
Topic 17

Analysis of
Algorithms

12-2

Analysis of Algorithms- Review

• Efficiency of an algorithm can be
measured in terms of :
• Time complexity : a measure of the amount

of time required to execute an algorithm
• Space complexity : amount of memory

required

• Which measure is more important?
• It often depends on the limitations of the

technology available at time of analysis (e.g.
processor speed vs memory space)

12-3

Time Complexity Analysis

• Objectives of time complexity analysis:
• To determine the feasibility of an algorithm

by estimating an upper bound on the
amount of work performed

• To compare different algorithms before
deciding which one to implement

• Time complexity analysis for an algorithm is
independent of the programming language
and the machine used

12-4

• Time complexity expresses the
relationship between
• the size of the input
• and the execution time for the

algorithm
• Usually expressed as a proportionality ,

rather than an exact function

Time Complexity Analysis

12-5

Time Complexity Measurement

• Essentially based on the number of
basic operations in an algorithm:
• Number of arithmetic operations performed
• Number of comparisons
• Number of times through a critical loop
• Number of array elements accessed
• etc.

• Think of this as the work done

12-6

Example : Polynomial Evaluation
Consider the polynomial

P(x) = 4x 4 + 7x3 – 2x2 + 3x1 + 6

Suppose that exponentiation is carried out using
multiplications. Two ways to evaluate this
polynomial are:

Brute force method :

P(x) = 4*x*x*x*x + 7*x*x*x – 2*x*x + 3*x + 6

Horner’s method :

P(x) = (((4*x + 7) * x – 2) * x + 3) * x + 6

12-7

Method of analysis

• What are the basic operations here?

• multiplication, addition, and subtraction

• We’ll only consider the number of multiplications,
since the number of additions and subtractions are
the same in each solution

• We’ll examine the general form of a polynomial of
degree n, and express our result in terms of n

• We’ll look at the worst case (maximum number
of multiplications) to get an upper bound on the
work

12-8

General form of a polynomial of degree n is

P(x) = anxn + an-1xn-1 + an-2xn-2 + … + a1x1 + a0

where an is non-zero for all n >= 0

(this is the worst case)

Method of analysis

12-9

Analysis of Brute Force Method

P(x) = an * x * x * … * x * x + n multiplications

a n-1 * x * x * … * x * x + n-1 multiplications

a n-2 * x * x * … * x * x + n-2 multiplications

… + …

a2 * x * x + 2 multiplications

a1 * x + 1 multiplication

a0

12-10

Number of multiplications needed in the worst case is

T(n) = n + (n-1) + (n-2) + … + 3 + 2 + 1

= n (n + 1) / 2 (see below)

= n2 / 2 + n / 2

Sum of first n natural numbers:

Write the n terms of the sum in forward and reverse
orders:

T(n) = 1 + 2 + 3 + … + (n-2) + (n-1) + n

T(n) = n + (n-1) + (n-2) + … + 3 + 2 + 1

Add the corresponding terms:

2*T(n) = (n+1) + (n+1) + (n+1) + … + (n+1) + (n+1) + (n+1)

= n (n+1)

Therefore, T(n) = n (n+1) / 2

12-11

Analysis of Horner’s Method

P(x) = (… (((an * x + 1 multiplication

an-1) * x + 1 multiplication

an-2) * x + 1 multiplication

… + n times

a2) * x + 1 multiplication

a1) * x + 1 multiplication

a0

12-12

Number of multiplications needed in
the worst case is :

T(n) = n

Analysis of Horner’s Method

12-13

Big-O Notation

• Analysis of Brute Force and Horner’s
methods came up with exact formulae
for the maximum number of
multiplications

• In general, though, we want upper
bounds rather than exact formulae: we
will use the Big-O notation introduced
earlier …

12-14

Big-O : Formal Definition

• Time complexity T(n) of an algorithm
is O(f(n))

(we say “of the order f(n) ”)
if for some positive constant C
and for all but finitely many values of n
(i.e. as n gets large)

T(n) <= C * f(n)

• What does this mean? this gives an upper
bound on the number of operations, for
sufficiently large n

12-15

Big-O Analysis

• We want our f(n) to be an easily
recognized elementary function that
describes the performance of the
algorithm

12-16

Big-O Analysis
Example: Polynomial Evaluation

• What is f(n) for Horner’s method?

• T(n) = n , so choose f(n) = n

• So, we say that the number of
multiplications in Horner’s method is
O(n) (“of the order of n”) and that
the time complexity of Horner’s
method is O(n)

12-17

• What is f(n) for the Brute Force method?

• Choose the highest order (dominant)
term of
T(n) = n2/2 + n/2

with a coefficient of 1, so that
f(n) = n 2

Big-O Analysis
Example: Polynomial Evaluation

12-18

Discussion

• Why did we use the dominant term?

• It determines the basic shape of the
function

• Why did we use a coefficient of 1?

• For large n, n2/2 is essentially n2

12-191-19

Recall: Shape of Some Typical
Functions

1200

1000

800

600

400

200

70605040302010

n
1009080

t(n) = n 3

t(n) = n 2

t(n) = nlog 2n

t(n) = n

12-20

Big-O Analysis
Example: Polynomial Evaluation

• Is f(n) = n2 a good choice? i.e. for large
n, how does T(n) compare to f(n)?

• T(n)/ f(n) approaches ½ for large n

• So, T(n) is approximately n2/2 for large n

• n2/2 <= T(n) <= n2 , so f(n) is a close
upper bound

12-21

• So, we say that the number of
multiplications in the Brute Force method is
O(n2) (“of the order of n2”) and that the
time complexity of the Brute Force
method is O(n2)

• Think of this as “proportional to n 2”

Big-O Analysis
Example: Polynomial Evaluation

12-22

Big-O Analysis: Summary

• We want f(n) to be an easily recognized
elementary function

• We want a tight upper bound for our
choice of f(n)
• n3 is also an upper bound for the Brute

Force method, but not a good one!
• Why not? Look at how T(n) compares to

f(n) = n3

• T(n) / n3 approaches 0 for large n,
i.e. T(n) is miniscule when compared
to n3 for large n

12-23

Big-0 Example: Polynomial
Evaluation Comparison

10000005005001000

100005050100

40021020

1005510

25155

f(n) = n 2

(upper bound for
Brute Force)

T(n)= n2/2 + n/2

(Brute Force)
n and T(n) =n

(Horner)

n is the degree of the polynomial.
Recall that we are comparing the number of multipli cations.

12-24

Big-0 Example: Polynomial
Evaluation

600

500

400

300

200

100

3530252015105

T(n) = n

T(n) = n2/2 + n/2

f(n) = n 2

of mult’s

n (degree of polynomial)

12-25

Time Complexity and Input

• Run time can depend on the size of the input
only (e.g. sorting 5 items vs. 1000 items)

• Run time can also depend on the particular
input (e.g. suppose the input is already sorted)

• This leads to several kinds of time complexity
analysis:
• Worst case analysis

• Average case analysis
• Best case analysis

12-26

Worst, Average, Best Case
• Worst case analysis : considers the maximum

of the time over all inputs of size n
• Used to find an upper bound on algorithm

performance for large problems (large n)

• Average case analysis : considers the average
of the time over all inputs of size n
• Determines the average (or expected)

performance
• Best case analysis : considers the minimum of

the time over all inputs of size n

12-27

Discussion

• What are some difficulties with average
case analysis?
• Hard to determine
• Depends on distribution of inputs

(they might not be evenly distributed)

• So, we usually use worst case analysis
(why not best case analysis?)

12-28

Example : Linear Search
• The problem : search an array a of size n to

determine whether the array contains the
value key
• Return array index if found, -1 if not found

Set k to 0.

While (k < n-1) and (a[k] is not key)

Add 1 to k.

If a[k] == key

Return k.

Else

Return –1.

12-29

• Total amount of work done:

• Before loop : a constant amount of work
• Each time through loop : 2 comparisons

and a constant amount of work (the and
operation and addition)

• After loop : a constant amount of work

• So, we consider the number of
comparisons only

• Worst case : need to examine all n array
locations

• So, T(n) = 2*n , and time complexity is O(n)

12-30

• Simpler (less formal) analysis:

• Note that work done before and after the
loop is independent of n, and work done
during a single execution of loop is
independent of n

• In worst case, loop will be executed n
times, so amount of work done is
proportional to n, and algorithm is O(n)

12-31

• Average case for a successful search:

• Number of comparisons necessary to find
the key? 1 or 2 or 3 or 4 … or n

• Assume that each possibility is equally
likely

• Average number of comparisons :
(1+2+3+ … +n)/n = (n*(n+1)/2)/n

= (n+1)/2
• Average case time complexity is therefore

O(n)

12-32

Example : Binary Search

• General case : search a sorted array a of
size n looking for the value key

• Divide and conquer approach:
• Compute the middle index mid of the array
• If key is found at mid , we’re done

• Otherwise repeat the approach on the half
of the array that might still contain key

• etc…

12-33

Binary Search Algorithm
Set first to 0.

Set last to n-1.

Do {

Set mid to (first + last) / 2 .

If key < a[mid] , Set last to mid – 1 .

Else Set first to mid + 1 .

} While (a[mid] is not key) and (first <= last).

If a[mid] == key Return mid .

Else Return –1.

12-34

• Amount of work done before and after the
loop is a constant, and is independent of n

• Amount of work done during a single
execution of the loop is constant

• Time complexity will therefore be proportional
to number of times the loop is executed, so
that is what we will analyze

12-35

Worst case : key is not found in the array

• Each time through the loop, at least half of
the remaining locations are rejected:

• After first time through, <= n/2 remain

• After second time through, <= n/4 remain
• After third time through, <= n/8 remain

• After k th time through, <= n/2k remain

12-36

• Suppose in the worst case that the maximum
number of times through the loop is k; we
must express k in terms of n

• Exit the do..while loop when the number of
remaining possible locations is less than 1
(that is, when first > last): this means that
n/2k < 1

12-37

• Also, n/2k-1 >=1; otherwise, looping would
have stopped after k-1 iterations

• Combining the two inequalities, we get

n/2k < 1 <= n/2 k-1

• Invert and multiply through by n to get

2k > n >= 2 k-1

12-38

• Next, take base-2 logarithms to get

k > log 2(n) >= k-1

which is equivalent to

log 2(n) < k <= log 2(n) + 1

• So, binary search algorithm is O(log 2(n)) in
terms of the number of array locations
examined

12-39

Big-O Analysis in General

• To determine the time complexity of an
algorithm:
• Look at the loop structure

• Identify the basic operation(s)
• Express the number of operations as

f1(n) + f2(n) + …
• Identify the dominant term f i

• Then the time complexity is O(f i)

12-40

• Examples of dominant terms :
• n dominates log 2(n)
• n log 2(n) dominates n
• n2 dominates n log 2(n)
• nm dominates nk when m > k
• an dominates nm for any a > 1 and m >= 0

• That is,

log 2(n) < n < n log 2(n) < n2 < … < nm < an

for a > 1 and m >2

12-411-41

Recall: Shape of Some Typical
Functions

1200

1000

800

600

400

200

70605040302010

n
1009080

f(n) = n 3

f(n) = n 2

f(n) = nlog 2n

f(n) = n

12-42

Examples of Big-O Analysis
• Independent nested loops :

int x = 0;
for (int i = 1; i <= n/2; i++){

for (int j = 1; j <= n*n; j++){
x = x + i + j;

}
}

• Number of iterations of inner loop is
independent of the number of iterations
of the outer loop (i.e. the value of i)

• How many times through outer loop?
• How many times through inner loop?
• Time complexity of algorithm?

12-43

• Dependent nested loops :
int x = 0;
for (int i = 1; i <= n; i++){

for (int j = 1; j <= 3*i; j++){
x = x + j;

}
}

• Number of iterations of inner loop depends
on the value of i in the outer loop

• On k th iteration of outer loop, how many
times through inner loop?

• Total number of iterations of inner loop =
sum for k running from 1 to n

• Time complexity of algorithm?

12-44

Usefulness of Big-O

• We can compare algorithms for
efficiency, for example:

• Linear search vs binary search
• Different sort algorithms
• Iterative vs recursive solutions

(recall Fibonacci sequence!)

• We can estimate actual run times if
we know the time complexity of the
algorithm(s) we are analyzing

12-45

Estimating Run Times
• Assuming a million operations per second on

a computer, here are some typical complexity
functions and their associated runtimes:

f(n) n = 10 3 n = 105 n = 106

--
log 2(n) 10-5 sec. 1.7*10 -5 sec. 2*10 -5 sec.
n 10-3 sec. 0.1 sec. 1 sec.
n log 2(n) 0.01 sec. 1.7 sec. 20 sec.
n2 1 sec. 3 hours 12 days
n3 17 mins. 32 years 317 centuries
2n 10285 cent. 10 10000 years 10 100000 years

12-46

Discussion

• Suppose we want to perform a sort that is
O(n2). What happens if the number of items to
be sorted is 100000?

• Compare this to a sort that is O(n log 2(n)) . Now
what can we expect?

• Is an O(n3) algorithm practical for large n?
• What about an O(2n) algorithm, even for small

n? e.g. for a Pentium, runtimes are:

n = 30 n = 40 n = 50 n = 60
11 sec. 3 hours 130 days 365 years

12-47

Intractable Problems

• A problem is said to be intractable if
solving it by computer is impractical

• Algorithms with time complexity O(2n)
take too long to solve even for moderate
values of n
• What are some examples we have seen?

