
Topic 9

The Queue ADT

6-2

Objectives

• Examine queue processing
• Define a queue abstract data type
• Demonstrate how a queue can be used

to solve problems
• Examine various queue

implementations
• Compare queue implementations

6-3

Queues

• Queue : a collection whose elements are
added at one end (the rear or tail of the
queue) and removed from the other end
(the front or head of the queue)

• A queue is a FIFO (first in, first out) data
structure

• Any waiting line is a queue:
• The check-out line at a grocery store
• The cars at a stop light
• An assembly line

6-4

Conceptual View of a Queue

Front of queue

Adding an element

New element is
added to the rear
of the queue

6-5

Conceptual View of a Queue
Removing an element

New front element of queue

Element is
removed from the
front of the queue

6-6

Uses of Queues in Computing

• For any kind of problem involving FIFO
data

• Printer queue (e.g. printer in MC 235)
• Keyboard input buffer
• GUI event queue (click on buttons,

menu items)
• To encode messages (more on this later)

6-7

• In simulation studies, where the goal is
to reduce waiting times:
• Optimize the flow of traffic at a traffic

light
• Determine number of cashiers to have

on duty at a grocery store at different
times of day

• Other examples?

Uses of Queues in Computing

6-8

Queue Operations

• enqueue : add an element to the tail of
a queue

• dequeue : remove an element from the
head of a queue

• first : examine the element at the head
of the queue (“peek”)

• Other useful operations (e.g. is the
queue empty)

• It is not legal to access the elements in
the middle of the queue!

6-9

Operations on a Queue

Returns a string representation of the queuetoString

Determines the number of elements in the queuesize

Determines whether the queue is emptyisEmpty

Examines the element at the front of the queuefirst

Adds an element to the rear of the queueenqueue

Removes an element from the front of the queuedequeue

DescriptionOperation

6-10

The QueueADT interface in UML

dequeue()
enqueue()
first()
isEmpty()
size()
toString()

<<interface>>
QueueADT

6-11

Interface to a Queue in Java

public interface QueueADT<T>
{

// Adds one element to the rear of the queue
public void enqueue (T element);
// Removes and returns the element at the front of the queue
public T dequeue();
// Returns without removing the element at the fro nt of the queue
public T first();
// Returns true if the queue contains no elements
public boolean isEmpty();
// Returns the number of elements in the queue
public int size();
// Returns a string representation of the queue
public String toString();

}

6-12

Using Queues: Coded Messages

• A Caesar cipher is a substitution code
that encodes a message by shifting each
letter in a message by a constant amount k
• If k is 5, a becomes f, b becomes g, etc.

• Example: n qtaj ofaf
• Used by Julius Caesar to encode military

messages for his generals (around 50
BC)

• This code is fairly easy to break!

6-13

• Modern version: ROT13
• Each letter is shifted by 13
• “used in online forums as a means of

hiding spoilers, punchlines, puzzle
solutions, and offensive materials
from the casual glance” (Wikipedia)

• What is the advantage of shifting 13?

Using Queues: Coded Messages

6-14

Using Queues: Coded Messages
• An improvement: change how much a letter is

shifted depending on where the letter is in the
message

• A repeating key is a sequence of integers that
determine how much each character is shifted

• Example: consider the repeating key
3 1 7 4 2 5

• The first character in the message is shifted by 3, the
next by 1, the next by 7, and so on

• When the key is exhausted, start over at the
beginning of the key

6-15

An Encoded Message Using a
Repeated Key

rewopsiegdelwonk

4713524713524713

vlxruumlhjgnavon

Encoded message

Key

Decoded message

6-16

• We can use a queue to store the values
of the key
• dequeue a key value when needed
• After using it, enqueue it back onto

the end of the queue

• So, the queue represents the constantly
cycling values in the key

Using Queues: Coded Messages

6-17

Using Queues: Coded Messages

• See Codes.java
• Note that there are two copies of the key,

stored in two separate queues
• The encoder has one copy

• The decoder has a separate copy

• Why?

6-18

UML Description of Codes Program

enqueue()
dequeue()
first()
isEmpty()
size()
toString()

front
rear

CircularArrayQueue

enqueue()
dequeue()
first()
isEmpty()
size()
toString()

<<interface>>
QueueADT

main ()

Codes

6-19

Using Queues:
Ticket Counter Simulation

• Simulate the waiting line at a movie theatre:
• Determine how many cashiers are needed to

keep the customer wait time under 7 minutes

• Assume:
• Customers arrive on average every 15

seconds
• Processing a request takes two minutes once

a customer reaches a cashier

• See Customer.java, TicketCounter.java

6-20

UML Description of TicketCounter Program

enqueue()
dequeue()
first()
isEmpty()
size()
toString()

front
rear

LinkedQueue

enqueue()
dequeue()
first()
isEmpty()
size()
toString()

<<interface>>
QueueADT

main()

PROCESS
MAX_CASHIERS
NUM_CUSTOMERS

TicketCounter

Customer(int arrives)
getArrivalTime()
setDepartureTime()
getDepartureTime()
totalTime()

arrivalTime
departureTime

Customer

6-21

Results of Ticket Counter
Simulation

120120120219355547840133223255317

10987654321

Number of
Cashiers

Average time
(in seconds)

6-22

Queue Implementation Issues

• What do we need to implement a queue?
• A data structure (container) to hold the

data elements
• Something to indicate the front of the

queue
• Something to indicate the end of the

queue

6-23

Queue Implementation
Using a Linked List

• Internally, the queue is represented as a linked
list of nodes, with each node containing a data
element

• We need two pointers for the linked list
• A pointer to the beginning of the linked list

(front of queue)
• A pointer to the end of the linked list (rear of

queue)
• We will also have a count of the number of items

in the queue

6-24

Linked Implementation of a
Queue

count

4

rear

front

.

A queue q containing four elements

q

6-25

• What if the queue is empty?

• What if there is only 1 element?

Discussion

6-26

Queue After Adding Element

count

5

rear

front

.

New element is added in a node at the end of the li st,
rear points to the new node, and count is incremented

q

6-27

Queue After a dequeue
Operation

count

4

rear

front

Node containing is removed from the front o f the list (see
previous slide), front now points to the node that was
formerly second, and count has been decremented.

.q

6-28

Java Implementation

• The queue is represented as a linked
list of nodes:
• We will again use the LinearNode class

• front is a reference to the head of the
queue (beginning of the linked list)

• rear is a reference to the tail of the queue
(end of the linked list)

• The integer count is the number of nodes
in the queue

6-29

public class LinkedQueue<T> implements QueueADT<T>
{

/**
* Attributes
*/
private int count;
private LinearNode<T> front, rear;

/**
* Creates an empty queue.
*/
public LinkedQueue()
{

count = 0;
front = rear = null;

}

The LinkedQueue
class

6-30

//---
// Adds the specified element to the rear of the q ueue.
//---
public void enqueue (T element)
{

LinearNode<T> node = new LinearNode<T> (element);

if (isEmpty())
front = node;

else
rear.setNext (node);

rear = node;
count++;

}

The enqueue()
operation

6-31

//---
// Removes the element at the front of the queue a nd returns a
// reference to it. Throws an EmptyCollectionExcep tion if the
// queue is empty.
//---
public T dequeue () throws EmptyCollectionException
{

if (isEmpty())
throw new EmptyCollectionException ("queue");

T result = front.getElement();
front = front.getNext();
count--;
if (isEmpty())

rear = null;
return result;

}

The dequeue()
operation

6-32

Array Implementation of a Queue

• First Approach:
• Use an array in which index 0 represents one

end of the queue (the front)
• Integer value rear represents the next open

slot in the array (and also the number of
elements currently in the queue)

• Discussion: What is the challenge with
this approach?

6-33

An Array Implementation of a
Queue

rear

4

queue

0 4321

? …

A queue aq containing four elements

aq

front

6-34

Queue After Adding an Element

rear

5

queue

0 4321

…

Element is added at the array location given by the
(old) value of rear , and then rear is incremented.

aq

6-35

Queue After Removing an Element

rear

4

queue

0 4321

…

Element is removed from array location 0,
remaining elements are shifted forward one position
in the array, and then rear is decremented.

.
aq

6-36

Java Array Implementation

• See ArrayQueue.java

6-37

public class ArrayQueue<T> implements QueueADT<T>
{

private final int DEFAULT_CAPACITY = 100;
private int rear;
private T[] queue;

public ArrayQueue()
{

rear = 0;
queue = (T[])(new Object[DEFAULT_CAPACITY]);

}
public ArrayQueue (int initialCapacity)

{
rear = 0;
queue = (T[])(new Object[initialCapacity]);

}

The ArrayQueue
class

6-38

//---
// Adds the specified element to the rear of the q ueue,
// expanding the capacity of the queue array if
// necessary.
//---
public void enqueue (T element)
{

if (size() == queue.length)
expandCapacity();

queue[rear] = element;
rear++;

}

The enqueue()
operation

6-39

//---
// Removes the element at the front of the queue a nd returns
// a reference to it. Throws anEmptyCollectionExce ption if the
// queue is empty.
//---
public T dequeue () throws EmptyCollectionExceptio n
{

if (isEmpty())
throw new EmptyCollectionException ("queue");

T result = queue[0];
rear--;
// shift the elements
for (int i = 0; i < rear; i++)

queue[i] = queue[i+1];
queue[rear] = null;
return result;

}

The dequeue()
operation

6-40

Second Approach: Queue as a
Circular Array

• If we don't fix one end of the queue at index 0,
we won't have to shift elements

• Circular array is an array that conceptually
loops around on itself

• The last index is thought to “precede” index 0
• In an array whose last index is n, the location

“before” index 0 is index n; the location
“after” index n is index 0

• Need to keep track of where the front as well as
the rear of the queue are at any given time

6-41

Conceptual Example of a Circular Queue

1

0

12

11

10

1

0

12

11

10

1

0

12

11

10

After 7 enqueues

front

rear

After 5
dequeues

front

rear

After 8 more enqueues

front

rear

6-42

Circular Array Implementation of
a Queue

rear

front

5

queue

count

8

3

0
1

2 3 4
5

6

7

8
9

10

n-1

n-2

n-3

. ..

cq

6-43

A Queue Straddling the End of a
Circular Array

rear

front

4

queue

count

2

98

0
1

2 3 4
5

6

7

8
9

10

99

98

97

. ..

cq

6-44

Circular Queue Drawn Linearly

rear

front

4

queue

count
2

98

0 4321 96 97 98 99
…

Queue from previous slide

cq

6-45

Circular Array Implementation

• When an element is enqueued, the value of
rear is incremented

• But it must take into account the need to
loop back to index 0:

rear = (rear+1) % queue.length;

• Can this array implementation also reach
capacity?

6-46

Example: array of length 4
What happens?

rear

front

3

queue

count
1

2

0 321

rear

front

4

queue

count

2

2

0 321

Suppose we try to add
one more item to a
queue implemented by
an array of length 4

cq

cq

The queue is now full.
How can you tell?

6-47

Add another item!
Need to expand capacity…

rear

front

4

queue

count
2

2

0 321

rear

front

4

queue

count

2

2

0 321 4 765

We can’t just double
the size of the array:
circular properties of
the queue will be lost

These locations
should be in use

cq

cq

6-48

rear

front

4

queue

count

6

2

0 321 4 765

We could build the new array, and copy the queue elements
into contiguous locations beginning at location front :

cq

6-49

rear

front

4

queue

count

4

0

0 321 4 765

Better: copy the queue elements in order to the beginning
of the new array

cq

6-50

rear

front

5

queue

count

5

0

0 321 4 765

New element is added at rear = (rear+1) % queue.length

See expandCapacity() in CircularArrayQueue.java

cq

6-51

Analysis of Queue Operations
• The linked implementation of a queue does not

suffer because of the need to operate on both
ends of the queue (why not?)

• enqueue operation:

• O(1) for linked implementation
• O(n) for circular array implementation if need

to expand capacity, O(1) otherwise

• What about the noncircular array
implementation?

6-52

Analysis of Queue Operations

• dequeue operation:
• O(1) for linked implementation
• O(1) for circular array

implementation
• O(n) for noncircular array

implementation (why?)

