Topic 17

Analysis of
Algorithms

Analysis of Algorithms- Review

« Efficiency of an algorithm can be
measured In terms of :

* Time complexity :a measure of the amount
of time required to execute an algorithm

e Space complexity : amount of memory
required
 Which measure Is more important?

e |t often depends on the limitations of the
technology available at time of analysis (e.g.
processor speed vs memory space)

12-2

Time Complexity Analysis

e Objectives of time complexity analysis:

e To determine the feasibility of an algorithm
by estimating an upper bound on the
amount of work performed

 To compare different algorithms before
deciding which one to implement

e Time complexity analysis for an algorithm is
iIndependent of the programming language
and the machine used

12-3

Time Complexity Analysis

 Time complexity expresses the
relationship between

» the size of the input

e and the execution time for the
algorithm

o Usually expressed as a proportionality
rather than an exact function

12-4

Time

Complexity Measurement

e Essentially based on the number of
basic operations In an algorithm:

e Num
e Num
e Num
e Num
e efc.

per of arithmetic operations performed
per of comparisons
per of times through a critical loop

oer of array elements accessed

 Think of this as the work done

12-5

Example : Polynomial Evaluation
Consider the polynomial

P(X) =4x4+ 7x3—-2x%2+ 3x1 + 6

Suppose that exponentiation is carried out using
multiplications. Two ways to evaluate this
polynomial are:

Brute force method
P(X) = 4*X**X*X + 7T*X*X*X — 2*X*X + 3*X + 6
Horner’'s method :

PX)=(((4*x+7)*X—-2)*X+3)*xX+6

12-6

Method of analysis

 What are the basic operations here?

 multiplication, addition, and subtraction

« We'll only consider the number of multiplications,
since the number of additions and subtractions are
the same In each solution

o We’'ll examine the general form of a polynomial of
degree n, and express our result in terms of n

 We'll look at the worst case (maximum number

of multiplications) to get an upper bound on the
work

12-7

Method of analysis

General form of a polynomial of degree n is

P(x) =ax"+a,x"t+a, ,x"2+ .. +ax!+a,

where a_ Is non-zero for alln >=0

(this Is the worst case)

12-8

Analysis of Brute Force Method

PX)=a, *X*X*...*X*X + n multiplications
A TXEXFLLUFXEX A+ n-1 multiplications
Ao TXEXF LUFXFEX A+ n-2 multiplications
.
A, *X*X+ 2 multiplications
a; * X+ 1 multiplication
A

12-9

Number of multiplications needed in the worst case s
TnN)=n+Mn-1)+(nN-2)+...+3+2+1
=n(n+1)/2 (seebelow)

=n¢/2+n/2

Sum of first n natural numbers:

Write the n terms of the sum in forward and reverse
orders:

Tn)=1+ 2 + 3 +..+((N-2)+(n-1)+n
Tn)=n+MnN-1)+MNn-2)+...+ 3 + 2 +1
Add the corresponding terms:
2*T(n) = (n+1) + (n+1) + (n+1) + ... + (n+1) + (n+1) + (n+1)
=n (n+l)
Therefore, T(n) =n (n+1)/2 12-10

Analysis of Horner’s Method

PX)=(...(((a,*x+
Q1) * X+
A,0) ¥ X+
.
ay) * X +
a,) * x+

ag

1 multiplication
1 multiplication

1 multiplication

1 multiplication

1 multiplication

n times

12-11

Analysis of Horner’'s Method

Number of multiplications needed In
the worst case Is:

T(n)=n

12-12

Big-O Notation

« Analysis of Brute Force and Horner’s
methods came up with exact formulae
for the maximum number of
multiplications

* In general, though, we want upper
bounds rather than exact formulae: we

will use the Big-O notation introduced
earlier ...

12-13

Big-O : Formal Definition

 Time complexity T(n) of an algorithm
IS O(f(n))
(we say “of the order f(n) ")
If for some positive constant C
and for all but finitely many values of n

(l.e. as n gets large)
T(n) <= C *{(n)

 What does this mean? this gives an upper
bound on the number of operations, for
sufficiently large n

12-14

Big-O Analysis

 We want our f(n) to be an easily
recognized elementary function
describes the performance of the
algorithm

that

12-15

Big-O Analysis

Example: Polynomial Evaluation

 What is f(n) for Horner’'s method?

 T(n) = n, so choose f(n) =n

e S0, we say that the number of
multiplications in Horner’s method is

O(n) (“of the order of n”) and that
the time complexity of Horner’s
method is O(n)

12-16

Big-O Analysis

Example: Polynomial Evaluation

 What is f(n)

for the Brute Force method?

* Choose the highest order (dominant)

term of

T(n) =n?/2 +n/2
with a coefficient of 1, so that

f(n) = n?

12-17

Discussion

 Why did we use the dominant term?

* |t determines the basic shape of the
function

 Why did we use a coefficient of 17

e For large n, n?/2 is essentially n?

12-18

Recall: Shape of Some Typical
Functions

1200-
t(n) =n3

1000-

800~

600- t(n) = nlog ,n

400

200~

t(in) =n

I I I I I I | I I I
10 20 30 40 50 60 /0 80 90 100

n

12-19

Big-O Analysis

Example: Polynomial Evaluation

e |Is f(n) = n? a good choice? i.e. for large
n, how does T(n) compare to f(n)?
* T(n)/ f(n) approaches % for large n

e So, T(n) is approximately n?/2 for large n

e N?/2 <=T(n) <=n?, so f(n) is a close
upper bound

12-20

Big-O Analysis

Example: Polynomial Evaluation

e S0, we say that the number of
multiplications in the Brute Force method Is
O(n?) (“of the order of n") and that the
time complexity of the Brute Force
method is O(n?)

e Think of this as “proportional ton 2

12-21

Big-O Analysis: Summary

 We want f(n) to be an easily recognized
elementary function

 We want a tight upper bound for our
choice of f(n)

* n3is also an upper bound for the Brute
Force method, but not a good one!

 Why not? Look at how T(n) compares to
f(n) = n3

e T(n) / n3 approaches 0 for large n,
l.e. T(n) is miniscule when compared
to n3 for large n

12-22

Big-0 Example: Polynomial
Evaluation Comparison

nand T(n) =n | T(N)=n4/2+ n/2 f(n) =n?2
(Homer) | (Brute Force) | tnperimnd o
) 15 25
10 25 100
20 210 400
100 5050 10000
1000 500500 1000000
n is the degree of the polynomial.
Recall that we are comparing the number of multipli cations.

12-23

of mult’s

Big-0 Example: Polynomial

600—-

500—-

400

300—

200—

100=—-

Evaluation

f(n) = n?

T(n) £ n2/2 + n/2

ET(n):n v

5

10 15 20 25 30 35
n (degree of polynomial) 12-24

Time Complexity and Input

 Run time can depend on the size of the input
only (e.g. sorting 5 items vs. 1000 items)

 Run time can also depend on the particular
iInput (e.g. suppose the input Is already sorted)

e This leads to several kinds of time complexity
analysis:

* Worst case analysis
« Average case analysis
* Best case analysis

12-25

Worst, Average, Best Case

* \Worst case analysis : considers the maximum
of the time over all inputs of size n

e Used to find an upper bound on algorithm
performance for large problems (large n)

« Average case analysis : considers the average
of the time over all inputs of size n

* Determines the average (or expected)
performance

* Best case analysis : considers the minimum of
the time over all inputs of size n

12-26

Discussion

 What are some difficulties with average
case analysis?

e Hard to determine

e Depends on distribution of inputs
(they might not be evenly distributed)

e S0, we usually use worst case analysis
(why not best case analysis?)

12-27

Example : Linear Search

* The problem : search an array a of size n to
determine whether the array contains the
value key

e Return array index if found, -1 if not found
Set k to O.
While (k < n-1) and (alk] is not key)
Add 1to k.
If a[k] == key
Return k.

Else

Return —1.

12-28

e Total amount of work done:
« Before loop : a constant amount of work

« Each time through loop : 2 comparisons
and a constant amount of work (the and
operation and addition)

« After loop : a constant amount of work

e S0, we consider the number of
comparisons only

 Worst case : need to examine all n array
locations

e S0, T(n) =2*n, and time complexity is O(n)

12-29

o Simpler (less formal) analysis:

* Note that work done before and after the
loop Is iIndependent of n, and work done
during a single execution of loop Is
iIndependent of n

 |n worst case, loop will be executed n
times, so amount of work done Is
proportional to n, and algorithm is O(n)

12-30

« Average case for a successful search:

 Number of comparisons necessary to find
the key? 1or2or3or4 ...orn

e Assume that each possibility is equally
likely
e Average number of comparisons :
(1+2+3+ ... +n)/n = (n*(n+1)/2)/n
= (n+1)/2
* Average case time complexity Is therefore
O(n)

12-31

Example : Binary Search

« General case : search a sorted array a of
size n looking for the value key

« Divide and conquer approach:
 Compute the middle index mid of the array
 |f key Is found at mid, we’re done

e Otherwise repeat the approach on the half
of the array that might still contain key

e elc...

12-32

Binary Search Algorithm

Set first to O.
Set last to n-1.
Do {
Set mid to (first + last) / 2 .
If key < a[mid], Set last to mid - 1.
Else Set first to mid + 1.
} While (a[mid] is not key) and (first <= last).
If a[mid] == key Return mid.

Else Return —1.

12-33

 Amount of work done before and after the
loop Is a constant, and Is independent of n

 Amount of work done during a single
execution of the loop Is constant

 Time complexity will therefore be proportional
to number of times the loop Is executed, so
that is what we will analyze

12-34

Worst case : key Is not found in the array

 Each time through the loop, at least half of
the remaining locations are rejected:

o After first time through, <= n/2 remain

o After second time through, <= n/4 remain
o After third time through, <= n/8 remain

« After k' time through, <= n/2¥ remain

12-35

e Suppose in the worst case that the maximum
number of times through the loop Is k; we
must express K In terms of n

« EXit the do..while loop when the number of
remaining possible locations is less than 1
(that Is, when first > last): this means that
n/2k< 1

12-36

e Also, n/2%1 >=1; otherwise, looping would
have stopped after k-1 iterations

 Combining the two inequalities, we get
n/2k <1 <=n/2 k1

 |nvert and multiply through by n to get
2k >n>=2 k-1

12-37

* Next, take base-2 logarithms to get
k> log,(n) >=k-1
which is equivalent to

log ,(n) <k <=log ,(n) + 1

* S0, binary search algorithm is O(log ,(n)) In
terms of the number of array locations
examined

12-38

Big-O Analysis in General

 To determine the time complexity of an
algorithm:
e Look at the loop structure
 |dentify the basic operation(s)

e Express the number of operations as
f,(n) +f,(n) + ...

 ldentify the dominant term f,
* Then the time complexity is O(f;)

12-39

 Examples of dominant terms
* N dominates log,(n)
* nlog ,(n) dominates n
* n2 dominates n log ,(n)
e N™ dominates nk when m > k

 a" dominates n™ foranya>1and m>=0

e That s,

log,(N) <n<nlog,n)<n?<..<npm<a"

fora>1and m>2

12-40

Recall: Shape of Some Typical
Functions

1200-
f(n) =n3

1000-

800~

600- f(n) = nlog ,n

400

200~

f(n) =n

I I I I I I | I I I
10 20 30 40 50 60 /0 80 90 100

n

12-41

Examples of Big-O Analysis

* |Independent nested loops
Int X = 0;
for (int1=1;1<=n/2; I++){
for (int] = 1;] <= n*n; j++){
X=X+1+];
}

}

 Number of iterations of inner loop Is
iIndependent of the number of iterations
of the outer loop (i.e. the value of 1)

 How many times through outer loop?
 How many times through inner loop?
 Time complexity of algorithm?

12-42

e Dependent nested loops
Int X = 0;
for (int1=1;1<=n; I++){
for (int]j =1,] <= 3%, J++){
X=X+
}
}

Number of iterations of inner loop depends
on the value of | in the outer loop

e On k' jteration of outer loop, how many
times through inner loop?

Total number of iterations of inner loop =
sum for k running from 1 to n

Time complexity of algorithm?

12-43

Usefulness of Big-O

 \We can compare algorithms for
efficiency, for example:

 Linear search vs binary search
e Different sort algorithms

e [terative vs recursive solutions
(recall Fibonacci sequence!)

« We can estimate actual run times If
we know the time complexity of the
algorithm(s) we are analyzing

12-44

Estimating Run Times

 Assuming a million operations per second on
a computer, here are some typical complexity
functions and their associated runtimes:

f(n) n=103
log ,(N) 10> sec

n 10-3 sec

n log ,(n) 0.01 sec.
n2 1 sec.

n3 17 mins.
20 10285 cent.

n=10° n=10°
1.7*10°sec. 2*10~ sec.
0.1 sec. 1 sec.

1.7 sec. 20 sec.

3 hours 12 days

32 years 317 centuries

101000 years 10100000 years

12-45

Discussion

Suppose we want to perform a sort that is
O(n?). What happens if the number of items to
be sorted is 1000007

Compare this to a sort that is O(n log ,(n)) . Now
what can we expect?

Is an O(n?) algorithm practical for large n?

What about an O(2") algorithm, even for small
n? e.g. for a Pentium, runtimes are:

N=30 n=40 n =50 n =60
11 sec. 3hours 130days 365 years

12-46

Intractable Problems

* A problem is said to be intractable If
solving it by computer Is impractical
 Algorithms with time complexity O(2")
take too long to solve even for moderate
values of n
 What are some examples we have seen?

12-47

