Topic 17

Analysis of Algorithms

Analysis of Algorithms- Review

- Efficiency of an algorithm can be measured in terms of :
 - Time complexity: a measure of the amount of time required to execute an algorithm
 - Space complexity: amount of memory required
- Which measure is more important?
 - It often depends on the limitations of the technology available at time of analysis (e.g. processor speed vs memory space)

Time Complexity Analysis

- Objectives of time complexity analysis:
 - To determine the feasibility of an algorithm by estimating an upper bound on the amount of work performed
 - To compare different algorithms before deciding which one to implement
- Time complexity analysis for an algorithm is independent of the programming language and the machine used

Time Complexity Analysis

- Time complexity expresses the relationship between
 - the size of the input
 - and the execution time for the algorithm
- Usually expressed as a proportionality, rather than an exact function

Time Complexity Measurement

- Essentially based on the number of basic operations in an algorithm:
 - Number of arithmetic operations performed
 - Number of comparisons
 - Number of times through a critical loop
 - Number of array elements accessed
 - etc.
- Think of this as the work done

Example: Polynomial Evaluation

Consider the polynomial

$$P(x) = 4x^4 + 7x^3 - 2x^2 + 3x^1 + 6$$

Suppose that exponentiation is carried out using multiplications. Two ways to evaluate this polynomial are:

Brute force method

$$P(x) = 4^*x^*x^*x^*x + 7^*x^*x^*x - 2^*x^*x + 3^*x + 6$$

Horner's method

$$P(x) = (((4*x + 7) * x - 2) * x + 3) * x + 6$$

Method of analysis

- What are the basic operations here?
 - multiplication, addition, and subtraction
 - We'll only consider the number of multiplications, since the number of additions and subtractions are the same in each solution
- We'll examine the general form of a polynomial of degree n, and express our result in terms of n
- We'll look at the worst case (maximum number of multiplications) to get an upper bound on the work

Method of analysis

General form of a polynomial of degree n is

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x^1 + a_0$$

where a_n is non-zero for all $n \ge 0$

(this is the worst case)

Analysis of Brute Force Method

$$P(x) = a_{n} * x * x * ... * x * x +$$

$$a_{n-1} * x * x * ... * x * x +$$

$$a_{n-2} * x * x * ... * x * x +$$

$$... +$$

$$a_{2} * x * x +$$

$$a_{1} * x +$$

$$a_{0}$$

n multiplications

n-1 multiplications

n-2 multiplications

. . .

2 multiplications

1 multiplication

Number of multiplications needed in the worst case is

$$T(n) = n + (n-1) + (n-2) + ... + 3 + 2 + 1$$

$$= n (n + 1) / 2 \text{ (see below)}$$

$$= n^2 / 2 + n / 2$$

Sum of first n natural numbers:

Write the n terms of the sum in forward and reverse orders:

$$T(n) = 1 + 2 + 3 + ... + (n-2) + (n-1) + n$$

$$T(n) = n + (n-1) + (n-2) + ... + 3 + 2 + 1$$

Add the corresponding terms:

$$2*T(n) = (n+1) + (n+1) + (n+1) + ... + (n+1) + (n+1) + (n+1)$$

= n (n+1)

Therefore,
$$T(n) = n (n+1)/2$$

Analysis of Horner's Method

$$P(x) = (.... (((a_n * x + a_{n-1}) * x + a_{n-2}) * x + a_{n-2}) * x + + a_2) * x + a_1) * x + a_0$$

- 1 multiplication
- 1 multiplication
- 1 multiplication

- 1 multiplication
- 1 multiplication

n times

Analysis of Horner's Method

Number of multiplications needed in the *worst case* is :

$$T(n) = n$$

Big-O Notation

- Analysis of Brute Force and Horner's methods came up with exact formulae for the maximum number of multiplications
- In general, though, we want upper bounds rather than exact formulae: we will use the Big-O notation introduced earlier ...

Big-O: Formal Definition

Time complexity T(n) of an algorithm is O(f(n))

```
( we say "of the order f(n) ")
if for some positive constant C
and for all but finitely many values of n
(i.e. as n gets large)
    T(n) <= C * f(n)</pre>
```

 What does this mean? this gives an upper bound on the number of operations, for sufficiently large n

Big-O Analysis

 We want our f(n) to be an easily recognized elementary function that describes the performance of the algorithm

Big-O Analysis

Example: Polynomial Evaluation

- What is f(n) for Horner's method?
 - T(n) = n, so choose f(n) = n
 - So, we say that the number of multiplications in Horner's method is O(n) ("of the order of n") and that the time complexity of Horner's method is O(n)

Big-O Analysis

Example: Polynomial Evaluation

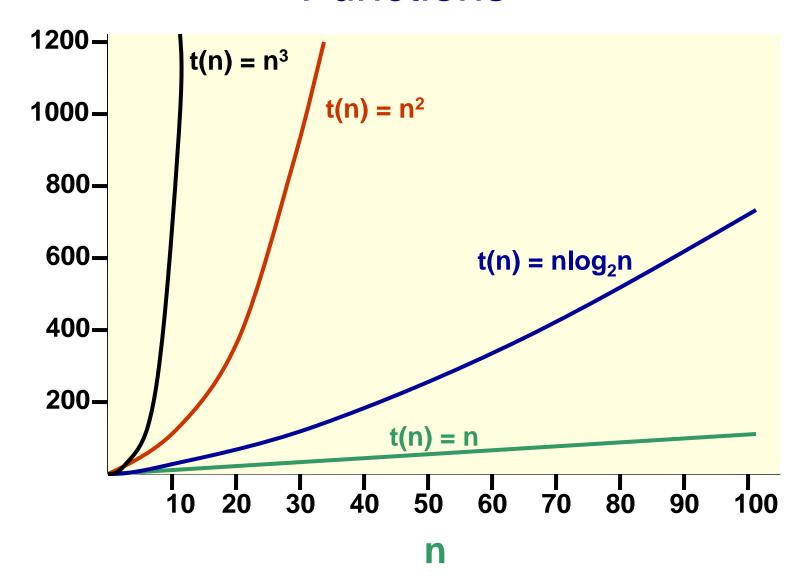
- What is f(n) for the Brute Force method?
 - Choose the highest order (dominant) term of

```
T(n) = n^2/2 + n/2
with a coefficient of 1, so that
f(n) = n^2
```

Discussion

- Why did we use the dominant term?
 - It determines the basic shape of the function
- Why did we use a coefficient of 1?
 - For large n, n²/2 is essentially n²

Recall: Shape of Some Typical Functions



12-19

Big-O Analysis Example: Polynomial Evaluation

- Is f(n) = n² a good choice? i.e. for large n, how does T(n) compare to f(n)?
 - T(n)/ f(n) approaches ½ for large n
 - So, T(n) is approximately n²/2 for large n
- n²/2 <= T(n) <= n², so f(n) is a close upper bound

Big-O Analysis Example: Polynomial Evaluation

- So, we say that the number of multiplications in the Brute Force method is O(n²) ("of the order of n²") and that the time complexity of the Brute Force method is O(n²)
 - Think of this as "proportional to n²"

Big-O Analysis: Summary

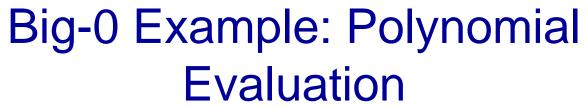
- We want f(n) to be an easily recognized elementary function
- We want a tight upper bound for our choice of f(n)
 - n³ is also an upper bound for the Brute Force method, but not a good one!
 - Why not? Look at how T(n) compares to f(n) = n³
 - T(n) / n³ approaches 0 for large n,
 i.e. T(n) is miniscule when compared to n³ for large n

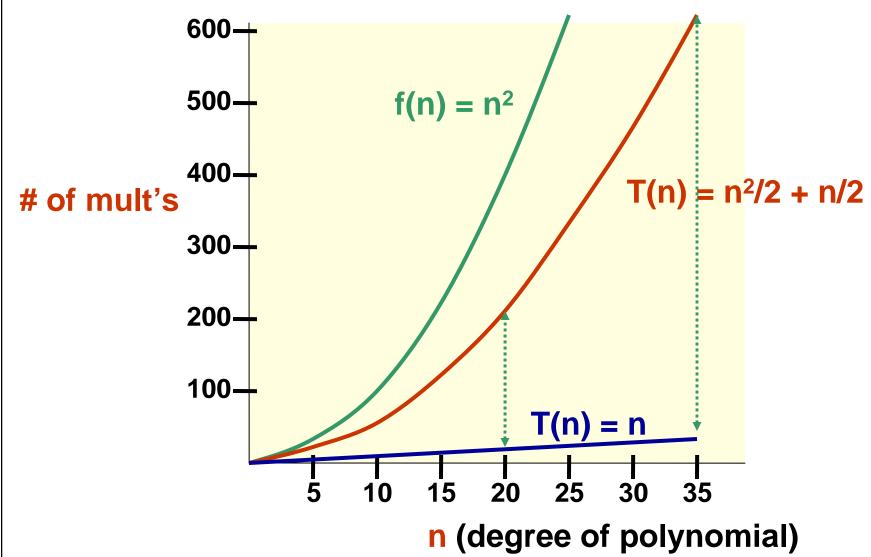
Big-0 Example: Polynomial Evaluation Comparison

n and T(n) =n	$T(n) = n^2/2 + n/2$	$f(n) = n^2$
(Horner)	(Brute Force)	(upper bound for Brute Force)
5	15	25
10	55	100
20	210	400
100	5050	10000
1000	500500	1000000

n is the degree of the polynomial.

Recall that we are comparing the number of multiplications.





Time Complexity and Input

- Run time can depend on the size of the input only (e.g. sorting 5 items vs. 1000 items)
- Run time can also depend on the particular input (e.g. suppose the input is already sorted)
- This leads to several kinds of time complexity analysis:
 - Worst case analysis
 - Average case analysis
 - Best case analysis

Worst, Average, Best Case

- Worst case analysis: considers the maximum of the time over all inputs of size n
 - Used to find an upper bound on algorithm performance for large problems (large n)
- Average case analysis: considers the average of the time over all inputs of size n
 - Determines the average (or expected) performance
- Best case analysis: considers the minimum of the time over all inputs of size n

Discussion

- What are some difficulties with average case analysis?
 - Hard to determine
 - Depends on distribution of inputs (they might not be evenly distributed)
- So, we usually use worst case analysis (why not best case analysis?)

Example: Linear Search

- The problem: search an array a of size n to determine whether the array contains the value key
 - Return array index if found, -1 if not found

```
Set k to 0.

While (k < n-1) and (a[k] is not key)

Add 1 to k.

If a[k] == key

Return k.

Else

Return -1.
```

- Total amount of work done:
 - Before loop: a constant amount of work
 - Each time through loop: 2 comparisons and a constant amount of work (the and operation and addition)
 - After loop: a constant amount of work
 - So, we consider the number of comparisons only
- Worst case: need to examine all n array locations
- So, T(n) = 2*n, and time complexity is O(n)

- Simpler (less formal) analysis:
 - Note that work done before and after the loop is independent of n, and work done during a single execution of loop is independent of n
 - In worst case, loop will be executed n times, so amount of work done is proportional to n, and algorithm is O(n)

- Average case for a successful search:
 - Number of comparisons necessary to find the key? 1 or 2 or 3 or 4 ... or n
 - Assume that each possibility is equally likely
 - Average number of comparisons:
 (1+2+3+ ... +n)/n = (n*(n+1)/2)/n
 = (n+1)/2
 - Average case time complexity is therefore
 O(n)

Example: Binary Search

- General case: search a sorted array a of size n looking for the value key
- Divide and conquer approach:
 - Compute the middle index mid of the array
 - If key is found at mid, we're done
 - Otherwise repeat the approach on the half of the array that might still contain key
 - etc...

Binary Search Algorithm

```
Set first to 0.
Set last to n-1.
Do {
  Set mid to (first + last) / 2.
  If key < a[mid], Set last to mid – 1.
  Else Set first to mid + 1.
} While (a[mid] is not key) and (first <= last).</p>
If a[mid] == key Return mid.
Else Return –1.
```

- Amount of work done before and after the loop is a constant, and is independent of n
- Amount of work done during a single execution of the loop is constant
- Time complexity will therefore be proportional to number of times the loop is executed, so that is what we will analyze

Worst case: key is not found in the array

- Each time through the loop, at least half of the remaining locations are rejected:
 - After first time through, <= n/2 remain
 - After second time through, <= n/4 remain
 - After third time through, <= n/8 remain
 - After kth time through, <= n/2^k remain

 Suppose in the worst case that the maximum number of times through the loop is k; we must express k in terms of n

Exit the do..while loop when the number of remaining possible locations is less than 1 (that is, when first > last): this means that n/2^k < 1

- Also, n/2^{k-1} >=1; otherwise, looping would have stopped after k-1 iterations
- Combining the two inequalities, we get

$$n/2^k < 1 <= n/2^{k-1}$$

Invert and multiply through by n to get

$$2^{k} > n > = 2^{k-1}$$

Next, take base-2 logarithms to get

$$k > log_2(n) >= k-1$$

which is equivalent to

$$\log_2(n) < k <= \log_2(n) + 1$$

 So, binary search algorithm is O(log₂(n)) in terms of the number of array locations examined

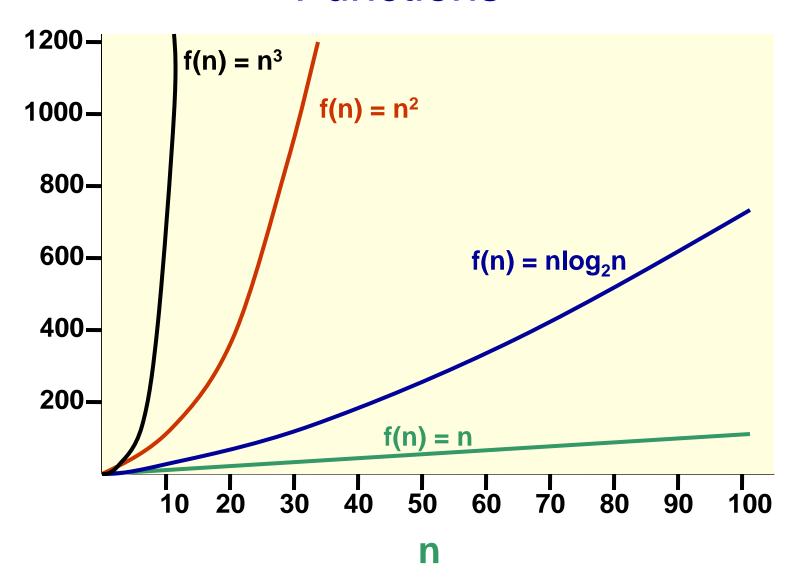
Big-O Analysis in General

- To determine the time complexity of an algorithm:
 - Look at the loop structure
 - Identify the basic operation(s)
 - Express the number of operations as
 f₁(n) + f₂(n) + ...
 - Identify the dominant term f_i
 - Then the time complexity is O(f_i)

- Examples of dominant terms:
 - n dominates log₂(n)
 - n log₂(n) dominates n
 - n² dominates n log₂(n)
 - n^m dominates n^k when m > k
 - aⁿ dominates n^m for any a > 1 and m >= 0
- That is,

$$log_2(n) < n < n log_2(n) < n^2 < ... < n^m < a^n$$
 for a > 1 and m >2

Recall: Shape of Some Typical Functions



12-41

Examples of Big-O Analysis

Independent nested loops:

```
int x = 0;
for (int i = 1; i <= n/2; i++){
  for (int j = 1; j <= n*n; j++){
      x = x + i + j;
  }
}</pre>
```

- Number of iterations of inner loop is independent of the number of iterations of the outer loop (i.e. the value of i)
- How many times through outer loop?
- How many times through inner loop?
- Time complexity of algorithm?

Dependent nested loops:

```
int x = 0;
for (int i = 1; i <= n; i++){
   for (int j = 1; j <= 3*i; j++){
      x = x + j;
   }
}</pre>
```

- Number of iterations of inner loop depends
 on the value of i in the outer loop
- On kth iteration of outer loop, how many times through inner loop?
- Total number of iterations of inner loop = sum for k running from 1 to n
- Time complexity of algorithm?

Usefulness of Big-O

- We can compare algorithms for efficiency, for example:
 - Linear search vs binary search
 - Different sort algorithms
 - Iterative vs recursive solutions (recall Fibonacci sequence!)
- We can estimate actual run times if we know the time complexity of the algorithm(s) we are analyzing

Estimating Run Times

 Assuming a million operations per second on a computer, here are some typical complexity functions and their associated runtimes:

f(n)	n = 10 ³	n = 10 ⁵	n = 10 ⁶
log ₂ (n)	10 ⁻⁵ sec.	1.7*10 ⁻⁵ sec.	2*10 ⁻⁵ sec.
n	10 ⁻³ sec.	0.1 sec.	1 sec.
n log ₂ (n)	0.01 sec.	1.7 sec.	20 sec.
n ²	1 sec.	3 hours	12 days
n³	17 mins.	32 years	317 centuries
2 ⁿ	10 ²⁸⁵ cent.	10 ¹⁰⁰⁰⁰ years	10 ¹⁰⁰⁰⁰⁰ years

Discussion

- Suppose we want to perform a sort that is O(n²). What happens if the number of items to be sorted is 100000?
- Compare this to a sort that is O(n log₂(n)). Now what can we expect?
- Is an O(n³) algorithm practical for large n?
- What about an O(2ⁿ) algorithm, even for small n? e.g. for a Pentium, runtimes are:

```
n = 30 n = 40 n = 50 n = 60
11 sec. 3 hours 130 days 365 years
```

Intractable Problems

- A problem is said to be intractable if solving it by computer is impractical
- Algorithms with time complexity O(2ⁿ)
 take too long to solve even for moderate
 values of n
 - What are some examples we have seen?