Department of Computer Science

CS3307A Course Outline - Fall 2025

1. Course Information

Course Information
COMPSCI 3307A - OBJECT-ORIENTED DESIGN & ANALYSIS

Time/Place

9:30 - 10:30 AM, TuesdaySiiIIEE
9:30 - 11:30 AM, ThursdaySiiIIEE

2. Course Description

This course introduces students to the principles and practices of Object-Oriented Design and Analysis
(OODA) with implementation in C++. It covers fundamental object-oriented concepts, UML modeling
techniques, and SOLID design principles, followed by an in-depth exploration of design patterns across
creational, structural, and behavioral categories. Students will also learn software testing practices,
including unit testing and mocking, to validate design and implementation. Through lectures, case
studies, and a comprehensive final project, the course emphasizes building scalable, maintainable, and
efficient software systems that reflect real-world development challenges.

Prerequisites: Either (Computer Science 2212A/B/Y) or (Computer Science 2210A/B, 2211A/B,
Electrical and Computer Engineering 3375A/B, and registration in the fourth year of a BESc program in
Computer Engineering or Mechatronic Systems Engineering.)

Antirequisites: Software Engineering 3350A/B

Note: Unless you have either the prerequisites for this course or written special permission from your
dean to enroll in it, you may be removed from this course, and it will be deleted from your record. This
decision may not be appealed. You will receive no adjustment to your fees if you are dropped from a
course for failing to have the necessary prerequisites.

Course Goal

The primary goal of this course is to equip students with the knowledge and skills to design, model, and
implement robust object-oriented software systems. By combining theoretical foundations with
practical applications, the course prepares students to analyze requirements, apply design principles,
and leverage design patterns to create flexible, reusable, and testable software solutions.



Learning Outcomes
By the end of this course, students will be able to:

1.

Explain and apply the core concepts of object-oriented programming, including encapsulation,
inheritance, polymorphism, and abstraction.

Analyze software requirements and translate them into effective UML models (class, sequence,
and use case diagrams).

Apply the SOLID principles to improve code quality, reduce coupling, and increase
maintainability.

Identify, implement, and justify appropriate design patterns (creational, structural, and
behavioral) to solve recurring software design problems.

Develop scalable and maintainable C++ systems that integrate object-oriented design
principles.

Use unit testing frameworks (GoogleTest and Google Mock) to validate the correctness and
robustness of object-oriented systems.

Critically evaluate the quality of software designs with respect to scalability, maintainability,
and efficiency.

Work independently or collaboratively to deliver a complete software project from
requirements gathering through implementation and testing.

3. Instructor Information

Instructors Email Office Phone Office Hours
Dr. Umair Rehman MS Teams, Tuesday
(Course Coordinator) urehmané@uwo.ca | L 2:00 PM - 3:00 PM

Course Communication Guidelines

Primary Channels for Communication

Email: Formal communication, such as course updates and assignment submissions, should be
conducted via email. Students are required to use their Western (@uwo.ca) email addresses
when contacting instructors. This is essential for maintaining a formal and secure line of
communication.

MS Teams: For real-time interactions, queries about course material, and brief updates, MS
Teams will be utilized. This platform facilitates more immediate and interactive communication.

Email Etiquette

Subject Line: When sending an email, students must include the course number followed by a
brief description of the email's purpose in the subject line. For example, "CS3307 — Project Query"
or "CS3307 — Request for Meeting".

Instructor Messaging: The instructor’s email is integrated into MS Teams, allowing students to
message the instructor directly through the platform. This should be used for quick questions or
clarifications.




4. Course Schedule

Week Topics

Week 1: Introduction to
Object-Oriented Design and
Analysis

Sept 4, 2025

In this introductory week, students will gain an overview of the
course and establish a foundation in object-oriented design and
analysis (OODA). We will contrast the object-oriented approach
with functional programming to highlight their differences in
thinking and problem-solving. Core concepts such as cohesion and
coupling will be introduced as measures of design quality,
emphasizing why object-oriented methods provide advantages in
building maintainable, scalable, and reusable software systems.

Week 2: Core Object-Oriented
Concepts

Sept 9 and Sept 11, 2025

This week focuses on the core principles of object-oriented
programming: encapsulation, inheritance, polymorphism, and
abstraction. Students will explore how these concepts contribute
to modularity, flexibility, and reusability, while also recognizing
their potential pitfalls if misapplied. Through discussion and
examples, abstract classes and interfaces will be compared with
encapsulation to clarify their distinct roles. Real-world case studies
will demonstrate how these principles shape the quality and
maintainability of software systems.

Week 3: Requirements
Gathering and Use Case
Modeling/ UML Modelling

Sept 16 and Sept 18, 2025

This week introduces students to requirements gathering and UML
modeling as the bridge between problem understanding and
system design. They will learn techniques for eliciting
requirements, distinguishing functional from non-functional
needs, and translating these into effective use case models.
Building on this, students will practice identifying classes, defining
relationships, and representing them in UML class, sequence, and
use case diagrams. Emphasis will be placed on refining diagrams
for clarity, applying best practices, and using case studies to
connect modeling techniques to real-world software development.

Week 4: SOLID Principles and
Design Practices

Sept 23 and Sept 25, 2025

This week covers the SOLID principles, a cornerstone of effective
object-oriented design. Students will examine each principle—
Single Responsibility, Open/Closed, Liskov Substitution, Interface
Segregation, and Dependency Inversion—understanding how they
guide the creation of flexible, maintainable, and scalable systems.
Through examples and refactoring exercises, they will see how
applying these principles reduces coupling, improves cohesion,
and lays the groundwork for clean architecture and the effective
use of design patterns.

Sept 30, 2025 (Truth and Reconciliation Day — no class)

Week 5: Creational Design
Patterns |

This week introduces design patterns as proven solutions to
recurring software design problems, emphasizing their role in




Oct 2, 2025

improving code reuse, flexibility, and communication among
developers. Students will explore the creational category of
patterns, beginning with the Singleton pattern for managing single
instances, followed by the Factory Method and Abstract Factory
patterns for handling complex object creation. This content will
continue into the following week since we have only one class this
week due to no class on September 30 (Truth and Reconciliation
Day).

Week 6: Creational Design
Patterns Il

Oct 7 and Oct 9, 2025

This week continues with creational design patterns, focusing on
the Builder and Prototype patterns. Students will learn how the
Builder pattern supports step-by-step object construction,
contrasting it with factory-based approaches, while the Prototype
pattern demonstrates object creation through cloning. The session
will also highlight how different creational patterns can be
combined effectively, giving students a toolkit of strategies for
handling diverse object creation scenarios in real-world systems.

Week 7: Structural Design
Patterns |

Oct 14 and Oct 16, 2025

This week introduces structural design patterns, which focus on
how classes and objects are composed to form larger, more
flexible structures. Students will examine the Adapter pattern for
reconciling incompatible interfaces, the Composite pattern for
treating individual objects and groups uniformly, and the
Decorator pattern for dynamically adding responsibilities without
altering existing code. Through examples and case studies, they
will see how these patterns simplify system architecture while
enhancing extensibility and reuse.

Week 8: Structural Design
Patterns Il

Oct 21 and Oct 23, 2025

This week expands on structural design patterns by exploring
techniques that simplify and optimize system interactions.
Students will study the Fagade pattern as a way to provide a
unified interface to complex subsystems, and the Proxy pattern as
a means of controlling or deferring access to objects. The Bridge
pattern will illustrate how to decouple abstractions from
implementations for greater flexibility, while the Flyweight pattern
demonstrates memory-efficient object sharing. The session will
conclude with a discussion on combining structural patterns to
address real-world software design challenges.

Week 9: Behavioral Design
Patterns |

Oct 28 and Oct 30, 2025

This week introduces behavioral design patterns, which focus on
how objects interact and distribute responsibilities within a
system. Students will begin with the Iterator pattern, learning how
it provides a uniform way to traverse collections without exposing
their underlying structure. They will then explore the Command
pattern, which encapsulates requests as objects to support
undo/redo operations, logging, and flexible task execution.
Together, these patterns demonstrate how behavioral techniques
enhance communication and control in object-oriented design.

Reading Week (Nov 4 and Nov 6, 2025)




Week 10: Behavioral Design
Patterns Il

Nov 11 and Nov 13, 2025

This week continues with key behavioral design patterns that
enable flexible and dynamic object interactions. Students will
examine the Strategy pattern for selecting algorithms at runtime,
the Observer pattern for implementing publish—subscribe
relationships, and the State pattern for managing context-
dependent behavior. They will also study the Chain of
Responsibility pattern, which delegates requests across a chain of
handlers, and the Template Method pattern, which defines the
structure of an algorithm while allowing subclasses to refine
specific steps. Together, these patterns highlight how behavior can
be modularized to create adaptable and maintainable software
systems.

Week 11: Software Testing

Nov 18 and Nov 20, 2025

This week introduces the fundamentals of software testing with a
focus on applying them to object-oriented design. Students will
learn how to use GoogleTest in C++ for writing effective unit tests,
including declarations, assertions, fixtures, and parametrized tests.
They will also explore mocking and matchers as tools for isolating
dependencies and verifying interactions. Finally, the discussion will
connect testing practices to design patterns, highlighting both the
challenges and goals of ensuring correctness, maintainability, and
reliability in pattern-based software systems.

Week 12: Course Review

Nov 25 and Nov 27, 2025

In the final week, students will review the key concepts, principles,
and patterns covered throughout the course. The session will
reinforce connections between requirements gathering, UML
modeling, SOLID principles, design patterns, and testing, showing
how they collectively support robust object-oriented design.
Through discussion, recap exercises, and reflective activities,
students will consolidate their understanding and prepare to apply
these practices to real-world software development challenges.

Week 13: Industry Talk

Dec 2 and Dec 4, 2025

5. Course Materials

Course Reference Material

There are no required textbooks for this course. However, the following books are recommended as

valuable references:

e The C++ Programming Language, 4th Edition by Bjarne Stroustrup

e Programming Principles and Practice Using C++, 2nd Edition by Bjarne Stroustrup

* Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma et al.
e UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd Edition by Martin

Fowler

e Object-Oriented Analysis and Design with Applications, 3rd Edition by Grady Booch et al.




o Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux by Derek Molloy
Additional references will be provided as needed. Please check Brightspace for updates.

Lecture Notes and Brightspace
e Lecture materials will be available on Brightspace (Online Web Learning) prior to each class.
e Regular checking of the course site on Brightspace is essential for news and updates. It is the
primary method of information dissemination for this course.
e Assistance with the site can be sought on the Brightspace help page or by contacting the Western
Technology Services Helpdesk at phone number 519-661-3800 or ext. 83800.

Course Delivery and Format
e The course is planned to be delivered in-person for the entire term, subject to any unforeseen
complications.
e Any changes aligning with University guidelines will be communicated through announcements
via Brightspace.

6. Methods of Evaluation

Final Project (80%)

The final project requires students to design, model, and implement a non-trivial software system in C++
that demonstrates mastery of Object-Oriented Design and Analysis (OODA). This project must be
completed in pairs (two students only). Students must perform requirements gathering, create UML
models (Class, Sequence, and Use Case diagrams), and apply at least two creational design patterns (e.g.,
Singleton, Factory, Builder) along with one structural or behavioral pattern (e.g., Adapter, Observer,
Strategy). The system must make correct use of core OOD principles—encapsulation, inheritance,
polymorphism, and abstraction—and be implemented with clean, modular, and efficient C++ code.
Deliverables include a project proposal, an intermediate design with partial implementation, and a final
submission with a complete system, final UML diagrams, and a testing suite using GoogleTest and Google
Mock. Detailed requirements, milestones, and evaluation criteria are posted on Brightspace.

Final Exam (20%)

The final exam focuses on refactoring C++ code using object-oriented principles, SOLID guidelines, and
design patterns. Students will analyze code, apply targeted improvements, and justify their choices, with
additional questions testing core C++ design and implementation concepts.

Due Dates of Deliverables

Deliverable Due Date Weight
Project Proposal October 1, 2025 20%
Intermediate Design and Partial Implementation | October 30, 2025 30%
Final Project Submission December 15, 2025 | 30%
Final Exam December 10, 2025 | 20%



7. Student Absences

Forthe 2025-2026 academic year, the handling of absences in this course will follow Western University’s
updated Academic Consideration for Student Absences policy. The approach to academic considerations
for each assessment type is outlined below:

Protected Course Components

In accordance with the policy, all group project submissions in this course are designated as protected
components. This means that undocumented absences (self-reported absences up to 48 hours) cannot
be applied to any part of the group project deliverables. Protecting groupwork ensures fairness to all
group members and maintains the integrity of collaborative assessment.

Undocumented Absences

Because all major assessments in this course involve group submissions or the final exam, students
cannot use any undocumented absences in this course. All documentation required for absences that
are not covered by the Self-Reported Absence Policy must be submitted to the Academic Counselling
office of a student's Home Faculty.

Project Proposal (20%) — No built-in flexibility

Extensions for this component will only be granted through formal academic consideration. If a student
is unable to submit the proposal by the deadline, they must request an academic consideration through
the appropriate channels.

Intermediate Design and Partial Implementation (30%) — Limited built-in flexibility
Students are allowed to use one late coupon to extend the deadline by up to 48 hours without needing
documentation. Beyond this, academic considerations will be required.

Final Project Submission (30%) — No built-in flexibility
Due to the importance of the final project and the proximity to the course end date, this submission will
not have built-in flexibility. Extensions will only be granted under formal academic consideration.

Final Exam (20%) — No built-in flexibility
The final exam must be completed as scheduled unless a formal academic consideration is granted. In
such cases, a makeup exam will be arranged.

The new academic considerations policy allows students to self-report absences for up to 48 hours
without documentation. For more details on how to request academic considerations, please refer to

the full policy here:
https://www.uwo.ca/univsec/pdf/academic_policies/appeals/academic_consideration_Sep24.pdf.

8. Accommodation and Accessibility

Religious Accommodation



When a course requirement conflicts with a religious holiday that requires an absence from the
University or prohibits certain activities, students should request accommodation for their absence in
writing at least two weeks prior to the holiday to the course instructor and/or the Academic Counselling
office of their Faculty of Registration. Please consult University's list of recognized religious holidays
(updated annually) at

https://www.edi.uwo.ca/img/3754-2024-Diversity-Calendar-PDF.pdf

Accommodation Policies

Students with disabilities are encouraged to contact Accessible Education, which provides
recommendations for accommodation based on medical documentation or psychological and
cognitive testing. The policy on Academic Accommodation for Students with Disabilities can be found
at

https://www.uwo.ca/univsec/pdf/academic_policies/appeals/Academic Accommodation_disabilities.pdf.

9. Academic Policies

The website for Registrarial Services is http://www.registrar.uwo.ca.

In accordance with policy,
https://www.uwo.ca/univsec/pdf/policies_procedures/section1/mapp113.pdf,

the centrally administered e-mail account provided to students will be considered the individual’s official
university e-mail address. It is the responsibility of the account holder to ensure that e-mail received
from the University at their official university address is attended to in a timely manner.

Scholastic offences are taken seriously and students are directed to read the appropriate policy,
specifically, the definition of what constitutes a Scholastic Offence, at the following Web site:

http://www.uwo.ca/univsec/pdf/academic_policies/appeals/scholastic_discipline_undergrad.pdf.

All required submissions may be subject to submission for textual similarity review to the commercial
plagiarism detection software under license to the University for the detection of plagiarism. All papers
submitted for such checking will be included as source documents in the reference database for the
purpose of detecting plagiarism of papers subsequently submitted to the system. Use of the service is
subject to the licensing agreement, currently between The University of Western Ontario and
Turnitin.com (http://www.turnitin.com).

10. Support Services

Please visit the Science & Basic Medical Sciences Academic Counselling webpage for information on
adding/dropping courses, academic considerations for absences, appeals, exam conflicts, and many
other academic related matters: https://www.uwo.ca/sci/counselling/.

Students who are in emotional/mental distress should refer to Mental Health@Western
(https://uwo.ca/health/) for a complete list of options about how to obtain help.



Western is committed to reducing incidents of gender-based and sexual violence and providing
compassionate support to anyone who has gone through these traumatic events. If you have
experienced sexual or gender-based violence (either recently or in the past), you will find information
about support services for survivors, including emergency contacts at

https://www.uwo.ca/health/student_support/survivor_support/get-help.html.

To connect with a case manager or set up an appointment, please contact support@uwo.ca.

Please contact the course instructor if you require lecture or printed material in an alternate format or
if any other arrangements can make this course more accessible to you. You may also wish to contact
Accessible Education at

http://academicsupport.uwo.ca/accessible_education/index.html

if you have any questions regarding accommodations.

Learning-skills counsellors at the Student Development Centre (https://learning.uwo.ca) are ready to
help you improve your learning skills. They offer presentations on strategies for improving time
management, multiple-choice exam preparation/writing, textbook reading, and more. Individual
support is offered throughout the Fall/Winter terms in the drop-in Learning Help Centre, and year-round
through individual counselling.

Western University is committed to a thriving campus as we deliver our courses in the mixed model of
both virtual and face-to-face formats. We encourage you to check out the Digital Student Experience
website to manage your academics and well-being: https://www.uwo.ca/se/digital/.

Additional student-run support services are offered by the USC, https://westernusc.ca/services/.

11. Use of Generative Al Tools

This course embraces the use of generative Al tools (e.g., ChatGPT, Microsoft Copilot, Google Gemini,
or similar platforms) as part of its Al-first approach to technology. Students are encouraged to
thoughtfully and responsibly leverage such tools for learning, exploration, and course assessments
(e.g., assignments, project work, coding support, summarization, and design assistance), provided that
their use is clearly documented and acknowledged in submissions. Refer to individual project
instructions for details.

Exception — Final Exam: The use of generative Al is strictly prohibited on the final exam. Exam
performance must reflect each student’s own independent understanding and ability to apply course
concepts.

Academic Integrity Reminder:

e Any use of generative Al must be transparent, with clear attribution (e.g., noting prompts or
tools used).



Misrepresenting Al-generated content as entirely one’s own work without disclosure will be

treated as a scholastic offence under university policy.
If uncertain about the appropriate use of Al for a specific assessment, students are responsible

for seeking clarification in advance.

10





