
Topic 10

Java Memory
Management

1-2

Memory Allocation in Java

• When a program is being executed,
separate areas of memory are
allocated for each
• class
• interface
• object
• running method

1-3

• Call stack / runtime stack
• Used for method information while the

method is being executed
• Local variables
• Formal parameters
• Return value
• Where method should return to

• Heap
• Used for

• Static information (interfaces and classes)
• Instance information (objects)

Memory Allocation in Java

1-4

call stack

static
space in
the heap

objects in
the heap

Memory
allocated to
your program

1-5

• Example: What happens when an
object is created by new , as in
Person friend = new Person(…);

• The reference variable has memory
allocated to it on the call stack

• The object is created using memory
in the heap

Memory Allocation in Java

1-6

Runtime Stack

• Call stack (runtime stack) is the
memory space used for method
information while a method is being run

• When a method is invoked, a call frame
(or activation record) for that method is
created and “pushed” onto the call stack
• All the information needed during the

execution of the method is grouped together
in the call frame

1-7

Call Frame (Activation Record)
for a Method

Return value

Local variables

Formal Parameters

Return address

1-8

Call Frame (Activation Record)

• A call frame contains:
• Address to return to after method ends

• Method’s formal parameter variables
• Method’s local variables

• Return value (if any)

• Note that the values in a call frame are
accessible only while the corresponding
method is being executed!

1-9

public class CallStackDemo
{

public static void m2()
{

System.out.println("Starting m2");
System.out.println("m2 calling m3");
m3();
System.out.println("m2 calling m4");
m4();
System.out.println("Leaving m2");
return;

}
public static void m3()
{

System.out.println("Starting m3");
System.out.println("Leaving m3");
return;

}

Example: a
Typical Calling

Sequence

1-10

public static void m4()
{

System.out.println("Starting m4");
System.out.println("Leaving m4");
return;

}

public static void main (String args[])
{

System.out.println("Starting main");
System.out.println("main calling m2");
m2();
System.out.println("Leaving main");

}
}

1-11

Frame for main Frame for main

Frame for m2

Frame for main

Frame for m2

Frame for m3

main calls m2 m2 calls m3

Frame for main

Frame for m2

Return from m3

Frame for main

Frame for m2

Frame for m4

m2 calls m4

Frame for main

Frame for m2

Return from m4

etc.

Call Stack for a Typical Calling Sequence

1-12

• When the main method is invoked:

• A call frame for main is created and
pushed onto the runtime stack

• When main calls the method m2:
• A call frame for m2 is created and pushed

onto the runtime stack

• When m2 calls m3:
• A call frame for m3 is created and pushed

onto the runtime stack

• When m3 terminates, its call frame is popped
off and control returns to m2

Call Stack for a Typical Calling Sequence

1-13

• When m2 now calls m4:
• What happens next?
• What happens when m4 terminates?

• What happens when m2 terminates?

• What happens when main terminates?
Its call frame is popped off and control
returns to the operating system

Call Stack for a Typical Calling Sequence

1-14

Call Frames

• We will now look at some examples of
what is in a call frame for a method
• First for simple variables

• Then for reference variables

1-15

Example: Call Frames - Simple Variables
public class CallFrameDemo1
{

public static double square (double n){
double temp;
temp = n * n;
return temp;

}

public static void main (String args[]) {
double x = 4.5;
double y;
y = square(x);
System.out.println("Square of " + x + " is " + y);

}
}

1-16

Draw a picture of the call frames on the call stack:
• What will be in the call frame for the main method?

• Address to return to in operating system
• Variable args
• Variable x
• Variable y

• What will be in the call frame for the method square ?
• Address to return to in main
• Variable n
• Variable temp
• Return value

Call Frames – Example 1

1-17

• There will be a call frame on the call stack for
each method called. So what other call
frame(s) will be pushed onto the call stack for
our example?

• Which call frames will be on the call stack at
the same time?

Discussion

1-18

Heap Space

• Static space: contains one copy of
each class and interface named in the
program
• Contains their static variables, and

methods

• Object space:
• Information is stored about each object:

• Value of its instance variables
• Type of object (i.e. name of class)

1-19

Object Creation

• Now let's look at reference variables …
• Memory is allocated in the heap area

when an object is created using new
• The reference variable is put in the call

frame on the runtime stack
• The object is created using memory in the

heap

1-20

public class CallFrameDemo2 {

private static void printAll (String s1, String s2, String s3){
System.out.println(s1.toString());
System.out.println(s2.toString());
System.out.println(s3.toString());

}
public static void main (String args[]) {

String str1, str2, str3;

str1 = new String(“ string 1 ”);
str2 = new String(“ string 2 ”);
str3 = new String(“ string 3 ”);

printAll(str1, str2, str3);
}

}

Example: Call Frames-
Reference Variables

1-21

Draw a picture of the call stack and of the heap
as the program executes

• What will be the sequence of call frames on the
call stack?

for main
for String constructor for str1 – then popped off
for String constructor for str2 – then popped off
for String constructor for str3 – then popped off

for printAll
for toString for str1 – then popped off
for System.out.println – then popped off

etc.

Call Frames – Example 2

1-22

• What will be in the call frame for main ? (and in the
heap?)
• Address to return to in operating system
• Variable args
• Variable str1

• Initially?
• After return from String constructor?

• Variable str2
• Variable str3

• What will be in the call frame for printAll ?

Call Frames – Example 2

1-23

Memory Deallocation

• What happens when a method returns?
• On the runtime stack:

• The call frame is automatically
popped off when the method
returns

• So, that memory is deallocated

1-24

Memory Deallocation

• What happens to objects on the heap?
• An object stays on the heap even if there

is no longer a variable referencing it!
• So, Java has automatic garbage

collection
• It regularly identifies objects which no

longer have a variable referencing
them, and deallocates that memory

