The List ADT

Objectives

Define a list abstract data type
Examine different classes of lists
Examine various list implementations
Compare list implementations

9-2

Lists

* Alistis alinear collection, like a stack
and queue, but more flexible: adding
and removing elements from a list does
not have to happen at one end or the
other

* We will examine three types of list
collections:

 ordered lists
 unordered lists
* Indexed lists

9-3

Ordered Lists

* Ordered list: Its elements are ordered
by some inherent characteristic of the
elements

 Examples:
 Names in alphabetical order
« Numeric scores in ascending order

¢ S0, the elements themselves determine
where they are stored In the list

9-4

Conceptual View of an Ordered List

front frear

16 23 29 40 51 67 38

New values must be inserted
so that the ordering of the list o8
IS maintained

Unordered Lists

 Unordered list: the order of the elements in the
list Is not based on a characteristic of the
elements, but is determined by the
programmer

* A new element can be put
 at the front of the list,

« at the rear of the list,
 or after a particular element already in the list

9-6

Conceptual View of an Unordered List

front rear

R [

New values can be inserted anywhere in the list

9-7

Indexed Lists

* Indexed list: elements are referenced
by their numeric position in the list,
called its index

* It Is the position in the list that Is
Important, and the programmer can
determine the order in which the items
go In the list

* Every time the list changes, the position
(index) of an element may change

9-8

Conceptual View of an Indexed List

front (rear
Yo 2 3 4 4 5 6 7
Index

New values can be inserted at any position in the list

9-9

List Operations

* Operations common to all list types include:
« Adding/removing elements
* Checking the status of the list (isEmpty,
size)
* Iterating through the elements in the list

* The key differences between the list types
Involve the way elements are added

9-10

Operations on the List ADT

Operation

Description

removeFirst

Removes the first element from the list

removeLast

Removes the last element from the list

remove(element)

Removes a particular element from the list

first

Gets the element at the front of the list

last

Gets the element at the rear of the list

contains(element)

Determines if a particular element is in the list

ISEmpty Determines whether the list is empty
size Determines the number of elements in the list
toString Returns a string representation of the list

9-11

Operation Particular to an

Ordered List

Operation

Description

add

Adds an element to the list
(in the correct place)

9-12

Operations Particular to an

Unordered List

Operation |Description

addToFront Adds an element to the front of the list
addToRear Adds an element to the rear of the list
addAfter Adds an element after a particular

element already in the list

9-13

Operations Particular to an
Indexed List

Operation [Description

add Adds an element at a particular index in the
list

set Sets the element at a particular index in the
list overwriting any element that was there

get Returns a reference to the element at the
specified index

INdexOf Returns the index of the specified element

remove Removes and returns the element at a

particular index

List Operations

* We use Java interfaces to formally define
the lists ADTs

* Note that interfaces can be defined via
Inheritance (derived from other interfaces)

« Define the common list operations in one
Interface

» See ListADT.java
* Derive the thee others from it
» see OrderedListADT.java
* see UnorderedListADT.java
» see IndexedListADT.java

9-15

LIStADT Interface

public interface ListADT<T> {

/I Removes and returns the first element from this list
public T removeFirst ();

Il Removes and returns the last element from this list
public T removelLast ();

/[Removes and returns the specified element from this list
public T remove (T element);

/I Returns areference to the first element on this list
public T first ();

/I Returns areference to the last element on this list
public T last ();

I/l cont’d..

9-16

// ..cont’d
/Il Returns true if this list contains the specified target element
public boolean contains (T target);

/[Returns true if this list contains no elements
public boolean isEmpty();

/[Returns the number of elements in this list
public int size();

/[Returns a string representation of this list
public String toString();

9-17

OrderedList ADT

public interface OrderedListADT<T> extends ListADT<T>
{

// Adds the specified element to this list at the proper location
public void add (T element);

}

9-18

UnorderedLIStADT

public interface UnorderedListADT<T> extends LIStADT<T>

{
I/ Adds the specified element to the front of this list

public void addToFront (T element);

I/ Adds the specified element to the rear of this list
public void addToRear (T element);

I/ Adds the specified element after the specified target
public void addAfter (T element, T target);

9-19

IndexedLIStADT

public interface IndexedListADT<T> extends ListADT<T> {
/Il Inserts the specified element at the specified index
public void add (int index, T element);
/| Sets the element at the specified index
public void set (int index, T element);
/Il Returns areference to the element at the specified index
public T get (int index);
/l Returns the index of the specified element
public int indexOf (T element);
I/ Removes and returns the element at the specified index
public T remove (int index);

}

9-20

Discussion

 Note that the remove method In the
IndexedList ADT Is overloaded

 Why? Because there is a remove method
In the parent LIStADT

 This is not overriding, because the
parameters are different

9-21

List Implementation using Arrays

Container Is an array

Fix one end of the list at index 0 and shift as
needed when an element is added or removed

Is a shift needed when an element i1s added
 at the front?

« somewhere in the middle?

e at the end?

Is a shift needed when an element is removed
 from the front?
 from somewhere in the middle?

 from the end?
9-22

An Array Implementation of a List

An array-based list Is with 4 elements

1 2
mll Bl ii !
4

rear

9-23

public T remove (T element) throws ElementNotFoundException
{
T result;
Int index =find (element); //uses helper method find
If (index == NOT_FOUND)
throw new ElementNotFoundException("list");
result = list[index];
rear--;
/[shift the appropriate elements
for (int scan=index; scan <rear; scan++)
list[scan] = list[scan+1];
list[rear] = null;
return result;

} 9-24

/Il Returns the array index of the specified element,
/[or the constant NOT_FOUND if it is not found.

private int find (T target)
{
Int scan =0, result = NOT_FOUND,;
boolean found = false;
If (! IsEmpty())
while (! found && scan <rear)
If (target.equals(list[scan])
found =true;
else
scan++;
If (found)
result = scan;
return result;

}

9-25

public boolean contains (T target)

{
return (find(target) 'I= NOT_FOUND);

/luses helper method find

9-26

The Comparable Interface

* For an ordered list, the actual class for the
generic type T must have a way of
comparing elements so that they can be
ordered

* SO0, it must implement the Comparable
Interface, i.e. it must define a method called

compareTlo

* But, the compiler does not know whether
or not the class that we use to fill in the
generic type T will have a compareTo

method

9-27

The Comparable Interface

* S0, to make the compiler happy:

« Declare a variable that is of type
Comparable<T>

« Convert the variable of type T to the
variable of type Comparable<T>

Comparable<T> temp =
(Comparable<T>)element;

* Note that an object of a class that implements
Comparable can be referenced by a variable

of type Comparable<T>

9-28

// Adds the specified Comparable element to the list,
I/l keeping the elements in sorted order.

public void add (T element)
{
If (size() == list.length)
expandCapacity();
Comparable<T>temp = (Comparable<T>)element;
Int scan = 0;
while (scan <rear && temp.compareTo(list[scan]) > 0)
scan++;
for (int scan2=rear; scan2 > scan,; scan2--)
list[scan2] = list[scan2-1]

list[scan] = element;
rear++;

}

9-29

List Implementation Using Arrays,
Method 2: Circular Arrays

* Recall circular array implementation of
gueues

* Exercise: iImplement list operations
using a circular array implementation

9-30

List Implementation Using Links

 We can implement a list collection with a
linked list as the container

* Implementation uses techniques similar to
ones we've used for stacks and gqueues

« We will first examine the remove operation

for a sing

e Then we’
a doubly-

y-linked list implementation

| look at the remove operation for a
Inked list, for comparison

9-31

I/ Removes the first instance of the specified element

// from the list, if it is found in the list, and returns a

// reference to it. Throws an ElementNotFoundException
/[if the specified element is not found on the list.

public T remove (T targetElement) throws ElementNotFoundException

{
If (ISEmpty())
throw new ElementNotFoundException ("List");
boolean found = false;
LinearNode<T> previous = null
LinearNode<T> current = front;
// cont’d..

9-32

while (current = null && !found)
If (targetElement.equals (current.getElement()))
found =true;
else {
previous = current;
current = current.getNext();

}

iIf (ffound) throw new ElementNotFoundException (“No data");

If (size() ==1)
front = rear = null;
else

If (current.equals (front))
front = current.getNext();

else

// cont’d

33

If (current.equals (rear)) {
rear = previous;
rear.setNext(null);

}

else
previous.setNext(current.getNext());

count--;
return current.getElement();

9-34

Doubly Linked Lists

 Adoubly linked list has two
references in each node:

* One to the next element Iin the list
* One to the previous element

* This makes moving back and forth in a
list easler, and eliminates the need for a
previous reference in particular
algorithms

» Disadvantage? a bit more overhead
when managing the list

9-35

Implementation of a Doubly-
Linked List

A doubly-linked list dl with 4 elements

rear

— ¢ | | | |

front l i
4

count

9-36

 See DoubleNode.java

* We can then implement the ListADT
using a doubly linked list as the container

* Following our usual convention, this
would be called DoublyLinkedList.java

9-37

public DoubleNode<T> find (T element) {
DoubleNode<T> current = front;
while (current !'= null && 'element.equals(current.getElement()))
current = current.getNext();
return current;

public T remove (T element) throws ElementNotFoundException {
DoubleNode<T> node = find (element);
If (node == null) throw new ElementNotFoundException (“No element");

If (node == front)
front = node.getNext();
else (node.getPrevious()).setNext(node.getNext());

If (node == rear)
rear = node.getPrevious();
else (node.getNext()).setPrevious(node.getPrevious());

count--;
return node.getElement();

/[Adds element to the list, keeping the list sorted.
public void add (T element) {
Comparable<T> temp = (Comparable<T>)element;

DoubleNode<T> newNode = new DoubleNode<T>(element);
If (front == null) {

front = newNode;
rear = newNode:

}

else {

DoubleNode<T> current = front;

while (current != null && temp.compareTo(current.getElement() > 0)
current = current.getNext();

if (current == null) {
// Add newNode at the end of the list
rear.setNext(newNode);
newNode.setPrev(rear);
rear = newNode;

else { // newNode is not added to the end
newNode.setNext(current);
newNode.setPrev(current.getPrev());
current.setPrev(newNode);
If (newNode.getPrev() != null)
newNode.getPrev().setNext(newNode);
else front = newNode;

}

++count;

}

9-41

