), where n is the size 

of the input. 

• The time complexity is non-decreasing in 

the size of the input, i.e. the amount of time 

needed by an algorithm cannot decrease 

as the size of the input increases. (For 

example, copying a large array cannot take 

less time than making a copy of a smaller 

array.)
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Asymptotic Growth

• Let    

t(n) = 15n2 + 45 n

be the time complexity of an algorithm. For 

each value of n the function indicates the 

amount of time required by the algorithm.

So t(1) is the running time of the algorithm 

when the input has 1 data item, t(100) is 

the running time of the algorithm when the 

input has 100 data items, and so on.
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No. of items n 15n2 45n 15n2 + 45n

1 15 45 60

2 60 90 150

5 375 225 600

10 1,500 450 1,950

100 150,000 4,500 154,500

1,000 15,000,000 45,000 15,045,000

10,000 1,500,000,000 450,000 1,500,450,000

100,000 150,000,000,000 4,500,000 150,004,500,000

1,000,000 15,000,000,000,000 45,000,000 15,000,045,000,000

The following table shows the value of the above 

function t(n) for various values of n. Assume that the 

times are given in microseconds (1 microsecond = 

0.000001 second)
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Asymptotic Growth

When trying to decide whether an algorithm is 

efficient we are only interested in the value of its 

time complexity for large values of n, because for 

small values of n the running time of an algorithm is 

very small. (For example, in the previous table, for 

values of n smaller than 100 the running times are 

much smaller than 1 second. However, for n = 1 

million, the running time of the algorithm is 173 

days.)
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Asymptotic Growth

For large values of n, the value of the time 

complexity function is mainly determined by the 

largest term in the function. For example, for the 

above time complexity t(n) = 15n2 + 45n the largest 

term is 15n2. Notice that for large values of n, the 

value of 15n2 is much bigger than the value of 45n.

We say that 15n2 asymptotically dominates 45n 

and so that t(n) has the same asymptotic behaviour

as 15n2.
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Big-Oh Notation

There is a mathematical notation called 
the order or big-Oh notation for 
expressing the asymptotic growth of a 
time complexity function. 

A formal definition for the big-Oh notation 
will be given in the second year course on 
data structures an algorithms. The big-Oh 
notation captures the running time of an 
algorithm independently of how it is 
implemented and executed, i.e., 
independently of the programming
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Big-OhNotation

language in which it is implemented, of 
the computer in which it is run and of the 
operating system used by such a 
computer.

Roughly speaking, since different 
computers differ in speed by a constant 
factor (a factor that does not depend on 
the algorithm being executed and the size 
of the input on which the algorithm 
operates), when expressing the 
asymptotic growth of a time complexity



1-111-11

Big-Oh Notation

function using the big-Oh notation, any 
constant factors in the function are ignored. 

So, for example the time complexity 
function t(n) = 15n2 + 45n, grows 
asymptotically as fast as 15n2, which in big-
Oh notation is denoted as O(n2) since, as 
explained above, the constant factor 15 is 
ignored. A factor is constant if its value 
does not depend on the size of the input. 
(Note that 15 does not depend on n.)
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• The asymptotic growth of the time 

complexity function of an algorithm is 

referred to as the order of the time 

complexity of the algorithm.

• Example: O(n2) means that the time taken 

by the algorithm grows quadratically as n 

increases

• O(1) means constant time, independent of 

the size of the input

Big-Oh Notation
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Given a time complexity function of the form

t(n) = t1(n) + t2(n) + … + tk(n)

Where the number k of terms is constant (i.e. 

independent of n) the order of t(n) is determined 

by the largest term ti(n).

Some examples of computing the order of 

several functions are given in the next page.

Big-Oh Notation
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Determining Time Complexity

When computing the time complexity of 

an algorithm, we focus our attention on 

the most expensive parts of the algorithm, 

namely the loops and the recursive calls. 

We will look at recursive calls later, for 

now we will look at how to compute the 

time complexity of loops.



1-15

Determining Time Complexity

The time complexity function of an algorithm 

gives the running time of the algorithm. From 

just the description of an algorithm we cannot 

determine the amount of time, say in seconds, 

that it would need to execute. So, how can we 

determine the time complexity of an algorithm 

like this one?

x = 0;

for (int i = 0; i < n; i++)

x = x + 1;
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Determining Time Complexity

When analyzing an algorithm we cannot 

determine its actual running time, but we can 

estimate it if we count the number of basic or 

primitive operations that the algorithm performs.

A basic or primitive operation is an operation 

that takes constant time (i.e. independent of the 

size of the input). Some examples of primitive 

operations are: assigning a value to a variable, 

comparing the values of two variables and 

adding two values. 
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Analysing Loop Execution

For the algorithm below, the primitive operations are =, 

<, ++, +. Outside the loop one operation is performed 

(=). In each iteration of the loop four operations are 

performed (<, ++, =, +). Since the loop is repeated n 

times, the total number of operations performed is 

4n+1. Roughly speaking, this means that the running 

time of the algorithm is proportional to 4n+1. The order 

of the function 4n+1 is O(n) and so is the order of the 

time complexity of the algorithm.

x = 0;

for (int i=0; i<n; i++)

x = x + 1;
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Time Complexity

Since the number of primitive operations performed by 

an algorithm and the time complexity of the algorithm 

have the same order, we can say that the time 

complexity of an algorithm is the same as the number of 

primitive operations that it performs.

So, for the algorithm above we say that its time 

complexity is t(n) = 4n+1. Note that we are not really 

interested in the exact value of this function, but we only 

wish to know the order of the time complexity. So we say 

that the above algorithm as time complexity O(n).

Notice that since any constant factors in the time 

complexity function are ignored when computing the 

order of the time complexity, we do not need to count



exactly the number of primitive operations performed by 

the algorithm. For example, for the same algorithm above

We can say that each iteration of the for loop performs a 

constant number k of operations. Since the loop is 

repeated n times, the total number of operations 

performed by the for loop is kn. Outside the loop a 

constant number k’ of additional operations are 

performed, so the total number of operations performed 

by the algorithm is kn + k’, which is O(n).

Note that we obtained the same result, namely that the 

time complexity is O(n) even though we did not count the 

exact number of operations. 

x = 0;

for (int i=0; i<n; i++)

x = x + 1;
1-19
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However, we need to be very careful when counting 

the number of iterations of any loop, as a wrong value 

for the number of operations might lead to the wrong 

order for the time complexity.

Nested loops

When computing the time complexity of an algorithm 

with nested loops, like the algorithm below, we usually 

consider the innermost loop first and work our way 

outward.

for (int i=0; i<n; i++) {

x = x + 1;

for (int j=0; j<n; j++)

y = y – 1;

}
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Each iteration of the inner loop performs a constant number k 

of operations.  Every time that the loop is performed, it 

iterates n times (as j takes values 0, 1, …, n-1), therefore the 

total number of operations performed by the inner loop is kn.

Outside the inner loop, but inside the outer one, an additional 

constant number k’ of operations are performed (x = x+1), so 

each iteration of the outside loop performs k’ + kn operations.

The outer loop is repeated n times, so the total number of 

operations performed by this algorithm is t(n) = n(k’ + kn) = 

k’n + kn2. Note that in this function the term kn2 asymptotically 

dominates the term k’n, so ignoring constant factor we get 

that t(n) is O(n2).



1-221-22

More Loop Analysis Examples

x = 0;

for (int i=0; i<n; i=i+2) {

x = x + 1;

}

For the above algorithm, each iteration of the loop 
performs a constant number k of operations. The loop is 
repeated n/2 times, as in each iteration the value of i
increases by 2. Furthermore, outside the loop an 
additional constant number k’ of operations are 
performed. 

Hence, the total number of operations performed by the 
algorithm is k’ + kn/2. The time complexity of this 
algorithm, then is O(n).
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More Loop Analysis Examples

x = 0;

for (int i=1; i<=n; i=i*2) {

x = x + 1;

}

For the above algorithm, outside the loop a constant 
number k’ of operations are performed. Also each 
iteration of the loop performs a constant number k of 
operations. Counting the total number of iterations of 
the loop is more complicated. Let us look at the value of 
i in each iteration:
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Iteration number Value of i

1 1 = 20

2 2 = 21

3 4 = 22

4 8 = 23

… …

1 + log n n = 2log n

Hence, the number of iterations performed by the loop is 

1 + log n. The total number of operations performed by 

the loop is t(n) = k’ + k(1 + log n) = k’ + k + k log n. The 

dominating term is k log n, so the time complexity is 

O(log n).
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x = 0;

for (int i=0; i<n; i++)

for (int j = i, j < n, j ++) {

x = x + 1;

}

The inner loop performs a constant number k of 

operations in each iteration. The inner loop repeats 

once for each value of j between i and n-1, thus the 

number of iterations is n-i. The number of operations 

performed by the inner loop is then k(n-i). Note that this 

expression depends on the value of the variable i.

More Loop Analysis Examples
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The outer loop is repeated once for each value of i between 

0 and n-1, and as we saw in each iteration the number of 

operations performed by the inner loop is k(n-i). Hence the 

total number of operations performed by this loop is

k(n-0) + k(n-1) + k(n-2) + … + k(n-(n-1)) =

kn + k(n-1) + k(n-2) + … + k(1) = k σ𝑖=1
𝑛 𝑖 = kn(n+1)/2 =

kn2/2 + kn/2.

Outside the outer loop a constant number k’ of additional 

operations are performed, so the total number of operations 

performed by the algorithm is k’ + kn/2 + kn2/2. the 

dominating term is kn2/2, so the time complexity of the 

algorithm is O(n2).


