
The Queue ADT



6-2

Objectives

• Define the queue ADT

• Show how a queue can be used to 

solve problems

• Examine various queue 

implementations

• Compare queue implementations



6-3

Queues

• Queue: a linear collection whose elements 
are added at one end (the rear or tail of 
the queue) and removed from the other 
end (the front or head of the queue)

• A queue is a FIFO (first in, first out) data 
structure

• Any waiting line is a queue:

• The check-out line at a grocery store

• The cars at a stop light

• An assembly line



6-4

Conceptual View of a Queue

Front of queue

Adding an element

New element is 

added to the rear 

of the queue



6-5

Conceptual View of a Queue

Removing an element

New front element of queue

Element is 

removed from the 

front of the queue



6-6

Operations on a Queue

Operation Description

dequeue Removes an element from the front of the queue

enqueue Adds an element to the rear of the queue

first Examines the element at the front of the queue 

without removing it

isEmpty Determines whether the queue is empty

size Determines the number of elements in the queue

toString Returns a string representation of the queue



6-7

Interface to a Queue in Java

public interface QueueADT<T> {

//  Adds one element to the rear of the queue

public void enqueue (T element);

//  Removes and returns the element at the front of the queue

public T dequeue( ) throws EmptyCollectionE;

//  Returns without removing the element at the front of the queue

public T first( ) throws EmptyCollectionE;   

//  Returns true if the queue contains no elements

public boolean isEmpty( );

//  Returns the number of elements in the queue

public int size( );

//  Returns a string representation of the queue

public String toString( );

}



6-8

Uses of Queues in Computing

• Printer queue 

• Keyboard input buffer

• GUI event queue (click on buttons, 

menu items)



6-9

Using Queues: Coded Messages

• A Caesar cipher is a substitution code
that encodes a message by shifting each 
letter in a message by a constant amount k

• If k is 5, a becomes f, b becomes g, etc.

• Example: n qtaj ofaf

• Used by Julius Caesar to encode military 
messages for his generals (around 50 
BC)

• This code is fairly easy to break.



6-10

• Modern version: ROT13

• Each letter is shifted by 13

• “used in online forums as a means of 

hiding spoilers, punchlines, puzzle 

solutions, and offensive materials 

from the casual glance” (Wikipedia)

Using Queues: Coded Messages



6-11

Using Queues: Coded Messages

• An improvement: change how much a letter is 

shifted depending on where the letter is in the 

message

• A repeating key is a sequence of integers that 

determine how much each character is shifted

• Example: consider the repeating key

3  1  7  4  2  5

• The first character in the message is shifted by 3, the 

next by 1, the next by 7, and so on

• When the key is exhausted, start over at the 

beginning of the key



6-12

Using Queues: Coded Messages

A repeating key is a sequence of integers that 

determine by how much each character in a 

message is shifted. Consider the repeating key

3  1  7  4  2  5

message: knowledge

encoded

message: 

a b c d e f g h i j k l m n o p q r s t u v w x y z

3     1     7     4     2     5queue:



6-13

Using Queues: Coded Messages

A repeating key is a sequence of integers that 

determine by how much each character in a 

message is shifted. Consider the repeating key

3  1  7  4  2  5

message: knowledge

encoded

message: n

a b c d e f g h i j k l m n o p q r s t u v w x y z

1     7     4     2     5queue:

dequeued: 3



6-14

Using Queues: Coded Messages

A repeating key is a sequence of integers that 

determine by how much each character in a 

message is shifted. Consider the repeating key

3  1  7  4  2  5

message: knowledge

encoded

message: n

a b c d e f g h i j k l m n o p q r s t u v w x y z

1     7     4     2     5      3queue:



6-15

Using Queues: Coded Messages

A repeating key is a sequence of integers that 

determine by how much each character in a 

message is shifted. Consider the repeating key

3  1  7  4  2  5

message: knowledge

encoded

message: no

a b c d e f g h i j k l m n o p q r s t u v w x y z

7     4     2     5      3queue:

dequeued: 1



6-16

Using Queues: Coded Messages

A repeating key is a sequence of integers that 

determine by how much each character in a 

message is shifted. Consider the repeating key

3  1  7  4  2  5

message: knowledge

encoded

message: no

a b c d e f g h i j k l m n o p q r s t u v w x y z

7     4     2     5      3 1queue:



6-17

Using Queues: Coded Messages

A repeating key is a sequence of integers that 

determine by how much each character in a 

message is shifted. Consider the repeating key

3  1  7  4  2  5

message: knowledge

encoded

message: novangjhl

a b c d e f g h i j k l m n o p q r s t u v w x y z

4     2     5      3 1      7queue:



6-18

• We can use a queue to store the values 

of the key

• dequeue a key value when needed

• After using it, enqueue it back onto 

the end of the queue

• So, the queue represents the constantly 

cycling values in the key

Using Queues: Coded Messages



6-19

Using Queues: Coded Messages

• See Codes.java in the sample code 

page of the course’s website

• Note that there are two copies of the key, 

stored in two separate queues

• The encoder has one copy

• The decoder has a separate copy

• Why?



6-20

Using Queues:

Ticket Counter Simulation

• Simulate the waiting line at a movie theatre:

• Determine how many cashiers are needed to 

keep the customer wait time under 7 minutes

• Assume:

• Customers arrive on average every 15 

seconds

• Processing a request takes two minutes once 

a customer reaches a cashier

• See Customer.java, TicketCounter.java in the 

sample code page of the course’s website 



6-21

Results of Ticket Counter 

Simulation

1 2 3 4 5 6 7 8 9 10

5317 2325 1332 840 547 355 219 120 120 120

Number of 

Cashiers

Average time 

(in seconds)



6-22

Queue Implementation Issues

• What do we need to implement a queue?

• A data structure (container) to hold the 

data elements

• A variable to indicate the front of the 

queue

• A variable to indicate the rear of the 

queue



6-23

Queue Implementation

Using a Linked List

• A queue can be represented as a linked list of 
nodes, with each node containing a data item

• We need two pointers for the linked list 

• A pointer to the beginning of the linked list 
(front of queue)

• A pointer to the end of the linked list (rear of 
queue)

• We will also have a count of the number of items 
in the queue



6-24

Linked Implementation of a 

Queue

count

4

rear

front

A queue q containing four elements

q



6-25

• What are the values of front and rear if 

the queue is empty?

• What are their values if there is only 1 

element?

Discussion



6-26

Queue After Adding Element

count

5

rear

front

New element is added in a node at the end of the list, 

rear points to the new node, and count is incremented

q



6-27

Queue After a dequeue

Operation

count

4

rear

front

Node containing         is removed from the front of the list (see 

previous slide), front now points to the node that was 

formerly second, and count has been decremented.

q



6-28

Java Implementation

• The queue is represented as a linked 

list of nodes:

• We will again use the LinearNode class

• front is a reference to the head of the 

queue (beginning of the linked list)

• rear is a reference to the tail of the queue 

(end of the linked list)

• The integer count is the number of nodes 

in the queue



6-29

public class LinkedQueue<T> implements QueueADT<T> {

/**

* Attributes

*/

private int count;

private LinearNode<T> front, rear;

/**

* Creates an empty queue.

*/

public LinkedQueue() {

count = 0;

front = rear = null;

}



6-30

//-----------------------------------------------------------------

//  Adds the specified element to the rear of the queue.

//-----------------------------------------------------------------

public void enqueue (T element) {

LinearNode<T> node = new LinearNode<T> (element);

if (isEmpty( ))

front = node;

else

rear.setNext (node);

rear = node;

count++;

}



6-31

//-----------------------------------------------------------------

//  Removes the element at the front of the queue and returns a

//  reference to it. Throws an EmptyCollectionException if the

//  queue is empty.

//-----------------------------------------------------------------

public T dequeue ( ) throws EmptyCollectionException {

if (isEmpty( ))

throw new EmptyCollectionException ("queue");

T result = front.getElement( );

front = front.getNext( );

count--;

if (isEmpty( ))

rear = null;

return result;

}



6-32

Array Implementation of  a Queue

• First Approach:

• Use an array in which index 0 represents one 

end of the queue (the front) 

• Integer value count represents the number of 

elements in the array (so the element at the 

rear of the queue is in position count - 1)

• Discussion: What is the challenge with 

this approach? 



6-33

An Array Implementation of a 

Queue

count

4

queue

0 4321

…

A queue aq containing four elements

aq

front



6-34

Queue After Adding an Element

count

5

queue

0 4321

…

The element is added at the array location given by 

the value of count and then count is increased by 1.

aq



6-35

Queue After Removing an Element

count

4

queue

0 4321

…

Element          is removed from array location 0, 

remaining elements are shifted forward one position 

in the array, and then count is decremented.

aq



6-36

public class ArrayQueue<T> implements QueueADT<T> {

private final int DEFAULT_CAPACITY = 100;

private int count;

private T[] queue; 

public ArrayQueue() {

count = 0;

queue = (T[])(new Object[DEFAULT_CAPACITY]);

}

public ArrayQueue (int initialCapacity) {

count = 0;

queue = (T[])(new Object[initialCapacity]);

}



6-37

//-----------------------------------------------------------------

//  Adds the specified element to the rear of the queue, 

//  expanding the capacity of the queue array if

//  necessary.

//-----------------------------------------------------------------

public void enqueue (T element) {

if (size() == queue.length)

expandCapacity( );

queue[count] = element;

count++;

}



6-38

//-----------------------------------------------------------------

//  Removes the element at the front of the queue and returns 

//  a reference to it. Throws anEmptyCollectionException if the

//  queue is empty.

//-----------------------------------------------------------------

public T dequeue ( ) throws EmptyCollectionException {

if (isEmpty( ))

throw new EmptyCollectionException (“Empty queue");

T result = queue[0];

count--;

// shift the elements

for (int i = 0; i < count; i++)

queue[i] = queue[i+1];

queue[count] = null;

return result;

}



6-39

Second Approach: Queue as a 

Circular Array

• If  we do not fix one end of the queue at index 0, we 

will not have to shift elements

• Circular array is an array that conceptually loops 

around on itself

• The last index is thought to “precede” index 0

• In an array whose last index is n, the location 

“before” index 0 is index n; the location “after” 

index n is index 0

• We need to keep track of where the front as well as 

the rear of the queue are at any given time



6-40

Circular Array Implementation of 

a Queue

rear

front

5

queue

count

8

3

0

1
2 3 4

5

6

7

8

9
10

n-1

n-2

n-3

. ..

cq



6-41

A Queue Straddling the End of a 

Circular Array

rear

front

4

queue

count

2

98

0

1
2 3 4

5

6

7

8

9
10

99

98

97

. ..

cq



6-42

Circular Queue Drawn Linearly

rear

front

4

queue

count

2

98

0 4321 96 97 98 99

…

Queue from previous slide

cq



6-43

Circular Array Implementation

• When an element is enqueued, the value of 

rear is incremented

• But it must take into account the need to 

loop back to index 0:

rear = (rear+1) % queue.length;

• Can this array implementation also reach 

capacity? 



6-44

Example: array of length 4

What  happens?

rear

front

3

queue

count

1

2

0 321

rear

front

4

queue

count

2

2

0 321

Suppose we try to add 

one more item to a 

queue implemented by 

an array of length 4

cq

cq

The queue is now full. 

How can you tell?



6-45

Add another item!

Need to expand capacity…

rear

front

4

queue

count

2

2

0 321

rear

front

4

queue

count

2

2

0 321 4 765

We can’t just double 

the size of the array 

and copy values to 

the same positions 

as before: circular 

properties of the 

queue will be lost

These locations 

should be in use

cq

cq



6-46

rear

front

4

queue

count

6

2

0 321 4 765

We could build the new array, and copy the queue elements 

into contiguous locations beginning at location front:

cq



6-47

rear

front

4

queue

count

4

0

0 321 4 765

Or, we could copy the queue elements in order to the 

beginning of the new array

cq



6-48

rear

front

5

queue

count

5

0

0 321 4 765

New element is added at rear = (rear+1) % queue.length

See expandCapacity() in CircularArrayQueue.java

cq



6-49

Algorithm enqueue(element) 

if queue is full then expandQueue()

rear = (rear + 1) mod size of queue

queue[rear] = element

++count

Algorithm expandQueue()

q  = new array of size 2 * size of queue

copied = 0  // number of elements copied to the larger array

i = 0       // index of next entry in array q  

j = front  // index of next entry in array queue

while copied < count do { // copy data to new array

q[i] = queue[j]

++i

j = (j + 1) mod size of queue

++ copied

}

rear = count – 1  // position of last element in the queue

front = 0

queue = q

Pseudocode for the Enqueue Operation Using a Circular 

Array Implementation of a Queue



6-50

Enqueue Operation in Java

public void enqueue (T element) {

if (count == queue.length) expandQueue();

rear = (rear + 1) % queue.length;

queue[rear] = element;

++count;

}



6-51

Enqueue Operation in Java

public void expandQueue() {

T[] q = (T[]) new Object[2*queue.length];

copied = 0; // number of data items copied to larger array

i = 0;    // index of next entry in array q

j = front; // index of next entry in array queue

while (copied < count) {

q[i] = queue[j];

++i;

j = (j + 1) % queue.lengtht;

++copied;

}

rear = count – 1;

front = 0;

queue = q

}



6-52

Algorithm dequeue() {

if queue is empty then ERROR

result = queue[front]

count = count – 1

front = (front + 1) mod (size of array queue)

return result

}

Where mod is the modulo operator (or modulus or 

remainder), denoted % in Java.

Algorithm in Pseudocode for the Dequeue Operation

Using a Circular Array Representation of a Queue



6-53

Dequeue Operation in Java

public T dequeue() {

if (isEmpty())

throw new EmptyQueueException();

result = queue[front];

count = count -1;

front = (front + 1) % queue.length;

return result;

}


