
1

Testing and Debugging

2

Program Errors

• Compiler errors (syntax errors)

• Runtime errors

• Logic errors

3

Compiler Errors

• Syntax errors

• Errors in usage of Java

• Detected by the compiler

• A program with compilation errors cannot

be run

• Syntax warning

• Warning message generated by the

compiler

• The program can be run

4

Compiler Errors

• Very common (but sometimes hard to

understand). Examples of syntax errors:

• Forgetting a semicolon

• Leaving out a closing bracket }

• Redeclaring a variable

5

Compiler Errors

• Hints to help find/fix compiler errors:

• Compiler errors are cumulative: when you

fix one, others may go away

• Read the error messages issued by the

compiler

• Realize that the error messages from the

compiler are often (seemingly) not very

helpful

• The compiler does not know what you

intended to do, it merely scans the Java

code

6

Runtime Errors

• Runtime errors: program runs but gets

an exception error message

• Program may be terminated

• Runtime errors can be caused by

• Program bugs

• Bad or unexpected input

• Hardware or software problems in the

computer system (very rare)

7

Runtime Errors

• Very common runtime errors are:

• Null reference (NullPointerException)

• no object is referenced by the reference

variable, i.e. it has the value null

• Array index out of bounds

(ArrayIndexOutOfBoundsException)

We will talk later about exceptions.

• Running out of memory

• e.g. from creating a new object every time

through an infinite loop

8

Runtime Errors

• Hints to help find/fix runtime errors:

• Check the exception message for the method and

line number from which it came

• Note that the line in the code that caused the

exception may not be the line with the error

• Example: consider the code segment

int [] nums = new int[10];

for (int j=0; j<=10; j++)

nums[j] = j;

• The exception will be at the line

nums[j] = j;

but the error is in the previous line

9

Logic Errors

• Logic errors: program runs but results
are not correct

• Logic errors can be caused by:

• Incorrect algorithms. These errors
are the most difficult to fix. It is very
important that you spend sufficient
time designing your algorithms and
making sure they are correct before
you implement them in Java.

10

Logic Errors

• Common logic errors are:

• using == instead of the equals method

• infinite loops

• misunderstanding of operator precedence

• starting or ending at the wrong index of an
array

• If index is invalid, you would get an exception

• misplaced parentheses (so code is either
inside a block when it shouldn’t be, or vice
versa)

11

Logic Errors

• Be careful of where you declare variables.

• Keep in mind the scope of variables

• Example:
private int numStudents; // an attribute, to be

// initialized in some method

…
public void someMethod(){

int numStudents = …; // not the instance variable!

…

}

12

Testing vs Debugging

• Testing: to identify any problems before

software is put to use

• “Testing can show the presence of

bugs but can never show their

absence”.

• Debugging: locating bugs and fixing

them

13

Hints for Success
• When writing code:

• Make sure your algorithm is correct before
you start coding.

• Start small:

• Write and test first simpler methods (e.g.
getters, setters, toString)

• Then write and test each of the more
complex methods individually

• Check your code first by a preliminary hand
trace

• Then try running it

14

Debugging Strategies

• Trace your code by hand

• Add main method to the class

• Add print statements to your code

• Use a debugger

15

Tracing by Hand
• Tracing by hand

• Good starting point for small programs or
simple methods

• Problem: sometimes you do what you think
the computer will do, but that is not what it
actually does

• Example: you may write that int i = 9/5;
assigns to i the value 1.8, but it is really
1

• Hint: draw diagrams of reference
variables and what object(s) they are
pointing to.

16

Adding a main Method

• Adding a main method to the class

• Conventionally placed at the end of the

class code, after all the other methods

• What are the advantages of having the test

harness (main method) right in the class,

rather than creating another class that is

just a test program?

17

Using Print Statements

• Using print statements

• Insert System.out.println() statements at key

locations:

• to show values of significant variables

• to show how far your code got before there

was a problem

• In the print statement, it’s a good idea to

specify

• The location of the trace (what method)

• The variable name as well as its value

18

Debuggers

• All Integrated Development Environments

have an interactive debugger feature

• You can single-step step through your code

(one statement at a time)

• You can see what is stored in variables

• You can set breakpoints

• You can “watch” a variable or expression

during execution

19

Defensive Programming
• Write robust programs

• Include checking for exceptional conditions; try
to think of situations that might reasonably
happen, and check for them

• Examples: files that don’t exist, bad input data

• Generate appropriate error messages,
and either allow the user to reenter the
data or exit from the program

• Throw exceptions (we will cover this topoc
later)

Introduction to Eclipse’s

Debugger

1. Add breakpoints: double-click the blue bar on the left side of Edit window or

right click on the bar and select “toggle breakpoint”. A blue dot indicates a

breakpoint. To remove a break point, double click the breakpoint.

Debugging a Program

A break point

2. Select Run->Debug as...->Java Application to start the

debugger.

If asked, accept to switch to debug Perspective.

4. Click on Run and then try the debug commands to see what they
do and see how the values of the variables change in the
Variable window and what the outputs are in the Console
window.

Resume resume the execution of a paused program.

Suspend temporarily pause the execution of a program.

Terminate end the current debug session.

Step Into execute a single statement or step into a method.

Step Into Selection While debugger is stopped on a break point, put cursor

on a method you want to step into

Step Over execute a single statement. If the statement contains a call

to method, the entire method is executed without stepping

into the method.

Step Return execute all the statements in the current method and returns

to the caller.

5. Switch Eclipse from Debug Perspective back to Java

Perspective.

• Click on the Java Perspective button

