
HIGH PERFORMANCE SPARSE MULTIVARIATE POLYNOMIALS:
FUNDAMENTAL DATA STRUCTURES AND ALGORITHMS

(Spine title: High Performance Multivariate Polynomials)
(Thesis format: Monograph)

by

Alexander Brandt

Graduate Program
in

Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Alexander Brandt 2018

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor:

. .
Dr. Marc Moreno Maza

Examiners:

. .
Dr. Steven Beauchemin

. .
Dr. Robert M. Corless

. .
Dr. David Jeffrey

The thesis by

Alexander Brandt

entitled:

High Performance Sparse Multivariate Polynomials: Fundamental Data
Structures and Algorithms

is accepted in partial fulfillment of the
requirements for the degree of

Masters of Science

.
Date

. .
Chair of the Thesis Examination Board

ii

Abstract

Polynomials may be represented sparsely in an effort to conserve memory usage and pro-
vide a succinct and natural representation. Moreover, polynomials which are themselves
sparse – have very few non-zero terms – will have wasted memory and computation time
if represented, and operated on, densely. This waste is exacerbated as the number of
variables increases. We provide practical implementations of sparse multivariate data
structures focused on data locality and cache complexity.

We look to develop high-performance algorithms and implementations of fundamen-
tal polynomial operations, using these sparse data structures, such as arithmetic (ad-
dition, subtraction, multiplication, and division) and interpolation. We revisit a sparse
arithmetic scheme introduced by Johnson in 1974, adapting and optimizing these algo-
rithms for modern computer architectures, with our implementations over the integers
and rational numbers vastly outperforming the current wide-spread implementations.
We develop a new algorithm for sparse pseudo-division based on the sparse polynomial
division algorithm, with very encouraging results. Polynomial interpolation is explored
through univariate, dense multivariate, and sparse multivariate methods. Arithmetic
and interpolation together form a solid high-performance foundation from which many
higher-level and more interesting algorithms can be built.

Keywords: Sparse Polynomials, Polynomial Arithmetic, Polynomial Interpolation,
Data Structures, High-Performance, Polynomial Multiplication, Polynomial Division,
Pseudo-Division

iii

Contents

Certificate of Examination ii

Abstract iii

List of Tables vi

List of Figures vii

List of Algorithms viii

1 Introduction 1
1.1 Existing Computer Algebra Systems and Software 2
1.2 Reinventing the Sparse Polynomial Wheel? 3
1.3 Contributions . 4

2 Background 6
2.1 Memory, Cache, and Locality . 6

2.1.1 Cache Performance and Cache Complexity 7
2.2 Algebra . 9

2.2.1 The Many Flavours of Rings . 9
2.2.2 Polynomials: Rings, Definitions, and Notations 11
2.2.3 Arithmetic in a Polynomial Ring 14

Pseudo-division . 16
2.2.4 Gröbner Bases, Ideals, and Reduction 17
2.2.5 Algebraic Geometry . 20
2.2.6 (Numerical) Linear Algebra . 21

2.3 Representing Polynomials . 22
2.4 Working with Sparse Polynomials . 24
2.5 Interpolation & Curve Fitting . 27

2.5.1 Lagrange Interpolation . 30
2.5.2 Newton Interpolation . 31
2.5.3 Curve Fitting and Linear Least Squares 32

2.6 Symbols and Notation . 33

3 Memory-Conscious Polynomial Representations 35
3.1 Coefficients, Monomials, and Exponent Packing 36
3.2 Linked Lists . 38

iv

3.3 Alternating Arrays . 38
3.4 Recursive Arrays . 42

4 Polynomial Arithmetic 45
4.1 In-place Addition and Subtraction . 45
4.2 Multiplication . 47

4.2.1 Implementation . 51
Heap Optimizations . 52

4.2.2 Experimentation . 54
4.3 Division . 59

4.3.1 Implementation . 63
4.3.2 Experimentation . 64

4.4 Pseudo-Division . 66
4.4.1 Implementation . 70
4.4.2 Experimentation . 72

4.5 Normal Form and Multi-Divisor Pseudo-Division 75

5 Symbolic and Numeric Polynomial Interpolation 76
5.1 Univariate Polynomial Interpolation . 77
5.2 Dense Multivariate Interpolation . 81

5.2.1 Implementing Early Termination for Multivariate Interpolation . . 83
5.2.2 The Difficulties of Multivariate Interpolation 85
5.2.3 Rational Function Interpolation 88

5.3 Sparse Multivariate Interpolation . 90
5.3.1 Probabilistic Method . 90
5.3.2 Deterministic Method . 94
5.3.3 Experimentation . 97

5.4 Numerical Interpolation (& Curve Fitting) 99

6 Conclusions and Future Work 101

Bibliography 103

Curriculum Vitae 108

v

List of Tables

4.1 Comparing heap implementations with and without chaining 56
4.2 Comparing pseudo-division on triangular decompositions 75

vi

List of Figures

2.1 Array representation of a dense univariate polynomial 22
2.2 Array representation of a dense recursive multivariate polynomial 24

3.1 A 3-variable exponent vector packed into a single machine word. 37
3.2 A polynomial encoded as a linked list . 38
3.3 A polynomial encoded as an alternating array 39
3.4 Comparing linked list and alternating array implementations of polynomial

addition . 40
3.5 Comparing cache misses in polynomial addition 41
3.6 Array representation of a dense recursive multivariate polynomial 42
3.7 An alternating array and recursive array polynomial representation . . . 43

4.1 Alternating array representation showing GMP trees 46
4.2 Comparing in-place and out-of-place polynomial addition 47
4.3 An example heap of integers . 48
4.4 A chained heap of product terms . 55
4.5 Comparing multiplication of integer polynomials 57
4.6 Comparing multiplication of rational number polynomials 58
4.7 Comparing cache misses in polynomial multiplication 58
4.8 Comparing division of integer polynomials 65
4.9 Comparing division of rational number polynomials 65
4.10 A recursive polynomial representation for a pseudo-quotient 71
4.11 Comparing pseudo-division of integer polynomials 73
4.12 Comparing pseudo-division of rational number polynomials 73
4.13 Comparing naive and heap-based pseudo-division 74

5.1 Comparing univariate interpolation implementations 80
5.2 A collection of points satisfying condition GC 87
5.3 Comparing probabilistic and deterministic sparse interpolation algorithms 98

vii

List of Algorithms

2.1 polynomialDivision . 16
2.2 näıvePseudoDivision . 17
2.3 addPolynomials . 26
2.4 multiplyPolynomials . 28
4.1 heapMultiplyPolynomials . 49
4.2 dividePolynomials . 59
4.3 heapDividePolynomials . 61
4.4 pseudoDividePolynomials . 67
4.5 heapPseudoDividePolynomials . 69
5.1 LagrangeInterpolation . 79
5.2 multiplyByBinomial InPlace . 80
5.3 denseInterpolation Driver . 84
5.4 sparseInterpolation StageI . 93
5.5 sparseInterpolation . 93
5.6 sparseInterpolation StageI Deterministic 96
5.7 sparseInterpolation Deterministic 96

viii

Chapter 1

Introduction

In the world of computer algebra and scientific computing, high-performance is paramount.
Due to the exact nature of symbolic computations (in fact that is one of the defining
characteristics of computer algebra) it is possible to be far more expressive than in nu-
merical methods, leading to more complicated mathematical formulas and theories. But
as these formulas, problems, and data sets grow large, the intermediate expressions which
arise during the process of solving these problems grow even larger. This expression swell
is one reason why computer algebra has historically been seen as slow and impractical.
Compared to that of numerical analysis, where floating point numbers occupy a fixed
amount of space regardless of their value, symbolic computation uses arbitrary precision,
allowing numbers to grow and grow. Hence, careful implementation is needed to avoid
such drastic slow downs and make symbolic computation able to be practical and useful
in solving mathematical and scientific problems.

One such problem we are concerned with is polynomial system solving. Of course,
this is an important problem with applications in every scientific discipline. Algorithms
for solving these systems typically rely on some core operation after some algebraic tricks
attempt to reduce the system’s complexity. This core operation could be based on
Gröbner bases or triangular decompositions. We are motivated by the efforts to ob-
tain an efficient and open source implementation of triangular decompositions using the
theory of regular chains [4]. Such algorithms [19] have already been integrated into the
computer algebra system Maple as part of the RegularChains library [53]. However,
we believe that we can do better.

The Basic Polynomial Algebra Subprograms (BPAS) library [2] is an open-source li-
brary for high performance polynomial operations, such as arithmetic, real root isolation,
and polynomial system solving. It is mainly written in C for performance, with a C++
wrapper interface for portability, object-oriented programming, and end-user usability.
Moreover, it makes use of the Cilk extension [52] for parallelization and improved per-
formance on multi-core processors. It is within this library that we include our sparse
polynomial data structures and high-performance implementations for fundamental op-

1

2 Chapter 1. Introduction

erations in support of triangular decompositions and regular chains. The algorithms and
implementations presented here are published within the BPAS library.

In particular, we provide highly optimized implementations of sparse multivariate
polynomials over the integers and rational numbers. This includes memory-efficient data
structures, finely-tuned arithmetic (addition, multiplication, division, pseudo-division),
as well as interpolation. The operations of arithmetic and interpolation are absolutely
fundamental to any algorithm dealing with polynomials. The fundamental nature of
arithmetic should be obvious. Of course one cannot hope to implement any form of
high-performance mathematical algorithm without the basic arithmetic also being high-
performance. From this standpoint we look to build from the ground up, providing the
fastest arithmetic possible so that it can be put to use in higher level algorithms.

The fundamental nature of interpolation is less obvious without considering evaluation-
interpolation schemes as part of modular methods. To combat the expression swell char-
acteristic of symbolic computations, the approach of modular methods is to solve a large
number of simplified problems where the values for the variables are carefully chosen
(evaluation) and, using the results of each of these simplified problems, a solution to the
original problem is reconstructed (interpolation) [75]. These methods are used extensively
throughout computer algebra [32, Chapter 5].

In either case, our optimized, high-performance implementations of sparse polyno-
mial data structures and algorithms provide a solid foundation from which we can build
upon to better the algorithms and implementations available in computer algebra and
scientific computing.

1.1 Existing Computer Algebra Systems and Soft-

ware

The ALTRAN system for multivariate rational functions [38], developed in the late
sixties at Bell Labs, was one of the first computer algebra systems. It too made use of
sparse polynomials in its computations for effective memory usage and performance.

Since that time, many computer algebra systems, proprietary and open source, have
been developed. The most notable of which is likely Maple. It began in 1982, and
since then has found its way into scientific computing, industrial applications, and many
university classrooms. Vast amounts of research has gone into developing Maple, and,
as of 2011, has become a leader in performance because of this [56–59].

This is not to outshine the many other computer algebra systems which are also
leaders in their own right. To name a few, there are Mathematica [72], Trip [31],
Magma [14], Singular [65], CoCoA [35], and Symbolic Math Toolbox of MATLAB.
However, only Singular and CoCoA are both free and open-source systems. Other

1.2. Reinventing the Sparse Polynomial Wheel? 3

common libraries which are focused on number theory, but provide powerful univariate
symbolic computation nonetheless are NTL [71] and FLINT [39]. SymPy [55], a Python
library for symbolic computations is actively being developed and excels in usability, a
property for which Python is well known.

Maple and Trip are both known to use sparse polynomials in their computations.
Interestingly, these are the overwhelmingly highest performing implementations [56–58].
This goes to show, that although recent decades were spent in the computer algebra
community developing dense algorithms for polynomial arithmetic [12, 46, 69], all is not
lost in the world of sparse polynomials.

With the work presented here on optimized sparse polynomials, we hope to make
the BPAS library a leader in performance as well as availability through an open-source
codebase.

1.2 Reinventing the Sparse Polynomial Wheel?

Several decades ago, algorithms and implementations of sparse polynomials was a major
topic of research. The seminal articles on sparse polynomial arithmetic by Johnson [42],
and sparse polynomial interpolation by Zippel [76] are two excellent examples from the
seventies. The ALTRAN system of the late sixties [38], made exclusive use of sparse
representations for its multivariate rational functions.

Alas, these algorithms and technologies are now nearly 50 years old. In terms of
computing technology, they may as well be millennia old. The motivation for sparse
algorithms and representations at the time was a result of limited computing resources.
The computing memory available then was not even comparable to modern computers.
As late as 1980, computer scientists were still using memory chips of a mere 64 megabytes
[hennessy2011computer]. Today, 64 gigabytes is common even in consumer-level com-
puters, let alone high performance server units. As a result of this limited memory,
algorithms had been developed to minimize the amount of memory used.

On modern computer architectures, the amount of memory used is much less im-
portant. Rather, we are far more concerned with how memory is used. This is due to
the memory wall – “[the] point system performance is totally determined by memory
speed; making the processor faster won’t affect the wall-clock time to complete an ap-
plication.”[73, p. 21]. The authors of [73] suggest a possible solution: make caches work
better, having cache hits occur as frequently as possible. In their point of view, this was
an architectural problem for computers.

Nonetheless, it could also be considered an algorithmic problem. We know that the
speeds of computer processors and computer memory is diverging exponentially as tech-
nologies improve [hennessy2011computer]. Therefore, we must be concerned with how

4 Chapter 1. Introduction

we use and traverse memory to avoid latent memory accesses. Computer scientists and
programmers need to be aware of memory usage and memory access patterns in order to
minimize the impact of waiting for latent memory. The formalization of cache complexity
[29] is one step toward this. Apart from a usual time complexity analysis of an algorithm,
which is only concerned with number of computational steps, cache complexity measures
how an algorithm makes use of memory, and therefore also an important indicator of
performance given the current processor-memory gap [hennessy2011computer] (see
Section 2.1).

It is with this mindset that we look to implement sparse polynomial data structures
and algorithms. We are concerned with performance on modern day architectures, by
handling memory effectively, optimizing for cache complexity, and minimizing the impact
of the processor-memory gap. Hence, while sparse polynomials have been around for
many years, they had been developed using wildly different frames of reference and
motivating factors than are no longer applicable.

1.3 Contributions

Throughout all of the work we present here, we are looking to give a fresh implementation
of sparse polynomial algorithms for modern day architectures. We look to answer the
following questions:

(1) How can the limitations of modern architecture be handled in practical implemen-
tations of existing algorithms?

(2) How can we adapt the ideas of classical sparse algorithms to new operations?
(3) How worthwhile is the effort to more finely implement (and make publicly available)

existing high-performance algorithms?

We believe these questions have been answered thoroughly over the course of this thesis.

As mentioned in the previous section, our implementations are concerned with ef-
ficient memory management, memory traversal, and thus cache complexity. It is with
this perspective that we approach our implementations. From Johnson’s sparse addition,
multiplication and division, to Zippel’s sparse interpolation, we make great efforts to
optimize memory usage through data structures and practical implementations with low
cache complexity.

Using the ideas of Johnson, and the ideas we discovered through the process of
implementing the basic polynomial arithmetic functions (addition, subtraction, multipli-
cation, division), we propose a new algorithm for sparse pseudo-division. Modeling this
algorithm off sparse polynomial division, we implement it effectively, with very promising
results.

The good news regarding these results are not limited to our new algorithm. The

1.3. Contributions 5

existing algorithms of Johnson’s sparse addition, multiplication, and division are also
implemented in an optimal manner. We are not the first to do so. In [56–59] Monagan
and Pearce have also realized Johnson’s decades old algorithms on modern computers.
Their implementation is exclusive to the proprietary software within Maple. However,
with some of their optimization techniques in publication, we analyze and adjust their
optimizations while adding some of our own, in order to fine-tune performance and
achieve 50-100% speedup in comparison to their implementation. The story is similar
for interpolation where we have developed an implementation of Lagrange interpolation
which also out-performs that available in Maple. This time, however, we are an order of
magnitude faster. Hence, it is indeed worthwhile to spend effort on fine-tuning existing
algorithms, as the resulting speed up can be dramatic with careful implementation.

To completely and accurately answer these questions, we organize this thesis as fol-
lows. Chapter 2 begins the thesis by provided a background of knowledge for the many
concepts touched on throughout later chapters. Since the subject matter of this thesis in-
cludes an interesting overlap of algorithms, practical implementations, and mathematical
concepts, we provide the necessary details that either a computer scientist or a mathe-
matician may need to appreciate the other side. This includes: computer memory archi-
tectures and cache complexity; rings, integral domains, fields, polynomials, and Gröbner
bases; a short review of existing sparse polynomial techniques; and, a formalization of
interpolation and some classical methods.

Chapter 3 discusses the effective encoding and data structures required to repre-
sent polynomials as effectively as possible on modern computers, while making them
favourable for use in our algorithms. These fundamental algorithms are presented in
Chapter 4. There, algorithms, implementations, optimization techniques, and exper-
imentation is presented for polynomial addition, subtraction, multiplication, division,
and pseudo-division.

Lastly, Chapter 5, discusses the problem of polynomial interpolation in the cases
of univariate, dense multivariate, and sparse multivariate. Here, we also consider some
limitations of symbolic computing, offering a possible solution using numerical methods.

Chapter 2

Background

Computer algebra lies in an interesting overlap of computer science and mathematics,
drawing on both areas to fulfill its needs. In this background section, we introduce topics
necessary to discuss our algorithms and implementations of polynomials. This includes
some mathematics which computer scientists may be unfamiliar with, as well as some
computer science aspects mathematicians may be unfamiliar with.

We discuss computer organization and memory hierarchy (Section 2.1); the under-
standing of memory is important for developing high-performance algorithms. We also
discuss some fundamentals of algebra, such as rings and operations defined within them
(Section 2.2). A more specific presentation of polynomials, their representations, and a
short history of sparse polynomial algorithms is given in Sections 2.3 and 2.4. Lastly,
we present the problems of interpolation and curve fitting as well as some their classical
solutions (Section 2.5).

2.1 Memory, Cache, and Locality

The structure of computer memory is no longer just important to the computer architect.
Any programmer should have at least a basic understanding of its workings in order to
produce good quality code. The reason for this is (somewhat) recent advancements
in technology. The speed of processors has eclipsed the speed of computer memory
many times over [hennessy2011computer]. This difference is called the processor-
memory gap. Decades ago, the speed of processors and memory were comparable, but
the amount of memory available was limited. The problem now is different. There is
(relatively) ample amounts of memory but it is slow to access compared to the speed of
the processor. Because of this, programmers must change the way that they program in
order make full use of the hardware.

Without considering a computer’s memory architecture, a program will almost surely

6

2.1. Memory, Cache, and Locality 7

underutilise the processor, as it sits idle waiting for latent memory accesses. Computer
architects have attempted to close the processor-memory gap by creating a memory
hierarchy. That is, a hierarchy of different forms of memory with increasing speeds but
decreasing size. This forms the classical memory pyramid, with L1 cache at the top,
followed by L2 and L3 cache, dynamic main memory, and finally hard disks (virtual
memory).

L1 cache is the fastest memory, but has the smallest capacity. Ideally, for the best
performance, we would want all of our data stored in L1 cache for the duration of a pro-
gram or algorithm. But due to the small capacity of L1 cache this is generally impossible.
Not all hope is lost, as one can make use of the principle of locality — programs tend to
reuse data and instructions which they have used recently [hennessy2011computer].
Therefore we have data locality and instruction locality ; the differentiation between the
two is sometimes useful.

The principle of locality was put into the design of the memory hierarchy. Therefore,
the choice of which data is stored in cache over main memory is a result of simply caching
the data which has been most recently used. In practice, locality is implemented in a
cache structure by evicting the least recently used item once a cache has reached capacity
and attempts to load an additional item. Programmers must make use of this fact, by
programming in such a way that exploits locality, and does not destroy it. There are two
types of locality and we must be concerned with both. Temporal locality, which says that
the most recently accessed items will likely be accessed again soon, and spatial locality,
which says that the items adjacent to the most recently accessed items are also likely to
be accessed soon. It is important to use these facts in programming. If an algorithm
(or data structure) is implemented effectively, memory access time is greatly reduced
by exploiting caching and locality [hennessy2011computer]. This is evident in our
discussion of polynomial data structures (in particular, see Figures 3.4 and 3.5).

2.1.1 Cache Performance and Cache Complexity

Patterson and Hennessy [hennessy2011computer] are keen to highlight that a good
cache architecture does necessarily give rise to good algorithms. Different algorithms use
cache differently and the performance of one algorithm on one memory architecture does
not imply the performance of another algorithm. Cache performance is a tricky thing to
measure.

Cache performance is generally characterized by cache hits and cache misses. A hit
occurs when an item being accessed is already contained in the cache. A miss occurs
when an item being accessed is not contained in the cache. Consequently, then it must
exist in some lower level of memory and be loaded into higher level memory. The miss
penalty is a quantity describing the cost of waiting for latent memory accesses to lower
levels of memory. Since caches are built up by many layers working together, this penalty
can be difficult to quantify precisely. The penalty depends on the item being accessed

8 Chapter 2. Background

and how many layers away it is stored from the top-most cache. It could be in L2 cache,
where the penalty is relatively small, or it could be stored in a page of virtual memory,
which is much more costly. See [hennessy2011computer] for details.

To avoid these architecture-dependent details of memory hierarchies and miss penal-
ties, an idealized cache model [29] has been formulated. This model assumes a single cache
with a single backing, arbitrarily large, main memory. In this model, the cache is broken
in cache lines, that is, the smallest unit of data that can move in and out of cache. One
cache line always consists of sequential memory addresses. It is assumed that the cache
can fit Z memory words and each line holds L words of that memory. Therefore, a cache
has Z/L lines. Note a memory word is a fixed constant for a particular architecture,
usually 4 or 8 bytes. This constant factor is therefore usually ignored, particularly in
asymptotic analysis.

Using this model, it is possible not only to derive the normal time complexity of an
algorithm, but also cache complexity. Cache complexity is a way to measure and charac-
terize and algorithm’s performance with respect to cache misses. It is parameterized by
input size (n), Z, and L. It is also common to ignore Z and L in the analysis as they can
be be implied by context, or could become simple constants in the complexity analysis
which get removed by asymptotics (big-Oh notation).

Just as with time complexity, one wishes to minimize cache complexity in order to
improve the theoretical (and indeed practical) performance of an algorithm. We have
explained how caches work in reality, maintaining the most recently used items in cache.
The ideal cache model works very similarly, but chooses to evict items which are next
referenced furthest in the future, with items which are never referenced again being
considered as the furthest possible in the future.

By this model, cache complexity can be reduced by exploiting locality as much as
possible. The better locality that a program possesses, the better its cache performance.
It is rather simple in that regard. But other aspects also affect cache performance. The
size of data items plays an important role. Since the cache has a limited size (Z), if
the individual data items being accessed require fewer bytes to store, than this will also
improve cache complexity without altering locality. So, in summary, the two basic ways
to improve cache complexity are:

(1) Exploit (data) locality to ensure memory is accessed sequentially or in an adjacent
manner, and

(2) Reduce the amount of memory required for each data item so that more items can
fit in cache at once. 1

It is clear that, given the processor-memory gap, practical implementations of any
algorithms must be aware of cache performance and cache complexity. Naturally, our

1The same idea can technically be used for instructions as well, but they generally have fixed sizes
depending on the processor’s instruction set architecture. Nonetheless, one can reduce the number of
instructions used, say within a loop, to obtain a similar effect.

2.2. Algebra 9

algorithms are conscious of their memory usage and data locality in order to achieve high
performance. The implementations details of these are explained in Sections 4.2.1, 4.3.1,
4.4.1, and 5.1.

For more details on computer architecture, memory, cache, and performance, Patter-
son and Hennessy’s Computer Architecture provides plenty [hennessy2011computer].
For a more detailed description of the ideal cache model and cache complexity, [29] and
[66] are the defining works.

2.2 Algebra

This section is intended to introduce those unfamiliar with the mathematical technicali-
ties of algebra, such as the average computer scientist, to a simple selection of concepts
needed for our discussion of polynomial arithmetic and interpolation. This includes,
rings, integrals domains, fields, the specifics of polynomials, and polynomials as rings.
The appendix of Modern Computer Algebra [32] provides a useful overview and addi-
tional details of all of these concepts. Here, we present only the ones necessary for our
purposes.

2.2.1 The Many Flavours of Rings

A commutative ring (with identity) is a set R endowed with two binary operations,
denoted + and ×. These operations need not be the usual addition and multiplication,
but they must satisfy the following conditions:

(1) R is a commutative group under + with identity 0,
(i) Associative: ∀ a, b, c ∈ R, (a+ b) + c = a+ (b+ c),

(ii) Identity : ∃ 0 ∈ R ∀ a ∈ R, a+ 0 = a,
(iii) Inverse: ∀ a ∈ R ∃ a−1 ∈ R, a+ a−1 = 0, and
(iv) Commutative: ∀ a, b ∈ R, a+ b = b+ a;

(2) × is associative and commutative;
(3) R has identity 1 for ×; and
(4) × is distributive over +, ∀ a, b, c ∈ R a× (b+ c) = (a× b) + (a× c),

and (b+ c)× a = (b× a) + (c× a).

We assume that all rings are commutative and with a multiplicative identity unless
explicitly stated. Such commutative rings are still quite general. Rings can be extended
in many ways to obtain different specializations (“flavours”) with different properties.

An integral domain, D, (sometimes simply domain) is a ring with the added property:

(1) the only zero divisor in D is 0.

10 Chapter 2. Background

A zero divisor is an non-zero element a ∈ R where, for some b 6= 0 ∈ R, we have a×b = 0.
Thus, integral domains are suitable for looking at divisibility and exact division, without
needing to worry2 about zero divisors. A unit (or invertible element) is an element a ∈ R
with a multiplicative inverse. That is, there exists b ∈ R such that we have ab = 1.

Extending divisibility slightly with the notion of a greatest common divisor (GCD)
then we get a GCD domain — an integral domain where any two elements have a GCD
between them. If R is a commutative ring with a multiplicative identity and if a, b, d are
elements of R, we say that d is a common divisor of a and b if d divides both a and b;
furthermore, we say that d is a greatest common divisor of a and b if any common divisor
of a and b divides d as well.

The notion of a GCD domain is commonly used in computer algebra but it is rarely
discussed in algebra textbooks, where the related (but not equivalent) concept is that of
a unique factorization domain (UFD). An integral domain U is a UFD whenever every
non-zero element of U writes as a product of irreducible elements, this factorization
being unique up to the ordering of those irreducible elements and up to an invertible
factor; for more details see https://en.wikipedia.org/wiki/Unique_factorization_
domain. Clearly, any two non-zero elements of a UFD have a GCD but the existence of
an algorithm for computing such a GCD requires additional properties.

A fundamental example of UFDs where GCDs can be effectively computed are Eu-
clidean domains. An integral domain D is an Euclidean domain whenever there exists a
function | · | mapping every non-zero element of D to a non-negative integer such that for
all a, b ∈ D, with b 6= 0, there exists (q, r) ∈ D×D such that we have a = qb+r and either
r = 0 or |r| < |b| holds; for a such pair (q, r) the elements q and r are called quotient and
remainder in the Euclidean division of a by b. The pair (q, r) is not necessarily unique
(for instance in the case of the ring Z of the integer numbers) and additional properties
may be required to make it unique (such as r ≥ 0 in the case of Z).

A field, K, is an integral domain in which every non-zero element is a unit. This is a
powerful property and it means that every element is divisible by every non-zero element
in K. Equivalently, all divisions result in a 0 remainder.

A fundamental example of field construction is the field of fractions of an integral
domain. This is a natural adaptation of the construction of the field Q of rational numbers
from the ring Z of integer numbers, to the case of an arbitrary integral domain D. For
details, see https://en.wikipedia.org/wiki/Field_of_fractions.

All of these types of rings build upon the previous. Indeed, they form a strict class
inclusion:

ring ⊃ integral domain ⊃ GCD domain ⊃ UFD ⊃ Euclidean domain ⊃ field

2Indeed, if R is an integral domain and a, b, q, q′ are elements of R such that b 6= 0 and a = b q = b q′

both hold, then we have q = q′; in other words, if b divides a the quotient of a by b is uniquely defined.

https://en.wikipedia.org/wiki/Unique_factorization_domain
https://en.wikipedia.org/wiki/Unique_factorization_domain
https://en.wikipedia.org/wiki/Field_of_fractions

2.2. Algebra 11

This inclusion is useful when we wish to speak generically about one type of ring. It then
always applies to every subset of that type. This is evident beginning with polynomial
rings.

2.2.2 Polynomials: Rings, Definitions, and Notations

A polynomial, as most know it, is a mathematical function in some variables, which
is a linear combination of multiplicative combinations of those variables. For example,
p(x, y) = 5x3y2 + 3xy + 4x+ 1. The multiplicative combinations are the sub-expressions
x3y2, xy, x, and 1 = x0y0. But, polynomials are far more sophisticated than that.

From the previous example, you can see there are essentially two parts which make up
each term of a polynomial, the numerical coefficient and the multiplicative combination
of the variables. This multiplicative combination is called a monomial. We say that the
coefficients belong to some ring, R, and that the polynomial is formed over that base
ring.

Polynomials themselves form rings, as one can add and multiply polynomials to-
gether (see Section 2.2.3). Hence, we say polynomials over R to mean a ring of polyno-
mials whose coefficients belong to R. However, we must also distinguish between different
classes of polynomials over the same base ring. This is done by specifying the variables
(indeterminates) of the polynomials. Hence, our example polynomial p(x, y) would be a
polynomial over Z with variables x and y. The ring formed by such polynomials can be
denoted by Z[x, y].

Generally, a polynomial ring in the variables x1, . . . , xv over the base ring R, is
denoted byR[x1, . . . , xv]. When v = 1 we sayR[x1] = R[x] are the univariate polynomials
over R. When v > 1 we say R[x1, . . . , xv] are the multivariate polynomials over R, where
v should be implied by context, chosen explicitly, or left as a general parameter.

Since R can be any ring, and polynomials themselves form rings, then it is natural
to define polynomials recursively as well. One can view a bi-variate polynomial in R[x, y]
as being a polynomial over R[x] with variable y (or equivalently, as being a polynomial
over R[y] with variable x). To be explicit, a recursive view can be denoted as R[x][y] to
imply the ring is R[x] and y the variable.

Moreover, just as rings have different flavours, so too do polynomial rings. The
characterization of a polynomial ring depends on the properties of its base ring (and the
number of variables it has, depending on it viewing it recursively or not). For univariate
polynomials over R, if R is a ring then R[x] is a ring. If R is an integral domain then R[x]
is an integral domain. If R is a UFD then R[x] is a UFD: this is Gauss’s theorem, [32,
Theorem 6.8]. However, this is where the similarities end. If R is a Euclidean domain
then R[x] is only a UFD, and division with remainder may be lost. However, we note
that if a divisor is monic — its leading coefficient is 1 — or, more generally, its leading

12 Chapter 2. Background

coefficient is unit in R, then division with remainder is possible. This implies that if R
is a field then R[x] is a Euclidean domain; in a field every non-zero element is a unit.

Using these rules for univariate polynomials, and the recursive definition of a multi-
variate polynomial, we obtain the following for v ≥ 2:

(1) R[x1, . . . , xv] is a ring if R is a ring,
(2) R[x1, . . . , xv] is an integral domain if R is an integral domain,
(3) R[x1, . . . , xv] is a UFD if R is a UFD,
(4) R[x1, . . . , xv] is a UFD if R is a Euclidean domain.

After generalizing polynomials to their rings, we look at specific polynomials and
define some aspects of their internal structure. For a given non-zero polynomial p ∈
R[x1, . . . , xv] we have the following:

(1) the leading term of p, lt(p), is the first non-zero term of p, coefficient and monomial;
(2) the leading monomial of p, lm(p), is the monomial of the leading term;
(3) the leading coefficient of p, lc(p), is the coefficient of the leading term;
(5) the (total) degree of p, deg(p), is the is the maximal sum of exponents of a single

non-zero term of p;3

(5) the partial degree of p with respect to xi, deg(p, xi), is the maximum exponent of
xi in any non-zero term of p;

(6) the main variable of p, mvar(p), is the variable of highest order appearing in p
whose partial degree is positive;

(7) the main degree of p, mdeg(p), is the degree of the main variable of p, deg(p,mvar(p)).

But what do we mean by “first” term or “highest order” variable? Of course, there
must be a defined ordering for something to be first. There are various monomial order-
ings (equivalently, term orderings) which are used to sort the terms in a polynomial. A
monomial ordering is any total order that is is compatible with monomial multiplications
[30, Section 3.1]. The ordering ≤m is a monomial ordering if for all monomials m1,m2,m3

the following properties hold:

(1) m1 ≤m m2 and m2 ≤m m1 imply m1 = m2,
(2) m1 ≤m m2 and m2 ≤m m3 imply m1 ≤m m3,
(3) m1 ≤m m1 holds,
(4) either m1 ≤m m2 or m2 ≤m m1 holds,
(5) 1 ≤m m1 holds,
(6) m1 ≤m m2 implies m3m1 ≤m m3m2.

Properties (1), (2), (3) and (4) are antisymmetry, transitivity, reflexivity and totality.

Two common orderings are lexicographical and degree lexicographical. Both begin
by choosing an ordering of the variables themselves. Throughout our discussion we will
assume x1 > x2 > · · · > xv. Next, let us denote a monomial xe11 x

e2
2 . . . xevv as simply as a

3We use the convention that the degree of 0 is −∞

2.2. Algebra 13

sequence of its exponents, (e1, e2, . . . , ev). Let a = (a1, a2, . . . , av) and b = (b1, b2, . . . , bv)
be two monomials. Then, we have:

Lexicographical: a ≤lex b ⇐⇒
{
ai < bi, for some i,
aj = bj, for all j < i

Degree Lexicographical: a ≤deglex b ⇐⇒
{
deg(a) < deg(b), or
deg(a) = deg(b), and a <lex b.

For bivariate monomials, lexicographical ordering looks like:

xnyn > xn−1yn > · · · > xyn > · · · > x > yn > yn−1 > · · · > y > 1.

For bivariate monomials, degree lexicographical ordering looks like:

xnyn > xnyn−1 > xn−1yn > · · · > x2y > xy2 > x2 > xy > y2 > x > y > 1.

For our purposes, we use lexicographical ordering. It offers particular computational
advantages for our implementation (see Section 3.1). Since we fix this throughout, let us
simply notation, using ≤ to mean ≤lex when comparing monomials or terms.

Speaking of term orders, it is also worthwhile to discuss the divisibility of two mono-
mials. Let m1 = xe111 . . . xev1v and m2 = xe121 . . . xev2v be monomials. m1 divides m2,
denoted by m1|m2, if ei1 ≤ ei2, for 1 ≤ i ≤ v. Also, m1|m2 =⇒ m1 ≤m m2 for any
monomial ordering, ≤m. From this, we get the divisibility of polynomial terms. For two
polynomial terms, t1 = c1m1, t2 = c2m2, t1|t2 if and only if c1|c2 and m1|m2. This notion
of divisibility will play a role in discussing Gröbner bases (Section 2.2.4).

For a polynomial p ∈ R[x1, . . . , xv] there are several different notations which we
may use to define it, depending on our needs. Where the ring and variables are fixed at
the beginning of a discussion, such as the statement at the beginning of this paragraph,
then we can use simply p, q, f, g, a, b, etc. Where we want to be explicit about the
number of variables, or if the number of variables changes throughout a discussion, we
may use p(x1, . . . , xv), q(x1, x2, x3), etc. When we are interested in particular terms of a
polynomial, we may write it in summation notation:

a =
na∑
i=1

aix
e1i
1 . . . xeviv =

na∑
i=1

aiX
αi =

na∑
i=1

Ai

ai ∈ R is the ith coefficient, and e1i, . . . , evi are exponents of the ith monomial. To
simplify notation, often a multivariate monomial will be written as Xαi , where a capital
letter X denotes the sequence of variables x1, . . . , xv and αi = e1i, . . . , evi is a v-tuple or
multi-index of exponents for monomial i, often called an exponent vector. It can also be
convenient to talk about a term as a whole. Thus we use Ai to denote the term aiX

αi .
In this summation notation, the polynomial a has na terms (or simply n if there is only
one polynomial to discuss).

14 Chapter 2. Background

In this summation notation terms are sorted decreasingly according to lexicograph-
ical ordering. While the sort is important, the particular ordering used is not so much.
The sorting is important for defining “leading” or “first”, but it is also crucial for obtain-
ing a canonical representation of a polynomial. That is, a unique representation such that
if two representations are equal then the object they represent must also be equal. Such
a representation is computationally important in order to efficiently perform operations
such as degree, leading term, and equality testing.

There are two strategies for discussing the terms of a polynomial. Either dense
or sparse. Briefly, a dense representation includes terms whose coefficients are zero,
while a sparse representation does not. Unless explicitly stated, we assume a sparse
representation, so that all ai are non-zero. Hence, na is the number of non-zero terms only.
Section 2.3 provides more details on different polynomial representations, comparing and
contrasting them.

In general, we use lowercase Latin letters to denote polynomials, lowercase Latin
letters with subscripts for coefficients, and corresponding lowercase Greek letters with
subscripts for exponent vectors. Capital Latin letters with subscripts represent polyno-
mial terms.

2.2.3 Arithmetic in a Polynomial Ring

For a ring to be a ring, it must have two binary operators, +, and×. For a polynomial ring
these are called polynomial addition and polynomial multiplication, respectively. The
operators are essentially the same for any polynomial ring, where polynomial addition
(multiplication) relies on the addition operator (multiplication operator) of the base ring.

The addition of two polynomials is rather simple. For every like-term between the
two polynomials, add their coefficients together and put this term in the sum, otherwise,
put the same term in the sum as appears in the operands. Like-terms are terms which
share the same monomial. Written more mathematically:

Definition 2.1 (Polynomial Addition)

Let a, b ∈ R[x1, . . . , xv], a =
∑na

i=1 aiX
αi , b =

∑nb
i=1 biX

βi be dense polynomials, such
that we include zero coefficients. Further, let n = max{na, nb}, and prepend zeros to
the polynomial which was smaller to make them equal length. Then:

a + b =
n∑
i=1

(ai + bi)X
αi

Note that polynomial subtraction is essentially the same, simply subtracting coefficients
instead of adding them.

2.2. Algebra 15

The multiplication of two polynomials requires polynomial addition, and is es-
sentially the sum of repeated distributions. Whether the polynomials are represented
sparsely or densely, this scheme will work fine.

Definition 2.2 (Polynomial Multiplication)

Let a, b ∈ R[x1, . . . , xv], a =
∑na

i=1 aiX
αi , b =

∑nb
i=1 biX

βi then:

a × b =
na∑
i=1

(
nb∑
j=1

(ai × bj)Xαi+βj

)

The outer sum works as polynomial addition while the inner sum works more like building
up terms of a polynomial — for a fixed i and varying j, αi +βj are all unique. Note that
αi + βj is a component-wise summation as they are both multi-indices.

For division, it is more tricky. Finding an explicit formula for the quotient and
remainder of two polynomials is not easy, but, an algorithm can easily define the process.

Let D be an integral domain and let a, b ∈ D[x] with b 6= 0 and lc(b) be a unit in D.
Let K be the field of fractions of D. Viewing a, b as polynomials in K[x] and since K[x]
is a Euclidean domain, any pair quotient-remainder (q, r) in the Euclidean division of a
by b satisfy a = bq + r together with r = 0 or deg(r) < deg(b). It is not hard to verify
that (q, r) is unique and that Algorithm 2.1 computes it. Moreover, Algorithm 2.1 shows
that the coefficients of q and r are actually in D. Therefore, the division with remainder
of a by b, as polynomials in D[x], is well-defined.

Notice that we require the leading coefficient of the divisor to be a unit in D. When
this is not the case, the division over the base ring elements, lc(c)/lc(b) is not usually
defined (unless lc(b) exactly divides every coefficient in a, in which case we need not
require lc(b) to be a unit). Moreover, since polynomials over integral domains and with
positive degree are never units in their ring, then the polynomial division defined is es-
sentially only for univariate polynomials. Multivariate division is much more interesting.
It comes about as a consequence of Gröbner bases. Therefore, we leave its discussion to
Section 2.2.4 regarding Gröbner bases.

For now, Algorithm 2.1 shows univariate polynomial division using a dense repre-
sentation for ease of notation (notice summations are indexed from 0). Sparse division
is discussed thoroughly in Sections 2.4 and 4.3.

16 Chapter 2. Background

Algorithm 2.1 polynomialDivision(a,b)
a, b ∈ D[x], a =

∑na
i=0 aix

αi , b =
∑nb
i=0 bix

βi , lc(b) is a unit in R;
returns q, r ∈ D[x] where q is quotient, r remainder, and a = qb+ r,
deg(r) < deg(b).

1: r := a
2: for i = 0 to na − nb do
3: if deg(r) = na − i then
4: qi := lc(r)/lc(b)
5: r := r − qix(na−nb+i)b
6: else
7: qi := 0

8: return q =
∑na−nb
i=0 qix

(na−nb+i), r

When division is not possible due to the limitations of the base ring, such as when the
divisor is not monic, there is still an option to perform pseudo-division.

Pseudo-division

Pseudo-division is a generalization of the idea of division with remainder on polynomials.
The idea behind pseudo-division is to ensure that polynomial division occurs, if it can
occur, without worrying about the restrictions of the base ring. In pseudo-division the
division by the leading coefficient of the divisor is avoided entirely. Hence, neither do we
require the divisor to be monic, the leading coefficient of the divisor to be a unit, nor
that the polynomials be defined over an integral domain. Pseudo-division is defined for
polynomials over any base ring [48]. Hence, this operation (while essentially univariate)
can be defined for multivariate polynomials when they are viewed recursively.

Definition 2.3 (Pseudo-Division)

Let a, b, q, r ∈ R[x], b 6= 0, lc(b) = h, deg(a) ≥ deg(b). Then q is the pseudo-quotient
and r the pseudo-remainder, satisfying the equation

hdeg(a)−deg(b)+1a = bq + r, deg(r) < deg(b).

Notice that the exponent on h is equivalent to the maximum number of division steps
that can occur. That is, the number of times one might actually perform a division in
classical polynomial division. Therefore, this ensures the “division”4 of coefficients can
always occur. A classical algorithm for pseudo-division is shown in Algorithm 2.2. Notice
that this algorithm is essentially the same as Algorithm 2.1 with the minor addition of
multiplying by h at each division step.

4In implementation, one avoids multiplication by h and division entirely by simply ignoring both all
together. By construction, they cancel each other out anyways.

2.2. Algebra 17

Algorithm 2.2 näıvePseudoDivision(a,b)
a, b ∈ R[x2, . . . xv][x1] = R[x], deg(b) > 0;
return q, r ∈ R[x] and ` ∈ N such that h`a = qb+ r.

1: q:=0; r:=a
2: `:=0; h:=lc(b)
3: while deg(r) ≥ deg(b) do
4: k := deg(r)− deg(b)
5: q := hq + lc(r)xk

6: r := hr − lc(r)xkb
7: ` := `+ 1

8: return (q, r, `)

We also note that one can define a lazy pseudo-division in the sense that the exponent
on h is not exactly deg(a) − deg(b) + 1. Rather, the exponent is equal to the precise
number of times one would need to multiply by h to make the division work. Of course,
this has many practical benefits in implementation. Pseudo-division is discussed further
in Section 4.4 with its practical implementation discussed in Section 4.4.1.

For more details and algorithms regarding polynomial arithmetic, see [48, Section
4.6] and [Sections 2, 6.12, and 25][32]

2.2.4 Gröbner Bases, Ideals, and Reduction

The subject of Gröbner bases is a rich area within algebraic geometry, finding many
theoretical and practical applications. It is concerned with, among many others, ideals.
We refer the reader to [30] for a rather succinct description of Gröbner bases, and [6] for
a more detailed description. A survey of the many applications of Gröbner bases can be
found in [17].

We begin by defining ideals. An ideal I is a subset of a ring R with the properties:

(1) ∀ a, b ∈ I, a+ b ∈ I
(2) ∀ a ∈ I, r ∈ R, ar ∈ I

If property (2) is not commutative, we can call I a right (or left, depending on which
side r appears in (2)) ideal of R.

An ideal can be generated by a set of elements a1, . . . , an ∈ R, denoted by:

〈a1, . . . , an〉 = {a1r1 + . . . anrn | r1, . . . , rn ∈ R}

and it is said that a1, . . . , an form the basis of the ideal or is the generating set of the
ideal. If A = {a1, . . . , an}, a useful short-hand is to denote 〈a1, . . . , an〉 = 〈A〉. It is worth
noting that the same ideal can have many different generating sets.

A natural problem arises from the discussion of ideals. Does a particular ring element
belong to a particular ideal? This is the ideal membership problem.

18 Chapter 2. Background

Problem 2.1 (Ideal Membership Problem)

For an ideal I ⊆ R and f ∈ R, is f ∈ I?

Gröbner bases yield a theoretically and computationally effective way of solving this
problem. Simply, a Gröbner basis is special generating set of an ideal by which the ideal
membership problem is easily solved. In order to formalize the solution to the ideal
membership problem we must discuss reduction.

For the remainder of our discussion, we consider polynomials in the ring K[x1, . . . , xv]
where K is a field. Gröbner bases are usually discussed in this context as all theorems
and results hold in the case of a field. However, we note that it is still possible to work
with Gröbner bases for multivariate polynomials over rings [1, Chapter 4]. Further, we
must also fix some term order. We will see why this important. The particular one used
is not of great importance, but it should remain fixed throughout. We use lexicographical
ordering (see Section 2.2.2).

Reduction is simply a generalization of polynomial division. Let f, g, h, r ∈ K[x1, . . . , xv]
be multivariate polynomials. It is said that f reduces to h modulo g in one step if and
only if lt(g) divides some term, t of f with the result h being:

h = f − t

lt(g)
g (2.1)

This reduction in one step is denoted:

f
g−→ h

Similarly, f reduces to h modulo g if and only if a sequence of reductions in one step
produce h from f . That is,

f
g−→ h1

g−→ h2
g−→ . . .

g−→ h

This reduction is denoted:

f
g−→+ h

Moreover, we say a polynomial r is the remainder of f with respect to g if f
g−→+ r

and r is reduced with respect to g. Where reduced means either:

(1) r = 0, or
(2) no terms of r are divisible by the leading term of g.

One can see the similarities between reduction and division. Indeed, if f and g are
univariate polynomials, then reduction exactly corresponds to polynomial division with
remainder. Equation 2.1 looks very much like one division step, r = a− qb. It is for this
reason that reduction is often seen as multivariate polynomial division. To be precise,
multivariate polynomial division is a special case of reduction.

2.2. Algebra 19

If we let q = t/lt(g) be the quotient from one reduction step, then we can accumulate
a quotient from the many steps over an entire reduction, to obtain a full quotient alongside
the remainder. Then, we get the following:

Definition 2.4 (Multivariate Polynomial Division with Remainder)

Let a, b, q, r ∈ K[x1, . . . , xv], b 6= 0. Then q is the quotient and r the remainder,
satisfying the equation

a = bq + r, r is reduced with respect to b

We discuss our variation of multivariate division and its algorithms in Section 4.3

Reduction is more general than as has been described so far. Reduction in its full
form replaces g by a set of polynomials G = {g1, . . . , gn}. Thus, it is also sometimes
referred to as multi-divisor polynomial division. If there were not enough synonyms
already, the remainder of a multi-divisor polynomial division is also called a normal
form. We discuss this in Section 4.5.

We say f reduces to h modulo G if and only if there exists a sequence, say (i1, . . . , im),
of reductions in one step, using one of gi ∈ G for each step.

f
gi1−→ h1

gi2−→ h2

gi3−→ . . .
gim−→ h

f
G−→+ h

We note that not every polynomial in G must be used for a reduction, and, it is very
possible to use the same polynomial several times. In the case of multiple divisors, a
polynomial r is reduced with respect to G if either:

(1) r = 0, or
(2) no terms of r are divisible by lt(gi) for every gi ∈ G.

From this, we can see why it is important to fix a term order when discussing reductions.
As we need to decide the leading term of the divisor, this changes depending on the term
order used. Moreover, the term order then impacts the decision of whether a polynomial
is reduced or not.

For example, under lexicographical ordering, the polynomial f = x2 +xy4 is reduced
with respect to g = x3 +xy3 because x3 does not divide either x2 or xy4. However, under
degree lexicographical ordering, f = xy4 + x2 and g = xy3 + x3 and now f is no longer
reduced with respect to g as xy3 divides xy4.

A similar problem occurs with multiple divisors. Let f = x2y, G = {g1, g2} with
g1 = x2 and g2 = xy − y2,

f
g1−→ 0 but f

g2−→ xy2 g2−→ y3,

20 Chapter 2. Background

and yet both 0 and y3 are reduced with respect to G. Clearly, the order in which the
divisors are applied makes a difference. So, reduction is an ambiguous problem. At least,
that is the case when the divisor set is a general set of polynomials.

This is troublesome. Particularly because one solution to the identity membership
problem is the following: for G = {a1, . . . , an} and 〈G〉 = I ⊆ R, f ∈ R,

f
G−→+ 0 =⇒ f ∈ I.

Since the order of application influences the final result, we cannot say the converse, that

if f ∈ I then f
G−→+ 0. However, Gröbner bases give us just that. They are special

sets such that that the process of reduction with respect to them always yields a unique
remainder. Therefore, if G is a Gröbner basis then

f
G−→+ 0 ⇐⇒ f ∈ I.

This if and only if relation is a very important property of Gröbner bases. Algorithm
21.33 in [32] shows that every ideal admits a Gröbner basis, and it can be computed ef-
fectively. Hence, these bases allow effective and practical solving of the ideal membership
problem, among many other problems. See Chapter 21 in [32] and all of [17] for many
other such problems and applications.

2.2.5 Algebraic Geometry

Here, we give only a very brief review of some definitions which will become useful in
later theorems. In particular, we are interested in hyperplanes, hypersurfaces, and their
degrees.

An ordinary 2-dimensional surface exists in a 3-dimensional space. A hypersurface
is just a generalization of a surface to arbitrary dimension. Consider a space — usually
affine or Euclidean, the particulars of which are not important — of dimension n, say
Kn. This is the ambient space. Then, hypersurfaces are sub-spaces of dimension n − 1.
Equivalently, they have codimension 1 with their ambient space.

Hypersurfaces are defined by a single polynomial in K[x1, . . . , xn] = K[X] as p(X) =
0. A hypersurface is said to have degree d if the polynomial defining it has total degree
d. A hyperplane is simply a hypersurface of degree 1. For example, the hypersurface
defined by p(x, y, z) = 2x2yz + 3xz + y = 0 is a hypersurface of degree 3 in K3, with the
ambient space being K4.

We refer the reader to [51] for more details on geometry, algebraic varieties, and the
like.

2.2. Algebra 21

2.2.6 (Numerical) Linear Algebra

Beyond the very basics of linear algebra, like vectors, matrices, and systems of equations
(with which we assume the reader is familiar), linear algebra is a very broad topic, even
compared to algebra as a whole. Here, we only highlight a specific topic which some may
not be familiar.

Given a matrix, A ∈ Rn×m, a singular value decomposition (SVD) of A is a fac-
torization into the form UDVT where U ∈ Rn×n, V ∈ Rm×m are orthonormal and
D ∈ Rn×m = diag(σ1, σ2, . . . , σp), p = min{n,m}. The diagonal entries of D are known
as the singular values of A. Generally, algorithms produce D such that the singular
values appear in a decreasing order, with σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 [23]. The diagonal
matrix of the SVD gives the rank of A as r:

A = UDVT = U



σ1

. . .

σr
0

. . .

0


VT

If A is of full rank then r = p = min{m,n}. Otherwise, σr+1 = · · · = σp = 0.

In numerical analysis, the singular value decomposition of a matrix provides a great
deal of information regarding the (numerical) properties of the matrix, such as, effective
rank, nearness to singularity, and the matrix’s condition number [33]. Whereas the actual
rank of a matrix is given as the number of non-zero singular values, if σr+1, . . . , σp are
very small but non-zero then it is possible to say that A is numerically rank deficient.
This is important as the condition number of A — a measure of the sensitivity of a
problem to numerical errors and perturbations — is given by κ(A) = σ1

σp
. Of course, if

σ1 � σp ≈ 0 then the condition number will be very large and the ill-conditioning of A
may cause drastic errors in further computations [23]. Thus, it can then be convenient
to explicitly set σr+1 = · · · = σp = 0 and regard A as rank-deficient, with rank r.

Of importance to us is the ability to use a singular value decomposition as one
possible solution to the linear least squares problem (Section 2.5.3). Other methods
include QR-Factorization. For further review in numerical linear algebra we recommend
reviewing [23].

22 Chapter 2. Background

2.3 Representing Polynomials

For the sake of representing polynomials effectively there are two aspects to consider.
Algorithms operating on these polynomials can be evaluated by their running time and/or
memory usage. Generally, they work inversely, in the sense that more memory means the
algorithm can run more quickly (in theory) while using less memory requires more steps
from the algorithm. This interplay is an important consideration, especially considering
the memory configuration of modern computers (see Section 2.1). Ideally, we want both
time and memory to be minimized.

Let us begin with an example: addition of two univariate polynomials. Let a, b ∈
R[x] such that

a = anx
n + an−1 + xn−1 + · · ·+ a1x+ a0 =

n∑
i=0

aix
i (2.2)

b = bmx
m + bm−1 + xm−1 + · · ·+ b1x+ b0 =

m∑
i=0

bix
i (2.3)

In this representation, which we call a dense representation, notice that the indices of the
coefficients match the exponent of their associated monomial. All terms are represented
regardless of the value of its coefficient, in particular, terms with a 0 coefficient. This
provides advantages for notations and computation. Assuming n = m (otherwise, simply
extend the smaller polynomial by adding zero terms so that the sizes match) then the
addition, a+ b is simply:

a+ b =
n∑
i=0

(ai + bi)x
i.

In contrast, for a sparse representation, it is not as simple as matching indices and adding
coefficients, one must also match monomials, requiring more computational steps within
the algorithm.

Consider a possible implementation of this dense univariate representation. An
obvious solution is to encode each polynomial as simply an array of coefficients. In this
scheme, the exponent on the monomial corresponding to each coefficient is implied by the
coefficient’s index (Figure 2.1) A polynomial addition algorithm in this representation is
dead simple; it is nothing more than iterating through two arrays, summing corresponding
indices. In this dense array representation, one can also immediately query things such
as leading monomial, leading coefficient, number of terms, and degree.

a[n+ 1] := a0 a1 a2 a3 · · · an−1 an

0 1 2 3 · · · n− 1 n

Figure 2.1: Array representation of a dense univariate polynomial.

2.3. Representing Polynomials 23

Consider however, encoding the polynomial x10000 − 1 in this dense array repre-
sentation. Although there are only four defining items (coefficients 1 and -1, and the
monomials x10000 and x0) we would need to create an array of size 10001 to encode the
polynomial. Moreover, if this polynomial was used in some algorithm, say polynomial
addition, much of the time of the algorithm would be spend summing coefficients where
at least one operand was 0, a very wasteful operation.

This leads to the discussion of the sparsity of a polynomial itself 5. In this sense, a
polynomial is dense or sparse regardless of how it is represented. One says a polynomial
is sparse if it has relatively few non-zero terms compared to the maximum number of
terms possible for a polynomial with the same degree. Similarly, a polynomial is dense
if it has relatively few zero terms.

A polynomial can either be represented densely or represented sparsely, regardless
of whether it is dense or sparse. Naturally, sparse representations work best when they
are used to represent sparse polynomials. The same goes for dense.

Of importance here, is deciding how to represent multivariate polynomials. For a
fixed maximum partial degree, the number of multivariate polynomial terms increases
exponentially in the number of variables. Even with a partial degree of no more than 2,
multivariate polynomials in 3 variables have up to 27 terms while 10 variables already
have up to 59049 terms. A dense representation would have to encode at least that many
terms, a prohibitively large number as degrees and number of variables increase. How-
ever, multivariate polynomials are rarely dense in computer algebra problems. Generally
speaking, multivariate polynomials are sparse, either with many variables, each of low
degree, or a few variables, each of high degree but very few non-zero terms [27].

Mathematically, we can write sparse polynomials using summation notation as well,
with slightly different notation. This is the same notation as was presented in Sec-
tion 2.2.2, which we repeat here for completeness.

a =
na∑
i=1

aix
e1i
1 . . . xeviv =

na∑
i=1

aiX
αi

In this summation notation, the na terms are sorted decreasingly according to lexico-
graphical ordering. ai ∈ R is the ith coefficient, and e1i, . . . , evi are exponents of the ith

monomial. To simplify notation, often a multivariate monomial will be written as Xαi ,
where a capital letter X denotes the sequence of variables x1, . . . , xv and αi = e1i, . . . , evi
is a v-tuple or multi-index of exponents. We leave the discussion on the implementation
of sparse representations to Chapter 3, where many details and implementation strategies
are discussed.

Lastly, the idea of a recursive representation should not be forgotten. That is, rep-
resenting a multivariate polynomial p ∈ R[x1, . . . , xv] explicitly as p′ ∈ R[x2, . . . , xv][x1].

5The sparsity of a polynomial can depend on the basis in which it is represented. In general, we use
the monomial basis and our discussion of sparsity is with respect to this basis.

24 Chapter 2. Background

This representation is very useful computationally when wishing to perform essentially
univariate operations on a multivariate polynomial. For example, pseudo-division (Sec-
tions 2.2.3 and 4.4), greatest common divisor, content and primitive part[32, Section 6.2],
and subresultants [32, Section 6.10] are all essentially univariate operations.

We can easily define such a representation, again in summation notation, as:

f(x1, x2, . . . , xv) =
n∑
i=1

gi(x2, . . . , xv) · xi1

This representation is tricky to implement in the sense that coefficients are themselves
polynomials. However, it is also essentially univariate in its representation. Thus, it
could be convenient to use a dense representation, like arrays, where the index implies
the exponents on the main variable (x1) and the entries in the array are the polynomial
coefficients (gi(x2, . . . , xv)). In a C-like programming language the coefficients in the
array could just be pointers to other polynomials, such as in Figure 2.2. We discuss our
more efficient recursive sparse implementation in Section 3.4.

f [n+ 1] := · · ·

g0 g1 g2 g3 gn−1 gn

0 1 2 3 · · · n− 1 n

Figure 2.2: Array representation of a dense recursive multivariate polynomial.

For further discussion on polynomial representations in various computer algebra
systems, [27] provides a good overview. For a detailed look at the implementations and
representations of Maple and Singular see [60].

2.4 Working with Sparse Polynomials

As we saw in the last section, dense polynomial representations provide some compu-
tational advantages, such as very simple algorithms and the ability to instantly query
information like degree, number of terms, and coefficients at a particular index. Many of
these advantages are lost when working with sparse representations.

Without even considering implementation, one can see the difficulties of working with
sparsely represented polynomials. Consider the question does this polynomial contain
the monomial xd, for some d. In a dense representation, p =

∑n
i=0 pix

i, the answer is
immediate: does pd = 0? For a sparse representation, p =

∑n
i=1 pix

ρi , one must iterate
through all ρi, determining if any equal d (sorting the terms helps with this, but does
not eliminate the problem entirely). It is much the same for addition, one cannot just

2.4. Working with Sparse Polynomials 25

match indices and add those corresponding coefficients. Arithmetic in general is more
cumbersome for a sparse representation.

So why do we care about sparse polynomials? The short answer is memory. Com-
puter memory is almost always the limiting factor. Historically, the amount of memory
available limited the size of problems that computers could solve and how they solved
them. Today, this is less of a concern. On modern architectures we are more concerned
with how memory is used (Section 2.1).

Many algorithms were still (and are) developed for dense representations [48, Sec-
tion 4.3.3 (How fast can we multiply?)]. Methods like Karatsuba [46], Toom-Cook [12],
and Schönhage-Strassen [69] have been developed that are asymptotically very fast. How-
ever, for sparse (multivariate) polynomials, whose dense representations are prohibitively
large, these algorithms are ineffective. Moreover, considering the processor-memory gap,
we would like to maintain good cache-complexity for sparse polynomials, which is impos-
sible if they are represented densely. Hence, we want to work with sparse polynomials
represented sparsely.

Two very important works which focused on sparse polynomials considered their
arithmetic [42] and their interpolation [76]. Sparse polynomial arithmetic in [42] was
left unnoticed for many years, until its rediscovery in the late 2000s by Monagan and
Pearce [56, 58, 59]. These algorithms for sparse arithmetic can be adapted to modern
architecture with good cache complexity. Indeed, this is the main subject matter of
Chapter 4. Here, we present the original sparse algorithms of [42] as a base to work from
and to refer to later. Sparse interpolation is left to the discussion of Section 5.3.

The ideas of sparse arithmetic are built up in succession. Division relies on multi-
plication; multiplication relies on addition. We begin with addition. Let us fix the two
operands of a binary polynomial operation as a and b with the result being c.

a =
na∑
i=1

aiX
αi b =

nb∑
j=1

bjX
βj c =

nc∑
k=1

ciX
γk

Addition (or subtraction) of two polynomials requires joining the terms of the two sum-
mands, combining like-terms (with possible cancellation) and then sorting the terms of
the sum. Sorting is necessary in this case in order to maintain a canonical representation
— an issue which will come up again for every operation. A näıve approach is to compute
the sum a+ b term-by-term, adding a term of the addend (b) to the augend (a), inserting
it in its proper position among the terms of a so that the term order is maintained. One
could think of this as analogous to insertion sort.

This method is inefficient and does not take advantage of the fact that both a and
b are already ordered. This can be accomplished more efficiently in terms of operations,
and space, by performing a modified merge sort of the two summands. This takes
advantage of the fact that the two summands are already sorted. The addition operation
then combines terms with identical exponents as they are encountered (where the sum

26 Chapter 2. Background

or difference of coefficients is computed), with the output being automatically sorted.
This algorithm is presented in Algorithm 2.3. Subtraction is essentially the same by only
replacing the addition of like-term coefficients with their subtraction.

Algorithm 2.3 addPolynomials(a,b)

a, b ∈ R[x1, . . . , xv], a =
∑na
i=1 aiX

αi , b =
∑nb
j=1 bjX

βj ;

return c = a+ b =
∑nc
k=1 ckX

γk ∈ R[x1, . . . , xv]

1: (i, j, k) := 1
2: while i ≤ n and j ≤ m do
3: if αi < βj then
4: ck := bj
5: γk := βj
6: j := j + 1
7: else if αi > βj then
8: ck := ai
9: γk := αi
10: i := i+ 1
11: else
12: ck := ai + bj
13: γk := αi
14: i := i+ 1
15: j := j + 1
16: if ck = 0 then
17: continue #Don’t increment k

18: k := k + 1

19: end
20: while i ≤ n do
21: ck := ai
22: γk := αi
23: i := i+ 1
24: k := k + 1

25: while j ≤ m do
26: ck := bj
27: γk := βj
28: j := j + 1
29: k := k + 1

30: return c =
∑k
`=1 c`X

γ`

Much like addition, polynomial multiplication requires generating the terms of the
product, combining like-terms among the product terms, and then sorting the product
terms. A näıve approach is to compute the product a · b by distributing each term of the
multiplier (a) over the multiplicand (b), combining like terms, and sorting: c = a · b =
(a1X

α1 · b) + (a2X
α2 · b) + · · · . This is inefficient because all nanb terms are generated,

whether or not they combine as like-terms. Also, the final nanb terms must be sorted.

We can obtain more efficient algorithms by generating terms in sorted order. In
such a way, like-terms are immediately found and combined as early as possible. The
sparse structure a and b is put to good use by observing that for a given αi and βj we
always have that Xαi+1+βj and Xαi+βj+1 are less than Xαi+βj in the term order. Given
that Xαi+βj > Xαi+βj+1 , Xαi+βj ≥ Xαi , and Xαi+βj ≥ Xβj , we can generate terms of
the product in order by merging na “streams” of terms obtained by multiplying a single
term of a distributed over b.

2.5. Interpolation & Curve Fitting 27

a · b =


(a1 · b1)Xα1+β1 + (a1 · b2)Xα1+β2 + (a1 · b3)Xα1+β3 + . . .

(a2 · b1)Xα2+β1 + (a2 · b2)Xα2+β2 + (a2 · b3)Xα2+β3 + . . .

...

(ana · b1)Xαna+β1 + (ana · b2)Xαna+β2 + (ana · b3)Xαna+β3 + . . .

We can consider this like an na-way merge sort, where at each step, we select the
maximum term from the heads of the streams and use it at the next term in the product,
removing it from the stream in the process. The new head of the stream where a term is
removed is then the term to its right. To be computationally effective in implementation,
the product (ai · bj)Xαi+βk is only actually computed when it is removed from a stream
(see Section 4.2.1 for implementation details). If there is no unique maximum, then the
maximums are all like-terms and we can select all such terms and add their coefficients
together to form a single term of the product. This is shown in the algorithm (Algo-
rithm 2.4) by accumulating sums of products in ck (line 16), and only updating k when
the maximum degree “drops” and the resulting coefficient is non-zero (line 11).

We use a variable to keep track of the index of the head of each stream, and do
a brute-force search over the those heads for the maximum. We use the variable fs
to give the “column” index of each stream, where s is the index of the row (stream).
Thus, fs picks out the current head element of stream s. Further, we use the index I
to denote the index of the first non-empty stream. In this na-way merge, since we have
Xαi+βj > Xαi+1+βj and Xαi+βj > Xαi+βj+1 , then the streams will become “empty” in
order of increasing ai. Maintaining I provides advantages for notation and computations.

The last of the arithmetic operations discussed in [42] is exact division. Division is
a direct application of multiplication. In fact, it is simply formulated as a multiplication
in which one of the operands is continuously updating. We explain it fully in Section 4.3
where it is extended to division with remainder. We also expand on the rather terse
original presentation of the algorithm.

2.5 Interpolation & Curve Fitting6

Interpolation has a long history with many applications. Arguably, the history of inter-
polation is more rich in numerical analysis but, nonetheless, it is fundamental to both
symbolic and numeric computation. Precisely, interpolation is the process of, given a
set of (possibly multivariate) points, πi, and values, βi, finding a function, f , such that
f(πi) = βi. In essence, interpolation is the process of transforming a set of discrete data
points into a function. This function may be the exact function which produced the data

6The unpublished work of George Miminis, Introduction to Scientific Computing, is to thank for the
lovely details interconnecting basis polynomials, interpolation, and curve fitting.

28 Chapter 2. Background

Algorithm 2.4 multiplyPolynomials(a,b)

a, b ∈ R[x1, . . . , xv], a =
∑na
i=1 aiX

αi , b =
∑nb
j=1 bjX

βj ;

return c = a+ b =
∑nc
k=1 ckX

γk ∈ R[x1, . . . , xv]

1: if na = 0 or nb = 0 then
2: return 0
3: k := 1; c1 := 0
4: γ1 := α1 + β1
5: for i = 1 to na do
6: fi := 1
7: end for
8: I := 1
9: while I ≤ na do
10: s := max

s
{αs + βfs | I ≤ s ≤ na}

11: if γk 6= αs + βfs then
12: if ck 6= 0 then
13: k := k + 1
14: ck := 0

15: γk := αa + βfs
16: ck := ck + asbfs
17: fs := fs + 1
18: if fs > nb then
19: I = s+ 1

20: end
21: return c =

∑k
`=1 c`X

γ`

points (if sufficient information about the function is known), or simply equal to the
underlying function at the set of points provided. Approximation (curve fitting) relaxes
the constraint that the function f must equal βi at each interpolation node, πi. Rather,
one hopes to find f that fits the data “as close as possible” (see Section 2.5.3).

Of course, many engineering applications need exactly this sort of transformation
where data points are mere observations, and a function needs to be determined in order
to continue the mathematical analysis. The succinct representation of a data set as a
function provides a starting point for many other algorithms. These needs range from
evaluating the function at various (non-observed) points [48, Section 4.6.2], to analyzing
its derivative or integral.

There are various flavours of interpolation including nearest-neighbour, linear, poly-
nomial, and trigonometric. The differences in these flavours depend on the choice of
basis functions for the interpolation. That is, a set of functions such that other functions
can be generated as a linear combination of the basis functions. The well-known Taylor
series [18, Section 1.1] of a function shows that a function can be written as a linear
combination of the set of monomials {1, x, x2, x3, . . . }. Hence, these monomials form a
basis of functions, yielding polynomial interpolation. Other function bases may be a set
of linear functions, the trigonometric functions, or, as we will see, specifically defined
functions.

Let us call such a generic set of basis functions φj(x), 1 ≤ j ≤ m. As we wish to
interpolate the function using this basis of functions and the point-value pairs (πi, βi),

2.5. Interpolation & Curve Fitting 29

1 ≤ i ≤ n, then we can easily create a system of linear equations describing this,

α1φ1(πi) + α2φ2(πi) + α3φ3(πi) + · · · = βi,

where αi are the desired coefficients of our basis functions φj. In matrix notation, these
linear equations are represented as:

Ax = b
φ1(π1) φ2(π1) . . . φm(π1)
φ1(π1) φ2(π2) . . . φm(π2)

...
...

. . .
...

φ1(πn) φ2(πn) . . . φm(πn)



α1

α2
...
αm

 =


β1

β2
...
βn


If φ1 = 1, φ2 = x, . . . , φm = xm−1 then we have a monomial basis resulting in

polynomial interpolation. Of course, this system of linear equations could be solved
directly to obtain the coefficients of our linear combination of φj. However, this method
is a little brutal (in the sense of brute-force). Moreover, this connection between linear
algebra and interpolation is an important one. In particular, we note the appearance of
the Vandermonde matrix. If we let φ1 = 1, φ2 = x, . . . , φm = xm−1 , as in polynomial
interpolation, then the our matrix of points (let us call this the sample matrix) becomes
a Vandermonde matrix over (π1, π2, . . . , πn).

1 π1 π2
1 . . . πm−1

1

1 π2 π2
2 . . . πm−1

2
...

...
...

. . .
...

1 πn π2
n . . . πm−1

n


Vandermonde matrices are known to be ill-conditioned for real values [7], providing

another reason to avoid solving the system of linear equations directly (at least numeri-
cally). As we will see in Sections 2.5.1 and 2.5.2 there exists more efficient and direct ways
to calculate the coefficients αj for the monomial basis instead of simply solving the system
of equations. However, theoretically they provide some intuition about interpolation.

If our sample matrix turned out to be singular, then clearly the coefficients αj
cannot be uniquely determined and hence our interpolating function cannot be unique.
In the case of polynomial interpolation then, the interpolating polynomial is unique if
the Vandermonde matrix is non-singular, which is the case if the points πi are pairwise
distinct [68], provided that n = m. That is, the number of points is equal to the number
of basis polynomials.

In contrast, if n > m, it is not possible to find a unique interpolating function in
general. Then, interpolation becomes the problem of curve fitting. Whereas interpolation
supposes that we find a f that exactly interpolates the points, that is, f(πi) = βi, curve
fitting relaxes this equality and instead wishes to minimize the difference f(πi) and βi.

30 Chapter 2. Background

For example, with a monomial basis, if we wish our function to have a maximum degree
d then we must use d+1 points to obtain a unique polynomial with degree d. However, if
our points come from some experimental observations, it may be useful to include all such
observations and exceed d+ 1 points. In this case, we are fitting a curve (polynomial) to
the data as best as possible, instead of exactly interpolating. We review this procedure
in Section 2.5.3

2.5.1 Lagrange Interpolation

Lagrange presented his famous Lagrange interpolation centuries ago, in 1795, and his
interpolation method is still widely used [48]. This scheme interpolates a function using
Lagrange basis polynomials. Using our notation of φj as our basis functions and (πi, βi)
as point-value pairs, then φj is defined as:

φj(x) =
(x− π1) . . . (x− πj−1)(x− πj+1) . . . (x− πn)

(πj − π1) . . . (πj − πj−1)(πj − πj+1) . . . (πj − πn)

=
n∏
i=1
i 6=j

(x− πi)
(πj − πi)

We note than the denominator is actually a single composite number, and the numerator
is a simple product of degree 1 polynomials. Hence, each φj is a degree n−1 polynomial.
Assuming that m = n, in order to obtain a unique interpolating polynomial, we define the
Lagrange interpolating polynomial as the summation of each of these φj basis functions:

f(x) =
m∑
j=1

βjφj(x)

As f is a simple sum of degree n−1 polynomials, then it is also a degree n−1 polynomial.

Notice that, by construction, φj(x) either equals 1 or 0 at each of the πi points. It is
easy to see that φj(πi) = 0 for i 6= j, as one of the factors of the numerator will become
zero, zeroing the entire function. For φj(πj), then the factors of the numerator exactly
match the denominators:

φj(πj) =
(πj − π1) . . . (πj − πj−1)(πj − πj+1) . . . (πj − πn)

(πj − π1) . . . (πj − πj−1)(πj − πj+1) . . . (πj − πn)

= 1

Since f is a simple linear combination of these qj polynomials, then of course f meets
the requirement of an interpolating polynomial as f(πi) = βi. This is easily seen by
expanding f :

2.5. Interpolation & Curve Fitting 31

f(x) = β1φ1(x) + · · ·+ βjφj(x) + · · ·+ βmφm(x)

=⇒ f(πj) = β1φ1(πj) + · · ·+ βjφj(πj) + · · ·+ βmφm(πj)

= β1 · 0 + · · ·+ βj · 1 + · · ·+ βm · 0
= βj

What is worth highlighting is the directness of obtaining an interpolating polynomial
by this method. It is a simple construction without any real computation. However, to
obtain a more succinct representation, one should expand all of the factors of each φj
and combine them to obtain a single degree n− 1 polynomial7 This carries with it some
high one-time arithmetic costs for expansion, but then a succinct representation is known.
Another difficulty with is that the πi must be pairwise distinct. Of course this is the case,
otherwise a factor in the denominators of the φj basis polynomials would be (πi − πi),
leading to division by 0. This same result was seen by the singularity of the Vandermonde
matrix obtained from the monomial basis using linear systems to find the interpolating
polynomial. Moreover, the same connection between Lagrange and the Vandermonde
matrix hints that Lagrange interpolation is numerically unstable as well.

2.5.2 Newton Interpolation

Whereas Lagrange interpolation is a very direct method but high in its initial arithmetic
computations, and where solving a system of linear equations is neither direct nor light
in arithmetic, Newton’s interpolating polynomial fits halfway between. Newton’s method
for finding an interpolating polynomial is less direct than Lagrange but requires less
arithmetic to obtain a simplified interpolant. Newton interpolation uses the polynomial
basis:

φ1(x) = 1,

φ2(x) = (x− π1),

φ3(x) = (x− π1)(x− π2),

φ4(x) = (x− π1)(x− π2)(x− π3)

...

φj(x) =

j−1∏
i=1

(x− πi)

Much like Lagrange, these basis polynomials are constructed in a way that become 0 for
some input x = πi. For example, φ2(π1) = 0, φ3(π1) = φ3(π2) = 0, and so on. The

7Numerically, this expansion is not a good idea, especially if two interpolation points are close
together. Using the barycentric forms would be best [23].

32 Chapter 2. Background

polynomials are then linearly combined to produce the interpolating polynomial. Here,
we are again assuming that the number of basis functions equals the number of points.

f =
m∑
j=1

(
αi

j−1∏
i=1

(x− πi)

)
Let the empty product (when j=1) be

∏0
i=1 = 1.

The coefficients of the interpolating polynomial, αi, can be computed directly using
divided differences [23]. However, it is also possible to set up a system of linear equations
by assuming φj(πj) = βj. The sample matrix generated by this is a lower triangular
matrix, so the system of equations can be solved by a simple forward substitution.

1
1 (π2 − π1)
1 (π3 − π1) (π3 − π1)(π3 − π2)
...

...
...

. . .

1 (πn − π1) (πn − π1)(πn − π2) . . .
∏n−1

i=1 (πn − πj)




α1

α2

α3
...
αn

 =


β1

β2

β3
...
βn



2.5.3 Curve Fitting and Linear Least Squares

In the previous two sections, we have assumed that the number of points (n) is equal
to the number of basis functions (m). In the case that the number of points exceeds
the number of basis functions, generally, it is impossible to find a unique function which
exactly interpolates all of the points. Comparatively, curve fitting, in general, is about
finding some smooth function to “best fit” the collection of data and not necessarily
interpolate it exactly.

It is not necessary that this fitted curve be formed by a basis of functions in the
strict sense. Rather, one may simply want to estimate the parameters of some model,
whether those be coefficients, exponents, etc. However, if we restrict this model to be a
polynomial then we do obtain the known polynomial basis (or one of its variants) where
the model parameters are simply coefficients. This type of fit is useful when looking to
interpolate (in the statistical sense) new values from the observed ones [61].

Unfortunately, in this same case, symbolic methods can become troublesome. Con-
sider if error was present in the data, then symbolic interpolation techniques would
exactly fit the the error as well, which is naturally undesirable. Such error can easily
occur during the collection of data, say by limitations of the measuring devices. This
data can be described as inexact or noisy. Then, using exact symbolic methods is not
well suited (and will likely fail entirely), hence, we make use of numerical methods in
these circumstances.

One such numerical method is the least squares method for curve fitting. Least
squares attempts to fit the curve to the data by minimizing the sum of squares of distances

2.6. Symbols and Notation 33

between the fitted curve and the data points [61]. For such a curve, f , this is:

n∑
i=1

(f(πi)− βi)2

This sum of squares can be modeled as the square of the Euclidean norm of the residual
vector, r.

||r||22 = ||(ri)||22 = ||(f(πi)− βi)||22

This is only one possible such “best fit” for the collection of data. Using norms other
than the Euclidean norm leads to other best fits.

For linear least squares where the model parameters are combined only linearly, as is
the case for a polynomial model, then we can model the data points, model parameters,
and residual vector as a system of linear equations. Here, we have A ∈ Rn×m,x ∈
Rm,b ∈ Rn, n > m. Again using the Euclidean norm, we arrive at a typical definition
of linear least squares [23, 33]:

x = min
x
||r||22 = min

x
||b−Ax||22

One possible method to solve this problem is by the so-called normal-equations.
Assuming rank(A) = m, it can be shown [23, Appendix C] that the minimal solution to
the linear least squares problem is the same solution x of:

ATAx = ATb

These are the normal equations. Assuming that A has full rank, then ATAx ∈ Rm×m

will be a non-singular, square matrix. Hence, a unique solution exists, and the system is
no longer over-determined. One can then solve this system by any normal means.

However, this is not a numerically stable method. Given the condition number of
A as κ(A), the condition number of ATA is κ(ATA) = (κ(A))2 [49]. Hence, any ill-
conditioning present in A is made drastically worse in the normal equations and any
algorithm making use of normal equations will be inherently unstable. Moreover, if
rank(A) < m then ATA could be singular, and thus, have no unique solution.

More stable numerical algorithms rely on orthogonal factorizations, like QR-factorization,
or singular value decomposition. These methods are discussed in Section 5.4.

2.6 Symbols and Notation

In this section we provide a summary of the symbols and notations used throughout the
text for quick reference.

34 Chapter 2. Background

Rings

• R is a generic ring.
• D is a generic integral domain.
• K is a generic field.
• Z is the set of integers.
• Q is the set of rational numbers.
• R is the set of real numbers.
• N0 is the set of natural numbers including zero, or equivalently, the non-negative

integers.

Polynomials

• Lowercase Latin letters, a, b, f, g, q, r, etc. are polynomials.
• Uppercase Latin letters with subscripts, Ai, Bi, Qi, Ri, etc. are polynomial terms.
• Greek letters are, generally, tuples or multi-indices, such as exponent vectors or

multi-dimensional points.
• lt(f) is the leading term of f .
• lc(f) is the leading coefficient of f .
• deg(f) or deg(Fi) is the degree of a polynomial or polynomial term, respectively.
• coef(Fi) is the coefficient of a polynomial term.
• na or #(a) denote the number of non-zero terms in the polynomial a.
• x1, x2, . . . , xv are variables or indeterminants.
• X is a collection of variables that will be clear by context.

Interpolation and Linear Algebra

• φ and ψ are bases functions of an interpolation.
• (πi, βi) is the set of point-value pairs in an interpolation.
• Bold uppercase Latin letters, A,C, are matrices.
• Bold lowercase Latin letters, b,x, are vectors.

Chapter 3

Memory-Conscious Polynomial
Representations

The effective use of computer memory is a leading concern of high-performance program-
ming. Although the amount of memory available to programmers on modern computers
is vastly larger than the standard only a few years ago, the speed (or response time) of
that memory has barely improved. Therefore, it is often the memory wall which limits
the performance of an algorithm. That is, the latency of instructions waiting for data
to be retrieved from memory is the limiting factor of a program’s wall-clock time [73].
Processors are therefore underutilized.

A programmatic attempt to help push the memory wall closer towards the processing
wall is related to cache complexity (see Section 2.1.1). That is, a study of how frequently
a cache miss occurs during the running of an algorithm. Since cache and memory are
precisely concerned with the data in which an algorithm operates, of course optimizing
the data’s structure (think layout in memory) will have benefits for the cache complexity.
In particular, the more compact a representation, the fewer bytes a single data element
requires in memory, and thus the more data elements can fit in cache at once, improving
cache complexity.

Other programmatic ways of improving cache complexity, and thus a program’s
performance, occur by optimizing the way an algorithm accesses a data structure. These
implementations details remain for the next chapters: polynomial arithmetic, Chapter 4,
and polynomial interpolation, Chapter 5. Here, we discuss the data structures in which
we can encode the data of a polynomial.

The basic structure of a polynomial is a simple collection of terms. Since we are in-
terested in sparse representations, these collections encode only the non-zero terms. That
collection is augmented with some meta-data of sorts. Information about the polynomial
such as the number of terms, total allocated space, and variable symbols. This header
information is rather succinct and requires essentially constant memory to store. The

35

36 Chapter 3. Memory-Conscious Polynomial Representations

real effort is in effectively representing this collection of terms. But before we consider
collections, how can we effectively encode a single term? This is not as obvious as one
would think.

3.1 Coefficients, Monomials, and Exponent Packing

A single polynomial term is a rather simple structure; we have a coefficient (whether an
integer or rational number) and pair it with a monomial. Because we require arbitrary-
precision integers and rational numbers, we encode coefficients using GMP (GNU Multi-
Precision arithmetic) numbers [37]. GMP is a leader in performance for arbitrary-
precision arithmetic and thus we rely on their highly optimized implementation in C.
For monomials, there is more work to do.

The defining characteristics of a monomial are its variables and their associated
exponents. However, since we have imposed a variable ordering (as part of the term
ordering) there is no need for the symbols of those variables to be stored in the monomial
itself. We need only the exponents. In particular, as we have denoted a monomial by
Xαi , where αi is a multi-index, it is natural to simply encode this multi-index. We call
this encoding an exponent vector.

The simplest strategy for encoding an exponent vector is just that, a vector (array) of
exponents (unsigned integers). Say we wish to encode an exponent vector of v variables.
Then, as a typical unsigned integer is 32 bits, the corresponding exponent vector would
require 32v bits or 4v bytes of memory. However, this is an inefficient use of memory.

Consider the binary representation of the number 5 in a 32-bit unsigned integer. It is
0b00000000000000000000000000000101. Obviously, there are many leading zeros in this
representation. For polynomials, and in particular multivariate polynomials, exponents
very rarely require the full space of a 32-bit integer to be encoded. That is, they rarely
ever reach close to a value of 232 − 1 = 4294967295. One might consider using a short

data type instead. However, this is still 16-bits or a value of 216− 1 = 65535, still rather
large.

Therefore, we look to improve upon this representation to avoid the wasted space of
unnecessary leading 0s. One strategy is called exponent packing, a method of encoding
multiple integers into a single (64-bit) machine word. Basically, the bits of a word are
partitioned (conceptually, not actually) into sections, where each section holds the bits
to encode a single integer. Using bit-masks and shifts, multiple integers, each of small
absolute value, can effectively be stored in a single 64-bit machine word. The idea of
exponent packing has been employed at least since ALTRAN in the late 60s [38] and
more recently in [59] and [40].

Some systems, like Maple, also encode the total degree of the monomial in the

3.1. Coefficients, Monomials, and Exponent Packing 37

single 64-bit word. This is more useful when operating under a term ordering which
makes uses of degrees in its ordering, like degree lexicographical. It is unneeded in a
lexicographical ordering as we use. Further, this scheme wastes bits which could be
used for additional variables or higher degrees. In particular, under the scheme used in
Maple monomials are limited to 21 variables each with a maximum degree of 3 [60]. Our
representation does not encode total degree, therefore we can encode up to 32 variables,
each of maximum degree 3, a substantial difference. Moreover, in polynomial system
solving, degrees of lower ordered variables often increase much quicker than those of high
ordered variables. Thus, in our implementation, we pack exponents disproportionately
within the machine word, giving more bits to lower ordered variables, ensuring all 64 bits
are made useful. This again differs from the variation of exponent packing in Maple
where each variable is given the same number of bits and, therefore, when 64 is not
divisible by the number of variables, wastes bits. Figure 3.1 shows the packing for a
monomial in 3 variables. The monomial with maximum degree which can be represented
in this way is thus x65535

1 x1048575
2 x268435455

3 .

5 2 3

0x0005 0x00002 0x0000003

16 bits 20 bits 28 bits

32 bits

Figure 3.1: A 3-variable exponent vector packed into a single machine word.

The benefits of exponent packing are obvious in terms of memory savings. But, we
also gain an important computational advantage since we use a single machine word now
for each monomial. Comparison and multiplication of monomials reduces to machine
word comparison and addition, respectively. As we saw in the algorithms for sparse ad-
dition (Algorithm 2.3) and sparse multiplication (Algorithm 2.4) monomial comparisons
are an integral part of arithmetic operations in order to maintain an ordered, canonical
representation. Therefore, the savings are twofold, both in memory usage and number
of machine instructions.

Putting this all together, we obtain a very succinct representation of a single poly-
nomial term. One GMP coefficient, and one long unsigned integer (64-bit word). GMP
integers (rational numbers) require 16 bytes (32 bytes) to encode1, therefore, a single
polynomial term only requires 24 bytes (40 bytes) to encode entirely. Notice this is a
fixed amount regardless of the number of variables. That is a very nice property. With
these numbers then, we can effectively represent many millions (44.7 million, to be pre-
cise, for integer coefficients) of polynomial terms in under 1 gigabyte of memory – a
relatively small amount on modern machines.

1This is not strictly true. As these are arbitrary-precision integers, of course they can grow arbitrarily
large. However, their main structure – and the only structure one can interact with directly – has this
fixed size.

38 Chapter 3. Memory-Conscious Polynomial Representations

3.2 Linked Lists

Now that we have an effective representation of a single polynomial term the next step
is to collect multiple terms effectively into a single data structure in order to encode an
entire polynomial. The simplest scheme to represent this collection would be a linked list
– a list of nodes linked together using pointers [70, Section 1.3]. Each node in the list
is used to encode a single piece of data; in our context, a single term of the polynomial.
Figure 3.2 shows the polynomial 13x2y3 + 5x2y + 7y3z encoded as a linked list.

13 x2y3 5 x2y 7 y3z

Figure 3.2: The polynomial 13x2y3 + 5x2y + 7y3z encoded as a linked list.

This representation makes handling and manipulating terms very easy with simple
pointer manipulation. Moreover, new elements can easily be added or removed from
the list. This seems like a very natural operation for sparsely represented polynomials.
However, there are other operations which perform poorly for linked lists. In particular,
indexing, counting the number of terms, and finding a particular monomial all require
traversing the entire list. These O(n) operations are not reasonable.

Moreover, the indirection created by pointers could possibly lead to poor locality
for successive nodes in the list, making this scheme inefficient for cache. Further still,
a node requires 8 bytes worth of memory to store the pointer to the next node. Hence,
the representation of a single polynomial term increased from 24 bytes (40 for rational
numbers) to 32 (48) bytes. That is a substantial percentage spent encoding (meaningless)
structure, instead of pure data.

Thus, we aim to remove this overhead of storing pointers, as well as looking to
minimize indirection and possibly poor data locality. Packing these nodes (polynomial
terms) tightly into an array would solve both of these problems.

3.3 Alternating Arrays

The alternating array representation packs terms side-by-side in an array, effectively
alternating between coefficients and monomials (hence the name). This also follows the
terminology introduced in 1997 in the BasicMath library, part of the European Project
FRISCO https://cordis.europa.eu/project/rcn/31471_en.html; see also [16].

A coefficient and its corresponding monomial are side-by-side in memory and are
thus optimally local with respect to each other. Similar schemes have been used in
Maple [57, 60]. However, in the case of Maple, their scheme uses pointers into a parallel
array to store the arbitrary-precision coefficients, whereas we store the arbitrary-precision
coefficients directly in the array (see Section 4.1 for further discussion). Of course, this

https://cordis.europa.eu/project/rcn/31471_en.html

3.3. Alternating Arrays 39

increases the locality of a coefficient with respect to its monomial. In contrast, storing
the coefficient directly in the array also causes the monomials (coefficients) of adjacent
polynomial terms to be further apart in memory, decreasing locality in that regard. While
this is the case, we argue that a monomial without its coefficient nearby is essentially
useless, one uses both simultaneously, especially in the case of arithmetic. We also note
that this array data structure in Maple is limited to integer polynomials while all other
polynomials use an inefficient sum-of-products encoding [60]. In contrast, our alternating
array representation supports both integer and rational number coefficients.2.

Of course, in our alternating array representation, terms are stored in decreasing
lexicographical order to maintain a canonical representation. This, in addition to the
array data structure allows for basic operations to occur very efficiently. Operations like
degree, leading coefficient, indexing, and number of terms are all constant-time opera-
tions. Conversely, unlike linked lists, alternating arrays do not allow for easy insertion
or removal of elements in arbitrary position within the array. This is justified due to
the many other memory savings we obtain by removing pointer overhead and indirec-
tion. Moreover, our algorithms both use and produce polynomial terms in order (see
Chapter 4). Hence, inserting in the middle of the list is never really needed.

For our alternating array implementation, we again make use of GMP to store the
coefficients and use exponent packing with long unsigned integers to encode the exponent
vectors. The elements of the array alternate between coefficients and monomials in a
tightly-packed manner. There is no overhead whatsoever. Therefore, we obtain the best
encoding , with no overhead, for a collection of polynomial terms, using only 24 bytes
(40 for rational number) per polynomial term. Figure 3.3 shows a polynomial encoded
as an alternating array.

13 x2y3 5 x2y 7 y3z

Term 1 Term 2 Term 3

Figure 3.3: The polynomial 13x2y3 + 5x2y + 7y3z encoded as an alternating array.

Using polynomial addition as an example, we compare the effects of memory us-
age and data structures in Figure 3.4. In this plot we run the addition algorithm for
polynomials over Q with various numbers of non-zero terms and variables. We note the
algorithm for doing the addition is exactly the same. The only difference is the data
structures themselves. We can see that while the curves are essentially linear in the
number of terms they have different slopes. The linked list running time is quickly di-
verging from that of alternating arrays. We account for this discrepancy by the reduced
indirection and size of individual data elements between the linked list and alternating
array representations. Even more drastically, the variation without exponent packing

2Using floating point coefficients is also arbitrarily easy to implement as they essentially form a field
that is a subset of the rational numbers. In fact, we use such polynomials for numerical interpolation
(Section 5.4)

40 Chapter 3. Memory-Conscious Polynomial Representations

diverges even more quickly. This is a result of the increased bytes required to encode
each monomial, which is exacerbated as the number of variables increase.

1 1.5 2 2.5 3 3.5 4

·105

0

0.05

0.1

0.15

0.2

Number of Terms (n)

R
u

n
n

in
g

T
im

e
(s

)

Q[x1, . . . , x5] Addition
Running Time vs Number of Terms

LL without Packing

LL with Packing

Alt. Array

(a) 5 variables

1 1.5 2 2.5 3 3.5 4

·105

0

0.05

0.1

0.15

0.2

Number of Terms (n)
R

u
n

n
in

g
T

im
e

(s
)

Q[x1, . . . , x12] Addition
Running Time vs Number of Terms

LL without Packing

LL with Packing

Alt. Array

(b) 12 variables

Figure 3.4: Comparing linked list, with and without exponent packing, and alternating array
implementations of polynomial addition. Rational number polynomials in 5 and 12 variables are added

together for various sizes.

Addition is a good algorithm for comparing data structures because sparse addition
results in very little arithmetic work. Only like-terms are combined via arithmetic, while
the other terms are simply combined by memory movement and sorting them into the
proper term order. Since these are sparse polynomials we expect few like-terms to actu-
ally occur during a polynomial addition. Hence, it could be considered a memory-bound
problem. We can analyze the cache complexity to see the effects of how using memory
impacts performance. For the purposes of cache analysis we must make certain assump-
tions. In particular, about the memory usage and traversal of the GMP coefficients.

Hypothesis 3.1 (GMP Cache Analysis Assumptions) Let us assume that the GMP
coefficients are sufficiently small (say, less than 64 bits) and that coefficient the data is
stored within the main GMP struct which, in turn, is stored within the alternating array
structure. This is not strictly true, but is a fair assumption to analyze the cache usage
of the polynomial arithmetic algorithms (see Figure 4.1 and surrounding discussion for
further details on GMP usage within the alternating array structure).

Under the ideal cache model (Section 2.1.1), where the cache has L words per line,
and assuming 8 bytes per word with a cache size that is at least three lines (one for
each operand and one for the sum), Z ≥ 3L, then we have the following estimates for
the number of cache misses. In the worse case, due to indirection in the linked list
pointers, one could have a cache complexity of O(4n) as each node can cause a cache
miss. However, in practice this is not the case. As nodes are allocated one at a time, in

3.3. Alternating Arrays 41

order, then they also align in memory. For linked lists (with exponent packing) over the
integers and rational numbers, this results in a cache complexity of

O

(
1 +

32

8

4n

L

)
= O

(
1 + 16

n

L

)
and

O

(
1 +

48

8

4n

L

)
= O

(
1 + 24

n

L

)
,

respectively. For alternating arrays over the integers and rational numbers we have,

O

(
1 +

24

8

4n

L

)
= O

(
1 + 12

n

L

)
and

O

(
1 +

40

8

4n

L

)
= O

(
1 + 20

n

L

)
,

respectively. There is a multiplicative factor of 4, as in the worst case the sum has a size
equal to twice the input. Figure 3.5 shows the actual number of cache misses occurring for
various sizes of operand polynomials encoded as: linked lists without exponent packing,
linked lists with exponent packing, and alternating arrays. These results mimic the
differences in performance for actual running time.

1 1.5 2 2.5 3 3.5 4

·105

1.5

2

2.5

3

3.5

4

Number of Terms (n)

M
P

K
I

Q[x1, . . . , x12] Addition
Cache Misses vs Number of Terms

LL without Packing

LL with Packing

Alt. Array

Figure 3.5: Comparing cache misses for rational number polynomial addition where polynomials are
encoded as linked lists, with and without exponent packing, and alternating arrays. These polynomials

are in 12 variables. The y-axis shows cache misses per one thousand instructions (MPKI).

42 Chapter 3. Memory-Conscious Polynomial Representations

3.4 Recursive Arrays

The previous alternating array representation can be seen as a distributed multivariate
representation. That is, it encodes polynomials such as f ∈ R[x1, . . . , xv]. It would be
inefficient to traverse and manipulate in a recursive way, that is, viewing the polynomial
as essentially univariate with polynomial coefficients: f ∈ R[x2, . . . , xv][x1]. But, this
is the precise structure we need to in order to work with pseudo-division. In order to
have an effective data structure to implement a sparse pseudo-division algorithm, we
introduce a new polynomial data type, the recursive array. This structure is designed to
view polynomials in this univariate, recursive way in order to efficiently operate on them
within the semantics of pseudo-division.

Recall from Section 2.3, a dense recursive representation. Where coefficients are
themselves polynomials and an array of pointers to these polynomials encodes the main
recursive polynomial. This representation is repeated in Figure 3.6 for clarity. Here, a
polynomial has parts of its data implied by the structure. Namely, the exponents of x1

for each term are implied by the index of polynomial coefficients, gi.

f [n+ 1] := · · ·

g0 g1 g2 g3 gn−1 gn

0 1 2 3 · · · n− 1 n

Figure 3.6: Array representation of a dense recursive multivariate polynomial.

If we merge this idea of pointers to polynomial coefficients with the idea of alter-
nating arrays, we get to our idea of a recursive array. Essentially, it is a univariate
alternating array, which alternates between coefficients and monomials, just like the gen-
eral alternating array. It differs by the fact that coefficients are simply pointers to other
polynomials (encoded using the general alternating array) and that monomials, since
univariate, are encoded by a single integer instead of an exponent vector. However, it
is more sophisticated than that. Instead of just arbitrary pointers to polynomial coeffi-
cients, these pointers are rather offsets into a single array containing all the polynomial
coefficients packed side-by-side. This is best explained by discussing how we convert from
a distributed view to a recursive view, re-using data and its structure.

This recursive polynomial representation uses an in-place, very fast conversion be-
tween the normal distributed representation and the recursive one. This amounts to
minimal overhead and allows a single distributed-view polynomial to be passed around,
and those operations needing recursive views can convert very quickly to that view. Of
course, an in-place conversion is beneficial to avoid memory movement and reduce the
working memory required for the algorithm.

To view the polynomial recursively, we begin by blocking the alternating array rep-

3.4. Recursive Arrays 43

resentation of the distributed polynomial based on the degrees of the main variable. Each
block groups together terms which have equal degree with respect to the main variable.
As our polynomials are ordered lexicographically, then all terms are already in order
with respect to the degree of the main variable, and, moreover, within a block, all terms
are also sorted lexicographically with respect to all of the remaining variables. Because
of this, we can create these blocks in-place, without any memory movement, simply by
maintaining the offset into the array for the beginning of each block.

Next, we create a secondary alternating array to store these offsets. This array
alternates between an exponent of the main variable and a pointer to the original array
which is offset to point to the beginning of the block that corresponds to the that main
variable exponent. Note that we also store the size of each block. This is convenient when
we need to do coefficient arithmetic as those coefficients are themselves polynomials that
must know their size to perform arithmetic. In addition, as we traverse the original
alternating array to determine where to form partitions, we zero out the degree of the
main variable for every monomial. This ensures that the degree of the main variable does
not pollute the arithmetic of the polynomial coefficients. Figure 3.7 shows this secondary
array structure along with the original array, highlighting the conversion process.

3 x3y2z 6 x2y2z 4 x2yz 7 z

3 y2z 6 y2z 4 yz 7 z

3 1 2 2 0 1

Distributed

Recursive

Figure 3.7: An alternating array converted to a recursive array representation, showing the additional
secondary array. The secondary array alternates between: (1) exponent of the main variable, (2) size of
the coefficient polynomial, and (3) a pointer to the coefficient polynomial which is simply an offset into

the original distributed polynomial.

These two alternating arrays together exactly and efficiently represent the recursive
view of a polynomial, having coefficients from an arbitrary polynomial ring and univari-
ate monomials. The secondary alternating array requires little additional memory. It
will have size proportional to the number of unique values of the degree of the main vari-
able in the distributed polynomial. In practice, with sparse polynomials, this number is
quite small. In the absolute worst case, for integer polynomials that are fully dense with
respect to the main variable, this secondary array requires O(2

3
n) additional space. As

the arbitrary-precision coefficients grow larger, or when working with rational number
coefficients, this fraction becomes much smaller. This additional space becomes increas-
ingly insignificant as the integers (rational numbers) grow in size, as they always do in
pseudo-division calculations (the main algorithm making use of this recursive represen-
tation).

Lastly, it also worth noting that these sparse representations (alternating array and
recursive array) are used for all of our algorithms, including division and pseudo-division.

44 Chapter 3. Memory-Conscious Polynomial Representations

Even though (pseudo-)quotients and (pseudo-)remainders are often much more dense
than the divisor and dividend, since we are working with multivariate polynomials, a
dense representation would nonetheless grow exponentially with the number of variables
and, therefore, our sparse representation is still worthwhile and efficient. We will see
these data structures in use as we implement optimized arithmetic in the next chapter.

Chapter 4

Polynomial Arithmetic

By the fundamental and necessary nature of arithmetic functions we are greatly concerned
with the performance of our algorithms. Thus, we must be concerned with memory us-
age, data locality, and cache complexity. With the ever-increasing gap between processor
speeds and memory-access time, our implementation techniques focus on memory usage
and management. Our implementations effectively traverse memory while making use
of memory-efficient data structures with good data locality. The implementations tech-
niques look to minimize memory usage and optimize locality in a cache-oblivious way.
We will put to use the polynomial data structures discussed in the previous chapter. In
particular, we use the alternating array representation (see Section 3.3), which is the best
performing data structure in terms of memory usage and locality.

Using the sparse arithmetic algorithms first introduced by Johnson in [42], (see
Section 2.4), we will discuss the effective implementations of multiplication (Section 4.2)
and division (Section 4.3). We also extend the ideas of Johnson to a new algorithm
for sparse multivariate pseudo-division (Section 4.4). Since the algorithm for addition
(subtraction) has already been fully specified (Algorithm 2.3) and its implementation
follows precisely from the algorithm, we will not further that discussion. However, we do
note a variation of the algorithm for in-place addition and subtraction, that is, by reusing
the structure of one of the operands to hold the result. This is described in Section 4.1.

4.1 In-place Addition and Subtraction

An in-place algorithm suggests that the result is stored back into the same data structure
as one of operands (or the only operand). For our purposes, because the actual amount of
memory used for our polynomial representations is rather small relative to the available
memory, we are interested in in-place operations only if they improve the performance of
an algorithm with respect to time. Generally speaking, in-place algorithms require more

45

46 Chapter 4. Polynomial Arithmetic

operations and more movement of data than out-of-place alternatives.

For example, in-place merge sort has been a topic of discussion for sorting algorithms
for quite some time. In-place variants have been studied for the sake of minimizing the
auxiliary space required by the algorithm and for minimizing the space to store the result.
However, these implementations run 25-200% slower than an out-of-place implementation
[41, 47]. As sparse polynomial addition is essentially one step of merge sort, it seems
unlikely that we can gain performance using an in-place scheme.

However, this is not the case. Our in-place addition is roughly twice as fast as the
out-of-place variation. Figure 4.2 shows out-of-place addition vs its in-place counterpart
for various polynomial sizes with varying coefficient sizes. Clearly, in-place is winning,
with a speed up factor of up to 3, and it continues to improve with larger data. Yet,
from the analogy to merge sort, it should be slower. Why is it faster?

The simple answer is due to how we use GMP arbitrary-precision numbers. These
numbers are broken into two parts, we call them the head and the tree. The head is the
main structure which is used directly by users of the GMP library. Indeed, the head is
what we store in the alternating array representation as a coefficient. The head contains
metadata about the tree, such as size and allocation space. The tree is where the actual
data encoding the arbitrary-precision numbers are stored. The head of each number
holds a pointer to a unique tree. See Figure 4.1 which highlights the pointers to GMP
trees within the alternating array structure. Naturally, the head requires relatively less
memory than the tree, especially as the size of the arbitrary-precision numbers grow.
Further details on the internals of GMP are specified in its user manual, [37, Section 16].

a1 α1 a2 α2 · · · an αn

Term 1 Term 2 Term n

t1 t2 tn

Figure 4.1: Alternating array representation showing GMP trees as t1, t2, tn.

The difference between our in-place addition and out-of-place addition is the manip-
ulation of GMP numbers. Since strict in-place merge sort is both asymptotically slower
and practically slower than out-of-place, our in-place addition still uses a complete aux-
iliary polynomial to (temporarily) store the sum. The difference comes about from using
GMP coefficients in a smart way. For an out-of-place addition, we would need to create a
new GMP number, allocating a tree in the process, and store the result of the coefficient
addition into the new tree (or simply copy the coefficient for non-like-terms into the new
tree). This memory movement is expensive. For the in-place addition we rather re-use
the trees of one of the operands to store the sums in-place. The head of each GMP num-

4.2. Multiplication 47

ber is newly created and its metadata copied to the new GMP number, but the pointer
to the underlying tree is also copied instead the data within the tree. Hence, we save
the time required to both allocate a new tree and to fill it. Moreover, GMP arithmetic
functions have improved performance when they are done in-place [37].

103 104 105 106 107
10−4

10−3

10−2

10−1

100

101

Number of Terms (n)

R
u
n
n
in

g
T

im
e

(s
)

Q[x, y, z] Addition
In-place vs Out-of-place

Out, 256

Out, 64

Out, 8

In, 256

In, 64

In, 8

Figure 4.2: Comparing in-place and out-of-place polynomial addition. Rational number polynomials in
3 variables are added together for various sizes and for various coefficient sizes. The number of bits

needed to encode the coefficients of the operands are shown in the legend. Notice this is a log-log plot.

Clearly our so-called in-place addition (subtraction) is much more effective at using
memory and has improved performance because of it. In-place arithmetic is put to use in
pseudo-division to once again reduce the impact of polynomial arithmetic on memory and
to improve the performance of pseudo-division itself. See Section 4.4 for this discussion.

4.2 Multiplication

The movement and traversal of data in memory for multiplication is of far greater concern
than for addition. Given two operands, a and b, with na and nb terms, respectively, their
product has upwards of nanb terms, compared to their sum which may have na+nb terms.
This relatively large size of the result compared to the size of the input requires us to be
particularly concerned with memory management within the algorithm. Multiplication
follows addition (and merge sort) with the idea of producing terms in order, combining
like-terms as soon as possible, and accessing data linearly. This is accomplished using
the the n-way merge as described in Section 2.4. We reuse the notation of that section
here.

48 Chapter 4. Polynomial Arithmetic

For a practical implementation of this na-way merge, we must be smart in how we
choose to find s for the maximum term αa+βfs . We can use a priority queue to effectively
implement this selection. Priority queues are effective data structures for retrieving
maximum (or minimum) elements from a continuously updating data set. One standard
implementation of a priority queue is known as a binary-tree heap (simply called heap
in most literature, as this is the typical heap implementation). Heaps encode a binary
tree in some partially sorted order known as the heap order or the heap property. Of
importance are two facts: the root of the binary tree is the maximum element, allowing
for instant checking of the maximum value, and, extracting and inserting elements into
the heap requires reshuffling elements to maintain the heap property. Due to the structure
imposed by the heap property, this reshuffling is fast, requiring only O(lg n) operations,
compared to O(n) for maintaining a typical sorted array. Figure 4.3 shows an example
binary-tree heap of integers. Notice the heap property: that all parent nodes are larger
than their child nodes. We refer the readers to [70, Chapter 2] for further information
on heaps and effective data structures.

12

8 10

6 5 2 8

1 4 3

Figure 4.3: An example heap of integers, showing the heap property satisfied.

Hence, we encode our multiplication “streams” as a heap. In particular, we store
the heads of each stream in the heap. When we remove an element from the heap, we
simply insert its successor, the new head, into the heap (if one exists, otherwise we do
nothing and the heap size is permanently reduced). In this way, the heap is very efficient
in terms of memory usage and memory traversal. Details on the heap implementation
and optimizations are explored in the next section.

We adapt a new algorithm from our previous polynomial multiplication algorithm
(Algorithm 2.4) to include our operations with the heap. This gives the so-called heap
multiplication algorithm (Algorithm 4.1). In this algorithm, the management of the heap
for computing product terms requires a number of specialized functions. We provide here
a simplified interface consisting of four functions. heapInitialize(a,B1) initializes the
heap by initiating na streams, where the head of the i-th stream is Ai ·B1. Each of these
heads are inserted into the heap. heapInsert(Ai, Bj) adds the product of the terms Ai
and Bj to the heap 1. heapPeek() gets the exponent vector γ of the top element in the

1Note that the heap need not actually store product terms but can simply store the indices of the

4.2. Multiplication 49

heap and the stream index s from which the product term was formed. heapExtract()
removes the top element of the heap, providing the product term.

Algorithm 4.1 heapMultiplyPolynomials(a,b)

a, b ∈ R[x1, . . . , xv], a =
∑na
i=1 aiX

αi , b =
∑nb
j=1 bjX

βj ;

return c = a · b =
∑nc
k=1 ckX

γk ∈ R[x1, . . . , xv]

1: if na = 0 or nb = 0 then
2: return 0
3: k := 1; C1 := 0
4: γ := α1 + β1 #M aximum possible value of γ
5: heapInitialize(a,B1)
6: for i = 1 to na do
7: fi:=1

8: while γ > −1 do #γ = −1 when the heap is exhausted
9: (γ, s) := heapPeek() #Get degree and stream index of the top of the heap
10: if γ 6= deg(Ck) and coef(Ck) 6= 0 then
11: k := k + 1
12: Ck := 0

13: Ck := Ck + heapExtract()
14: fs := fs + 1
15: if fs ≤ nb then
16: heapInsert(As, Bfs)

17: end
18: return c =

∑k
`=1 C` =

∑k
`=1 c`X

γ`

There are very clear similarities between the heap multiplication algorithm and the
standard multiplication. Indeed, it is only modified to more efficiently select the next
product term from the na-way merge. We conclude this section with the following propo-
sition, that the heap multiplication algorithms terminates and is correct.

Proposition 4.1 Algorithm 4.1 terminates and is correct.

Proof: Let a, b ∈ R[x] for R a commutative ring with identity. If either na = 0 or nb = 0
then a = 0 or b = 0, in which case c = 0 and we are done. Otherwise, c 6= 0 and we
initialize the heap with na pairs (Ai, B1), i = 1, . . . , na, we initialize the stream element
indices fi to 1, and we set C1 = 0. We initially set γ = α1 +β1, the maximum possible for
polynomials a and b, as they are sorted in decreasing order. This is slightly redundant
but serves to enter the loop for the first time.

Since we have added the top element of each stream to the heap, the remaining
elements to be added to the heap are all less than some element in the heap. The initial
heapPeek() sets γ = α1 + β1 and s = 1. Since C1 was initially set to 0, Ck = 0, so
the condition on line 10 is met, but not that of line 11 so we move to line 14. Lines 14
through 17 extract the top of the heap, add it to Ck (giving C1 = A1B1), and insert the
next element of the first stream into the heap. This value of C1 is correct.

Subsequent passes through the loop must either (1) add to Ck a term of deg(Ck)

two factors, with the product only computed when elements of the heap are removed. This strategy is
needed for pseudo-division (Section 4.4) where the quotient terms are updated over the course of the
algorithm.

50 Chapter 4. Polynomial Arithmetic

(if one exists) or if Ck = 0, we add to Ck the next greatest element or (2) increase k
and begin building the Ck+1 term when Ck 6= 0 (since for sparse polynomials we store
only non-zero terms). Case (1) is handled by line 13 if γ = deg(Ck) or lines 10 and 13 if
Ck = 0. Case (2) is handled by lines 10-13, since γ 6= deg(Ck) and Ck 6= 0 by assumption.
Hence, the behaviour is correct.

The loop terminates because there are only nb elements in each stream, and lines
15-16 only add an element to the heap if there is a new element to add, while every
iteration of the loop always removes an element from the heap at line 13. ut

Consider using our alternating array representation with integer coefficients to en-
code the polynomials in Algorithm 4.1. We can then estimate this algorithm’s cache com-
plexity. Following the previous assumptions on GMP coefficients (see Hypothesis 3.1) let
the product coefficients also be small enough to be directly stored. Let us also assume
that the entire heap fits in cache; this is a reasonable assumption due to the relatively
small amount of auxiliary space needed to encode it (see the next subsection). Then
cache misses occur by:

(i) iterating through a (heapInitialize()),
(ii) iterating through b (heapInsert()), and

(iii) appending resulting product terms to c (Ck := 0, Ck := Ck + heapExtract()).

Assuming a word size of 8 bytes then the number of cache misses as a result of (i) is
O(1 + 3na/L) while the number as a result of (ii) is O(1 + 3nb/L). In the worst case c
will have a number of terms equal to na · nb. Hence, the number of cache misses as a
result of (iii) is O(1 + 3nanb/L). Then, assuming the heap fully fits in the cache, the
cache complexity of heapMultiplyPolynomials is

O

(
1 +

3nanb
L

+
3na
L

+
3nb
L

)

We can relax the assumption that the heap fully fits in cache using the following
generalizations of binary heap performance. Say the heap contains N elements, then:

(i) an heapInsert() accesses O(lg(N)) heap elements,
(ii) an heapExtract() accesses O(lg(N)) heap elements, and

(iii) a heapPeek() is free.

Then, in addition to cache misses resulting from iterating through a, b, and c, each
heapExtract() and heapInsert() can also incur O(lg(N)/L) cache misses per opera-
tion. Since one extract produces one term of the product, this results inO(2 lg(N)nanb/L)
cache misses. Moreover, each time a product term is appended to c, it may cause a cache
miss as the heapExtract() could have evicted the previously cached terms of c. In con-
trast, iterating through a and b is now encapsulated by the heap operations. Using the
fact that the size of the heap is N = na, then the cache complexity of heapMultiply-

4.2. Multiplication 51

Polynomials is

O

(
1 + nanb +

3na
L

+
2 lg(na)nanb

L

)

4.2.1 Implementation

In the previous section we saw a modified algorithm using a heap in order to effectively
choose the maximum elements among the multiplication streams. The actual implemen-
tation of this heap and algorithm require some tricks to gain as much performance as
possible. In this section we present these implementation details.

Our multiplication algorithm, like all our sparse algorithms, is motivated by the need
to produce the terms of the result in-order. This need arises for its computational and
memory-based advantages. Multiplication can be seen to follow a 3-step coarse algorithm:
(1) generate the terms of the result, (2) combine terms with equal monomials, and (3)
sort the resulting terms to regain a canonical representation. By producing terms in-
order then step (3) can be avoided altogether. Moreover, we can combine like-terms as
soon as they are found and minimize the number of intermediate terms created. This
reduces the amount of working memory needed for our algorithms and simplifies terms
as soon as possible.

The problems of intermediate terms and combining like-terms is far worse in multi-
plication than addition as the number of product terms can be up to nanb. Notice that,
as the algorithm is stated, the terms of the left operand, a, are distributed over the terms
of b, producing na “streams” in the process. We can reorder operands such that a always
has fewer terms than b. This is computationally advantageous as the size of our heap is
determined by the number of active streams, and, the size of the heap directly impacts
the cost of inserting and removing elements from it. Since we only store the heads of
each stream in the heap, the preference is for the number of streams to be few and each
of them to be long. This is accomplished by choosing a to the smaller of the operands,
which we are free to do since multiplication is commutative.

To minimize working space, we do not compute the whole stream in advance, but
rather only produce the product of the two terms at the head of a stream. Moreover, this
product is computed in two distinct steps. First, the product monomial is computed as
the product term is inserted into the heap. This monomial is required for comparisons
within the heap. In contrast, the product coefficient is not required for comparisons or
choosing the maximum. Thus, we delay the calculation of the product coefficient until we
have extracted its corresponding monomial from the heap and are about to commit it to
the product polynomial (commit here being only an append to the product polynomial as
terms are produced in-order). This improves the data locality for coefficient arithmetic
and combining of like-terms as the multiplication of the extracted product term and its
addition with like-terms can be done simultaneously.

52 Chapter 4. Polynomial Arithmetic

With this in mind, the implementation varies slightly from the algorithm presented
in Section 4.1. Rather than extract one term and insert its successor to the heap right
away, we continue to extract terms from that heap as long as they are like-terms and
then insert back all successors of these extracted elements at once. This reduces the
overall amount of work needed to extract and insert terms from the heap. Clearly, if we
extract more frequently than we insert, the number of terms in the heap shrinks. This is
only temporary, as we will generally insert the successors of those terms again, but this
temporary shrink nonetheless impacts performance for the better.

We must also consider effectively storing the resulting product polynomial. Using
our alternating array representation, it is slightly tricky to continuously append to the
end of the array, as the heap multiplication algorithm suggests. We must be wary that
we do not overflow the array allocation during the append. Moreover, if we do in fact
overflow the initial array allocation, then we must reallocate the array, extending its size,
resulting in unnecessary memory movement and a waste of processor time. To remedy
this, we pre-allocate an array for the product with its maximum possible size, na ·nb. This
minimizes memory movement and reallocation required throughout the computation of
appending product terms to the product polynomial. It is reasonable to pre-allocate
this maximal size as our inputs are sparse polynomials and so we expect fairly few like-
terms to be produced, and therefore, combined. Also, as we have seen in Section 3.3,
our polynomials are very efficiently represented and so the maximum na · nb terms still
consumes relatively little memory.

Heap Optimizations

The performance of our code is very dependent on the implementation of its data-
structures, and in particular, heaps. Aside from coefficient arithmetic, all of the work
for multiplying polynomials comes from obtaining the ordering of product terms. Hence,
the heap, whose purpose is to produce terms in the required order, takes the majority of
the effort of our algorithm. Optimizing the heap is then necessary for performance.

The simplest optimization is with respect to memory management. Say we are
multiplying a and b with na < nb. Then, during the course of the algorithm, we will have
at most na streams active at once time. Hence we can pre-allocate space in the heap
for exactly na elements as that will be the exact number of streams to consider. This
is advantageous for two reasons. The first is that, just like pre-allocation of space for
the product polynomial, we avoid possible reallocation and useless memory movement
when inserting into the heap and overrunning the allocated space. The second is that
the insertion code does not need to bother with checking for overflow; we are guaranteed
to have enough space in the heap. This completely removes that if-block from our heap
insertion code, simplifying it and making it more efficient. This blind assumption is safe
for our restricted and well-controlled use of the heap data structure.

Further optimizations for the heap have two focuses. First, to minimize the number

4.2. Multiplication 53

of monomial comparisons required to produce terms in sorted order, and second, to
minimize the working memory of the heap. Minimizing comparisons should be an obvious
improvement because fewer comparisons means more efficient sorting of the product
terms. As for reducing the working memory of the heap, it is important to note that a
binary-tree heap, as in our implementation, essentially performs random memory access
across all of its elements. Memory access is expensive in terms of performance and so
minimizing the working memory of the heap minimizes the amount of memory that it
needs to traverse. With a small enough working memory the heap can fully fit into cache
memory for much cheaper random access.

The first and most simple optimization to reduce the number of monomial compar-
isons is not within the heap itself but how we use the heap in multiplication. Recall that
for each stream in the multiplication, product terms are strictly decreasing within the
one stream, Xαi+βj > Xαi+βj+1 . One could say they are strictly decreasing along a “row”
of the streams. But notice also that across streams product terms are strictly decreasing
with respect to a fixed term of b. That is, Xαi+βj > Xαi+1+βj . One could say they are
strictly decreasing along a “column” of the streams. Hence, we only need to insert the
product Xαi+1+βj into the heap once Xαi+βj has been removed from it. In general, this
has no effect on the heap size since Xαi+1+βj−1 (that is, the element preceding Xαi+1+βj

in its own stream) is already in the heap and so Xαi+1+βj will not yet be inserted as it
is not yet the head of its stream. But, we can optimize the initialization of the heap to
only insert the first term of a stream, Xαi+β1 , once the first term of the preceding stream,
Xαi−1+β1 has been extracted. This minimizes the number of terms initially in the heap,
allowing for much faster heap insertion and extraction up until all streams are active and
Xαna+β1 gets inserted.

The next optimization is applied to how elements are extracted from the heap. Of
course, this operation is crucial as extraction is what essentially does the sorting of our
product terms. Standard implementations of a binary-tree heap remove the maximum
element at the root, swap a leaf element into that newly empty slot, and sink that former
leaf node to restore the heap property. Sinking here meaning shuffling elements in the
heap in order to maintain the heap property. A heap of size n requires O(2 log n) com-
parisons and O(log n) element swaps to restore the heap property using a sink. It was
noted in [36] that extraction can be implemented more efficiently, using only O(log n)
comparisons, by removing the root node and then pushing upward (promoting) children
to fill the hole. This factor of 2 reduction in comparisons is not an insignificant improve-
ment, especially because extracting from the heap is fundamental to our multiplication
algorithm. This same heap improvement was also noted by Monagan and Pearce in [59]
for their implementation of integer polynomial arithmetic.

Our final heap optimization is concerned with both minimizing the working memory
of the heap and the number of comparisons it needs to operate. The technique of chaining
can be used to drastically reduce the number of elements in heap at one time. Chaining
is a common technique in the implementation of hash tables for collision resolution (see
[70, Chatper 3]). In this scheme, elements found to have the same key in a single hash

54 Chapter 4. Polynomial Arithmetic

table are chained together to form a linked list. We modify this scheme for use in a heap.
In our case, elements are polynomial terms and their keys are monomials. Therefore, by
augmenting our heap with chaining, we obtain a heap of linked lists. Chaining reduces
the number of elements in the heap as terms with equal monomials only need to occupy
a single data element in the heap. This is represented by the monomial being stored in
the heap itself with a pointer to the linked list of corresponding coefficients. With fewer
elements in the heap fewer comparisons are needed to maintain the heap property and,
moreover, the working space of the heap itself is reduced. As elements are being inserted
or extracted, if equal monomials are found, then chains are formed. With increasing den-
sity of the operand polynomials, the amount of chaining in the heap increases. As noted
in [59], when chained heaps are used for completely dense (no zero terms) polynomial
multiplication, the heap size reduces to 1 at all times as all elements chain together.

Chaining is a great advantage for performance. In particular, we are able to extract
an entire chain for the cost of extracting a single element. Therefore, we are effectively
extracting many terms at once from the heap for the cost of a single extraction. It is
worth noting that, due to the way a binary-heap is traversed, it is possible that not all
elements of equal monomial in the heap are chained together in a single chain. Because
of this, one should continue to extract chains until the maximum degree in the heap no
longer matches the first one extracted during a single round of extractions. This follows
the scheme described in the previous sub-section where like-terms are all extracted at
once, combined together, and then their successors are inserted at once.

The final optimization for the product heap involves further reducing the working
space of the heap. With chaining, the coefficients of the product terms are already not
stored directly in the heap, but they still play a role in overall auxiliary memory needed
for the algorithm. With our alternating array representation of polynomials it is very
easy to directly index the operand polynomials to access the appropriate coefficient.
Thus, our heap only stores the indices of the operand coefficients which together form
the coefficient of a particular product term. This reduces the memory required for each
product coefficient in the heap from 32 bytes (in the case of rational number coefficients)
down to 8 bytes. Similar schemes using pointers to coefficients have been examined in
[57, 59] but indices are even more succinct than pointers. Figure 4.4 shows a chained
heap along with the idea of storing indices in place of the coefficients.

4.2.2 Experimentation

In the past two sections we introduced multiplication along with many of its implemen-
tation details and optimizations. Moreover, we are claiming high performance implemen-
tations of our arithmetic, hence we must, and do, show this with some nice results.

We compare our implementation against Maple for both integer polynomials and
rational number polynomials. Over the past 10 years or so, Maple has become the
leader in integer polynomial arithmetic thanks to the extensive work of Monagan and

4.2. Multiplication 55

αi + βj

αi+1 + βj

. . .

i j

i + 1 j

i− 1 j + 2

Heap Elements Element Chains

Figure 4.4: A heap of product terms, showing element chaining and index-based storing of coefficients.
In this case, terms Ai+1 ·Bj and Ai−1 ·Bj+2 have equal monomials and are chained together.

Pearce [56–59]. Benchmarks in these papers provide clear indication that their imple-
mentation outperforms many other computer algebra systems including: Trip, Magma,
Singular, and Pari. Moreover, other common systems like FLINT [39] and NTL [71]
provide only univariate polynomial implementations, meaning the comparison against
our multivariate implementation would be unfair. Therefore, we compare our implemen-
tations against the leading high-performance implementation that is provided by Maple
in particular, Maple 2017.

We begin with some preliminaries. In particular, we wish to quantify sparsity since
we are interested in sparse polynomials. For multivariate polynomials, the notion of
sparsity is very difficult to quantify. For univariate polynomials, sparsity is easily de-
fined as the maximum degree difference between any two successive non-zero terms in
a polynomial. However in the multivariate case, and in particular using lex ordering,
there are infinitely many polynomial terms between, say, x and y, in the form of yi.
Although sparsity is not so easily defined for multivariate polynomials, we propose the
following adaptation of the univariate case to the multivariate one, inspired by Kronecker
substitution [32, Section 8.4].

Let f ∈ R[x1, . . . , xv] be non-zero and define r = max(deg(f, xi), 1 ≤ i ≤ v) + 1.
Then, every exponent vector (e1, . . . , ev) in f can be viewed as a integer in a radix-r
representation, e1 + e2r + · · ·+ evr

v−1. Viewing any two successive polynomial terms in
f as integers in this radix-r representation, say ri and ri+1, we call the sparsity of f the
smallest number which is larger than the maximum value of ri − ri+1, for 1 ≤ i < nf .
Note, that using this definition, a sparsity of two is then fully dense, as the difference
between any two exponent vectors is 1.

For our experiments, sparse polynomials were randomly generated using the follow-
ing parameters: number of variables v, number of terms n, sparsity s, and maximum
number of bits in any coefficient. Then, exponent vectors are generated as radix r rep-
resentations with v digits and r computed as b v

√
s · nc.

Throughout all benchmarks presented in this section, and those following, our bench-
marks were collected on a machine with an Intel Xeon X560 processor at 2.67 GHz, 32KB
L1 data cache, 256KB L2 cache, 12288KB L3 cache, and 48GB of RAM.

56 Chapter 4. Polynomial Arithmetic

We begin by comparing the effect that our heap optimizations have on our algorithm.
In particular we compare with and without heap chaining (Table 4.1).

Without Chaining With Chaining

n s Time (s) Comparisons Time (s) Comparisons

250 2 0.05363 3,364,390 0.02166 388,339

50 0.05563 3,665,990 0.04878 2,930,800

100 0.05502 3,681,180 0.05095 3,073,490

250 0.05201 3,701,710 0.05366 3,200,640

500 2 0.21764 3,364,390 0.07761 388,339

50 0.23372 3,665,990 0.18502 2,930,800

100 0.23022 3,681,180 0.19975 3,073,490

250 0.22604 3,701,710 0.21271 3,200,640

1000 2 0.96485 15,339,500 0.30952 1,375,600

50 1.06024 16,551,900 0.77558 12,517,900

100 1.03442 16,656,000 0.82393 13,063,000

250 1.01055 16,730,400 0.89683 13,612,100

Table 4.1: Comparing the effect of heap implementations with and without chaining on polynomial
multiplication. We fix the number of variables, v to 3, and the the coefficient bound to 6. Sparsity, s,

and number of terms, n, of the operand polynomials vary as indicated.

Next, we look at the implementation of our integer polynomials. In Figure 4.5 we
compare our implementation to Maple for various levels of sparsity and number of
terms, fixing the coefficient bound to 128. It is for integer polynomials that Maple
has a highly-optimized implementation. In all cases except dense multiplication, BPAS
performs favourably. This is expected, really, because our algorithms are designed specif-
ically for sparse polynomials. It is likely that Maple automatically chooses a dense
multiplication algorithm (such as Karatsuba or Toom-Cook, which are asymptotically
faster than any known sparse algorithm) when the polynomial is dense, as opposed to
the sparse algorithms of Monagan and Pearce.

In Figure 4.6 we compare our implementation of rational number polynomial multi-
plication to that of Maple. In this case, rational number polynomials did not receive the
same high performance treatment as integer polynomials. Hence, we can see the drastic
differences between our implementation and the one which currently exists in Maple.
We note that, in our implementation, the more sparse the polynomial, the faster multi-
plication occurs. This is due to fewer like-terms being created and thus having to perform
much less coefficient arithmetic.

In order to reiterate the effects of choosing a proper data structure, actual cache miss
rates for multiplication are presented in Figure 4.7. This plot compares multiplication
using linked lists without exponent packing, linked lists with exponent packing, and
alternating arrays. We note that the downward slope of the cache miss rates are due to
more work being done per polynomial term in the multiplication, therefore there are more

4.2. Multiplication 57

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
10−2

10−1

100

Number of Terms (n)

R
u
n
n
in

g
T

im
e

(s
)

Z[x1, x2, x3] Multiplication
Running Time vs Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 2 BPAS, 2

Figure 4.5: Comparing multiplication of integer polynomials. The number of variables is fixed at 3,
and the coefficient bound at 128. The number of terms vary on the x-axis, while the sparsity varies as

noted in the legend.

instructions operating on each polynomial term, leading to a smaller ratio of cache misses
per thousand instructions. Moreover, we note that the alternating array MPKI is slightly
higher only in the sense of ratios. Alternating arrays result in much fewer instructions
executed throughout the program and thus a higher ratio. The number of alternating
array cache misses is actually much less than that of linked lists with exponent packing.

58 Chapter 4. Polynomial Arithmetic

50 100 150 200 250 300 350 400
0

10

20

30

40

Number of Terms (n)

R
u
n
n
in

g
T

im
e

(s
)

Q[x1, x2, x3] Multiplication
Running Time vs Number of Terms

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

Maple, 2 BPAS, 2

Figure 4.6: Comparing multiplication of rational number polynomials. The number of variables is fixed
at 3, and the coefficient bound at 128. The number of terms vary on the x-axis, while the sparsity

varies as noted in the legend.

200 400 600 800 1,000 1,200 1,400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Terms (n)

M
P

K
I

Q[x1, . . . , x12] Multiplication
Cache Misses vs Number of Terms

LL without Packing

LL with Packing

Alt. Array

Figure 4.7: Comparing cache misses for rational number multiplication in polynomials encoded as
linked lists, with and without exponent packing, and alternating arrays. These polynomials are in 12

variables. The y-axis shows cache misses per one thousand instructions (MPKI).

4.3. Division 59

4.3 Division

We now consider the problem of multivariate division, where the input polynomials are
a, b ∈ K[x1, . . . , xv], with b 6= 0 being the divisor and a the dividend. We assume
that K is a field. Hence, {b} is a Gröbner basis of the ideal it generates. Thus, we
can specify division just as one would for reduction in the sense of Gröbner bases (see
Definition 2.4). Note that this division, and its associated algorithms, is well-defined for
a, b, q, r ∈ D[x1, . . . , xv] for an arbitrary integral domain D provided that b is monic (or
at least its leading term divides all coefficients of a). We assume here however, for ease
of discussion, that the coefficients are elements of a field.

Division presents a more tricky problem than multiplication in the sense of producing
terms in order. We must compute terms of both the quotient and remainder in order,
while simultaneously producing terms of the product qb in order. We must also produce
these product terms all the while q is being updated throughout the algorithm. This is
not so simple, especially in implementation.

As a starting point, we do not yet consider the heap variation of division. We
begin by presenting what is essentially a small extension of the univariate division algo-
rithm (Algorithm 2.1) to multivariate polynomials. It relies on repeated multiplication
of quotient with divisor, and subtracting this product from the current remainder. This
algorithm is presented in Algorithm 4.2.

In this algorithm, the quotient and remainder, q and r, are computed term by term
by computing r̃ = lt(a − qb − r) at each step. This works for multivariate division
by deciding whether r̃ should belong to the remainder or the quotient at each step. If
lt(b) | r̃ then we perform this division and obtain a new quotient term. Otherwise, we
obtain a new remainder term. In either case, this r̃ was the leading term of the expression
a − qb − r and now either belongs to q or r. Therefore, In the next step, the old r̃ was
added to either q or r and thus will now cancel itself out, resulting in a new leading term
to be produced from the expression a− qb− r. This new leading term is strictly less (in
the sense of its monomial) than the preceding r̃.

Algorithm 4.2 dividePolynomials(a,b)
a, b ∈ K[x1, . . . , xv], b 6= 0; return q, r ∈ K[x1, . . . , xv] such that a = qb+ r where r is
reduced with respect to the Gröbner basis {b}.

1: q := 0; r := 0
2: while (r̃ := lt(a− qb− r)) 6= 0 do
3: if lt(b) | r̃ then
4: q := q + r̃/lt(b)
5: else
6: r := r + r̃

7: end
8: return (q, r)

60 Chapter 4. Polynomial Arithmetic

Proposition 4.2 Algorithm 4.2 terminates and is correct.

Proof: Let K be a field and a, b ∈ K[x1, . . . , xv]. If deg(b) = 0 holds, then the divisibility
test on line 3 always passes, all generated terms go to the quotient, and we get have a
remainder of zero throughout the algorithm. Essentially, this is a scalar multiplication
by b−1. Then of course r = 0 is reduced and we are done.

We initialize q, r = 0. It is enough to show that for each iteration of the loop, the
degree of r̃ strictly decreases. It follows from the axioms of a term order that r̃ becomes
zero after finitely many iterations.

From now on, we assume deg(b) > 0. We denote the values of the variables of
Algorithm 4.2 on the i-th iteration by superscripts. For each i, depending on whether
or not lt(b) | r̃(i) holds, we have two possibilities: (1) Q` = r̃(i)/B1, where Q` is a new
quotient term; or (2) Rk = r̃(i), where Rk is a new remainder term. Notice in case 1 we
update the quotient term so r(i+1) = r(i). In case 2 we update the remainder term so
q(i+1) = q(i). Suppose that r̃(i) has just been used to compute a term of q or r, and we
now look to compute r̃(i+1). Depending on whether or not lt(b) | r̃(i) we have:

Case 1: lt(b) | lt(a− q(i)b− r(i)) and Q` = r̃(i)/B1

r̃(i+1) = lt(a− q(i+1)b− r(i+1)) = lt(a− ([q(i) +Q`]b)− r(i+1))

= lt(a− ([q(i) +Q`]b)− r(i))

= lt(a− (q(i)b+Q`b+ r(i)))

= lt(a− (q(i)b+ r(i) + (r̃(i) − r̃(i)) +Q`b))

= lt(a− (q(i)b+ r(i) + r̃(i) +Q`b− r̃(i)))

= lt(a− (q(i)b+ r(i) + r̃(i) +Q`(b−B1))

= lt([(a− q(i)b− r(i))− r̃(i)]− [Q`(b−B1)])

< lt(r̃(i)) = r̃(i)

In the second last line notice that, since r̃(i) = lt(a − q(i)b − r(i)), then their difference
must have a leading term strictly less than r̃(i). Also, the expression Q`(b − B1) has
leading term Q`B2 which is strictly less than r̃(i) = Q`B1, by the ordering on the terms
of b. Hence r̃(i+1) is strictly less than r̃(i).

Case 2: lt(b) - lt(a− q(i)b− r(i)) and Rk = r̃(i)

r̃(i+1) = lt(a− q(i+1)b− r(i+1)) = lt(a− q(i)b− (r(i) +Rk))

= lt((a− q(i)b− r(i))− r̃(i))

< lt(r̃(i)) = r̃(i)

Similarly, r̃(i) = lt(a− q(i)b− r(i)), thus their difference must have a leading term strictly
less than r̃(i).

4.3. Division 61

The loop therefore terminates. The correctness is implied by the condition that
r̃ = 0 at the end of the loop together with the fact that the all of the terms in r satisfy
the condition that lt(b) - Rk by construction. ut

The multivariate division algorithm is essentially just polynomial multiplication in
the form of q · b and polynomial subtraction. We can then use a heap to keep track of
this quotient-divisor product. However, this must be treated as a special case of heap
multiplication. The major difference from multiplication, where all terms of both factors
are known from the start, is that q is computed as the algorithm proceeds, which forces q
to be the multiplier and b the multiplicand. In terms of the wording of the multiplication
algorithm, we distribute q over b, producing “streams” which are formed from a single
term of q, and the head of the steam moves along b. By having q in this position, it
becomes relatively easy to add new streams as new terms of q are computed. One crucial
difference is that each stream does not start with Q`B1. Rather, the steam begins at
Q`B2 since the product term Q`B1 is cancelled out by construction.

The management of the heap to compute the product qb uses several of the functions
described for Algorithm 4.1. Namely, heapPeek(), heapInsert, and heapExtract().
However, heapExtract() is modified slightly from its definition in multiplication. It
removes the top element of the heap and inserts back the next element of the stream
(if there is a next) from which the top element came. In this algorithm we use δ to
be the exponent of the top term in the heap of q · b. If the heap is empty, we let
δ = (−1, 0, . . . , 0), which will be less than any exponent of any polynomial term on
account of the first element being −1. We therefore abuse notation and write δ = −1 for
an empty heap.

Algorithm 4.3 heapDividePolynomials(a,b)

a, b ∈ K[x1, . . . , xv], a =
∑na
i=1 aiX

αi =
∑na
i=1 Ai, b 6= 0 =

∑nb
j=1 bjX

βj =
∑nb
j=1Bj ;

return q, r ∈ K[x1, . . . , xv] such that a = qb+ r where r is reduced with respect to the
Gröbner basis {b}.

1: (q, r, l) := 0
2: k := 1
3: while (δ := heapPeek()) > −1 or k ≤ na do
4: if δ < αk then
5: r̃ := Ak
6: k := k + 1
7: else if δ = αk then
8: r̃ := Ak − heapExtract()
9: k := k + 1
10: else
11: r̃ := − heapExtract()

12: if B1 | r̃ then
13: ` := `+ 1
14: Q` := r̃/B1

15: q := q +Q`
16: heapInsert(Q`, B2)
17: else
18: r := r + r̃

19: end
20: return (q, r)

62 Chapter 4. Polynomial Arithmetic

Proposition 4.3 Algorithm 4.3 terminates and is correct.

Proof: Let K be a field and a, b ∈ K[x1, . . . , xv] with deg(b) > 0. If b ∈ K then
this degenerative case is simply a scalar multiplication by b−1. And proceeds as in
Proposition 4.2. Then r = 0 is reduced and we are done.

We initialize q, r = 0, k = 1 (index into a), ` = 0 (index into q), and δ = −1 (heap
empty condition) since the heap is initially empty. The key modification of Algorithm 4.2
to reach Algorithm4.3 is to use terms of qb from the heap to compute r̃ = lt(a− qb− r).
This requires tracking three cases: (1) r̃ is an uncancelled term of a; (2) r̃ is a term of
the difference (a− r)− (qb); and (3) r̃ is a term of −qb such that all remaining terms of
a− r are smaller in the term order.

Let akX
αk = Ak be the greatest uncancelled term of a. Then, the three cases

correspond to conditions on the ordering of δ and αk. The term r̃ is an uncancelled term
of a (case 1) either if the heap is empty (indicating that no terms of q have yet been
computed or all terms of qb have been extracted), or if δ > −1 but δ < αk. In either of
these two situations δ < αk holds and r̃ is chosen to be Ak. The term r̃ is a term of the
difference (a− r)− (qb) (case 2) if both Ak and the top term in the heap have the same
exponent vector (δ = αk). Lastly, r̃ is a term of −qb (case 3) whenever δ > αk holds.

Algorithm 4.3 uses this observation to compute r̃ by adding conditional statements
to compare the components of δ and αk. Terms are only extracted from the heap when
δ ≥ αk holds, and thus we “consume” a term of qb. Simultaneously, when a term is
extracted from the heap, the next term from the given stream, if there is one, is added
back to the heap (defined behaviour of heapExtract()). The updating of q and r with
the new leading term r̃ is almost identical to Algorithm 4.2, except that for when we
update the quotient, was also initialize a new stream with Q` in the multiplication of q ·b.
This stream is initialized with a head of Q`B2 because Q`B1, by construction, cancels a
unique term of the expression a− qb− r.

In all three cases, either the quotient is updated or the remainder is updated. By
Proposition 4.2, together with the case discussion of δ and αk, the leading term of a−qb−r
is strictly decreasing for each loop iteration. ut

Using the same assumptions as multiplication, we can analyze the cache complexity
of Algorithm 4.3. However, since in our sparse representation the dividend and divisor
are not parameterized by their degrees, then the number of terms which will appear in
the quotient and remainder are not known. We denote the number of terms which will
result in q and r together as N in order to estimate the cache complexity without any
other assumptions on dividend or divisor. For division, cache misses occur by:

(i) iterating through a,
(ii) iterating through b,

(iii) iterating through q and r, and
(iv) heap element accesses through insertion and extraction.

4.3. Division 63

Notice that a is not operated on as part of the heap. Hence, terms of a may fully be
evicted from the cache by the heap operations. This is unlikely due to the relatively
small encoding of the heap, but in the worst case each access to Ak in the algorithm will
result in a miss. Hence, the number of cache misses from iterating through a is O(na).
Iterating through r is similar, leading to O(N) cache misses in the worst case. The size
of the quotient dictates the size of the heap in division and the number of extractions
is equal to the size of the quotient plus the size of the remainder. Hence, the number
of cache misses as a result of heap operations is O(3 lg(N)N/L). We have a factor of 3
as each extract automatically performs another insert along with the explicit insert for
each new quotient term. Assuming a cache size of Z ≥ 3L, the number of cache misses
for heapDividePolynomials is:

O

(
1 +

3 lg(N)N

L
+ na +N

)
Assuming the heap fully fits in cache, this simplifies the expression, removing the factor
added by the heap operations, but adding O(3nb/L) now for iterating through b.

O

(
1 +

3nb
L

+
3na
L

+N

)
N still appears without a denominator because, in the worst case, each iteration of the
loop appends to the opposite of q and r from which was operated on in the previous
iteration. This could cause a cache miss each time.

4.3.1 Implementation

Division is essentially a direct application of multiplication. We again use heaps, with
all of its optimizations, as presented in Section 4.2.1. There is little to add in terms of
optimizations apart from those already mentioned. But, we do note the following detail
on memory allocation and re-allocation which is specific to division.

Division differs from multiplication where instead of producing the product terms
of the two input operands, we must produce product terms between the divisor and the
continually updating quotient. This poses problems for memory management since we do
not know ahead of time the sizes of the quotient or remainder. In multiplication we are
able to pre-allocate na · nb space for the product because that is the maximum number
of product terms. The indeterminate number of quotient and remainder terms does not
allow for such one-time allocation and we must continually check for producing more
terms than the number for which we have allocated space. We begin by allocating na
space for the quotient and remainder, as generally the dividend is larger than the divisor.
Then, if more terms are produced than we have currently allocated for, we double the
current allocation. Doubling the capacity during reallocation is a common technique for
data structures in order for the re-allocation cost be amortized away [70, Sections 1.3,1.4].

64 Chapter 4. Polynomial Arithmetic

Whenever we reallocate space for the quotient we also reallocate space for the same
number of terms in the heap. Recall that the maximum number of terms in the heap
is equal to the number of quotient terms (the left-hand operand in the multiplication,
as we are distributing quotient terms over the divisor in the multiplication). So, this
memory allocation for the heap is safe, in the sense that the heap will never overflow
that allocation. The performance benefits are much like multiplication where the heap
was precisely the maximum size possible, na; the code does not need to check for overflow
on each insert into the heap as it is guaranteed to have enough space.

4.3.2 Experimentation

Much like multiplication, we compare our optimized implementation of the heap-based
polynomial division against that of Maple. The set up is the same, using number of
terms, coefficient bound, and sparsity as defined for the multiplication experimentation
(Section 4.2.2). We provide benchmarks for both polynomial division over the integers
(with monic divisor) and polynomial division over the rational numbers, Figures 4.8 and
4.9, respectively. In these benchmarks we use increasing sizes of dividend and divisor
along with various amounts of sparsity.

In either case, it is important to note their odd shape. It is clearly not a smooth
increase in running time with increasing input size (although trends are clearly evident).
The reasoning for this is because our dividend and divisor are sparse. Polynomial division
results in quotients and remainders which are much more dense than their producing
dividends and divisors. This is clear from a simple example like (x10000 − 1)/(x − 1)
where the resulting quotient has 10000 terms. Since we use randomly generated sparse
polynomials, degrees of the quotients and remainders can vary by a significant amount
within a fixed number of terms for the dividend and divisor. A polynomial in 200 terms
with a sparsity of 15 has a much lower degree than a polynomial in 200 terms with a
sparsity of 30. Therefore, increased sparsity is able to create higher degree quotients and
remainders.

The main trend which should be noticed is the large gap between our implemen-
tation and Maple’s, with ours being the distinctly faster version. The two algorithms
diverge rapidly in their running time as polynomial size and sparsity increases. Speed-up
factors upwards of 6 is evident with only moderately sized inputs. Evidently, the more
sparse the polynomial the longer the computation. Again, this is caused by the quotient
and remainder densifying. As sparsity increased, Maple performed increasingly worse.
Likely, this is due to poor memory management, often reallocating and moving data as
the quotients and remainders are produced.

4.3. Division 65

200 400 600 800 1,000
0

1

2

3

4

5

6

Number of Dividend Terms (n)

R
u
n
n
in

g
T

im
e

(s
)

Z[x1, x2, x3] Division
Running Time vs Number of Terms

Maple, 30 BPAS, 30

Maple, 15 BPAS, 15

Maple, 2 BPAS, 2

Figure 4.8: Comparing division of integer polynomials. The number of variables is fixed at 3, and the
coefficient bound at 128. The number of terms in the divisor is n/2. The number of terms in the

dividend vary on the x-axis, while the sparsity varies as noted in the legend.

50 100 150 200 250 300
0

20

40

60

80

100

120

Number of Dividend Terms (n)

R
u
n
n
in

g
T

im
e

(s
)

Q[x1, x2, x3] Division
Running Time vs Number of Terms

Maple, 30 BPAS, 30

Maple, 15 BPAS, 15

Maple, 2 BPAS, 2

Figure 4.9: Comparing division of rational number polynomials. The number of variables is fixed at 3,
and the coefficient bound at 128. The number of terms in the divisor is n/2. The number of terms in

the dividend vary on the x-axis, while the sparsity varies as noted in the legend.

66 Chapter 4. Polynomial Arithmetic

4.4 Pseudo-Division

The pseudo-division algorithm is an essentially univariate operation. Therefore, we de-
note polynomials and terms in this section as being elements of D̃[x2, . . . , xv][x1] = D[x]
for an arbitrary integral domain D̃. It is important to note that while the algorithms and
discussion in this section are specified for univariate polynomials they are, in general,
multivariate polynomials.

Pseudo-division can really be thought of as a fraction-free division: rather than
dividing a by h = lc(b) for each term of the quotient q, it multiplies a by h in order to
ensure that the polynomial division can occur without being concerned with limitations
of the base ring. In the definition of pseudo-division, Definition 2.3, it states that at the
end of the operation, a should be multiplied by hdeg(a)−deg(b)+1. However, this is rather
coarse. Really, if the quotient ends up with ` terms, then the result need only satisfy
h`a = qb+r. This is because we multiply the dividend by h once per division step that is
actually performed. There is one such division step per term in the quotient. Of course,
if all terms of the dividend and divisor are non-zero, and therefore they are dense, then
` = deg(a)−deg(b)+1. But this equality is not strict if the operands are sparse. Rather,
` ≤ deg(a)− deg(b) + 1. We call this variation where ` is less, a lazy pseudo-division.

Using the heap-optimized division algorithm, we propose a new algorithm for lazy
(sparse) pseudo-division. In this case, rather than computing term-by-term in the multi-
variate sense, we compute term-by-term in the univariate sense. Thus, the product terms
in the heap tracking the product q · b are elements of D = D̃[x2, . . . , xv], and therefore
actually multivariate polynomials.

An important consequence of pseudo-division being univariate is that all of the
quotient terms are computed first and then all of the remainder terms are computed.
This is because we can always carry out a pseudo-division step provided that deg(b) ≤
deg(lt(h`a − qb)), where lt(h`a − qb) is the equivalent of r̃ from Algorithm 4.2 when
r = 0. Thus, we adopt the same symbol for it in Algorithm 4.4 which is the extension of
Algorithm 4.2 to pseudo-division. The are only two differences between these algorithms.
The first is that each time we compute a new pseudo-quotient term we do so as r̃/xγ,
where γ = deg(b) (fraction free division), rather than r̃/B1 = r̃/(hxγ) as before. The
second difference, and the reason why we can do this simplified division with r̃, is that we
add a factor of h to both a and q at each division step, as specified by the pseudo-division
definition.

The division algorithm (Algorithm 4.2) carries over with only minor changes required
for proper accounting of the factors of h. This enters in two places: (1) each time a
term of a is used, we must multiply the current term Ak of a by h`, where ` is the
number of quotient terms computed so far; (2) each time a quotient term is computed
we must multiply all of the previous quotient terms by h to ensure that h`a = qb + r
will be satisfied. This latter condition introduces an additional consideration for heap
management, namely that rather than storing terms of qb, we must store pointers to

4.4. Pseudo-Division 67

terms of q and b, since the terms of q will change (by factors of h) as new quotient terms
are introduced. No special accounting is needed for the remainder terms because they
are all computed after the quotient has been computed and we are done multiplying by
factors of h.

Algorithm 4.4 pseudoDividePolynomials(a,b)
a, b ∈ D[x], b 6= 0; return q, r ∈ D[x] and ` ∈ N such that h`a = qb + r, with
deg(r) < deg(b).

1: (q, r, `) := 0
2: h := lc(b); γ = deg(b)
3: while (r̃ := lt(h`a− qb− r)) 6= 0 do
4: if xγ | r̃ then
5: q := hq + r̃/xγ

6: ` := `+ 1
7: else
8: r := r + r̃

9: end
10: return (q, r, `)

Proposition 4.4 Algorithm 4.4 terminates and is correct.

Proof: Let D be an integral domain and a, b ∈ D[x] with γ = deg(b) > 0. If deg(b) = 0,
then the divisibility test on 4 always passes, all generated terms go to the quotient, and
we get a remainder of zero throughout the algorithm. Essentially this is a meaningless
operation. q becomes b`−1a and the formula holds as r = 0 along with the convention
that deg(0) = −∞.

We initialize q, r, ` = 0. It is enough to show that for each iteration of the loop, the
degree of r̃ strictly decreases. Since the degree of r̃ is finite, r̃ is zero after finitely many
iterations.

We denote the values of the variables of Algorithm 4.4 on the i-th iteration by
superscripts. For each i, depending on whether or not xγ | r̃(i) holds, we have two
possibilities: (1) Q` = r̃(i)/xγ, where Q` is a new quotient term; or (2) Rk = r̃(i), where
Rk is a new remainder term. Notice that in case 1 we update the quotient term so
r(i+1) = r(i), In case 2 we update the remainder term so q(i+1) = q(i). Suppose that r̃(i)

has just been used to compute a term of q or r, and we now look to compute r̃(i+1).
Depending on whether or not xγ | r̃(i) we have:

68 Chapter 4. Polynomial Arithmetic

Case 1: xγ | lt(h`a− q(i)b− r(i)) and Q` = r̃(i)/xγ

r̃(i+1) = lt(h`+1a− q(i+1)b− r(i+1)) = lt(h`+1a− ([hq(i) +Q`]b)− r(i+1))

= lt(h`+1a− ([hq(i) +Q`]b)− r(i))

= lt(h`+1a− (hq(i)b+Q`b)− r(i))

= lt(h`+1a− [hq(i)b+ (hr̃(i) − hr̃(i)) +Q`b]− r(i))

= lt(h`+1a− [hq(i)b+ hr̃(i) +Q`(b− hxγ)]− r(i))

= lt(h`+1a− [hq(i)b+ hr̃(i) +Q`(b−B1)]− r(i))

= lt(h[h`a− q(i)b− r̃(i)]−Q`(b−B1)− r(i))

= lt(
(
h[h`a− q(i)b− r̃(i)]− r(i)

)
−Q`(b−B1))

< lt(r̃(i)) = r̃(i).

In the second last line notice that, since r̃(i) = lt(h`a − q(i)b − r(i)) and h ∈ D, then we
can ignore h for the purposes of choosing a term with highest degree and we have that
lt(h`a − q(i)b − r(i) − r̃(i)) < lt(r̃(i)). Also, the expression Q`(b − B1) has leading term
Q`B2 which is strictly less than r̃(i) = Q`x

γ, by the ordering of the terms of b. Hence
r̃(i+1) is strictly less than r̃(i).

Case 2: xγ - lt(h`a− q(i)b− r(i)) and Rk = r̃(i)

r̃(i+1) = lt(h`a− q(i+1)b− r(i+1)) = lt(h`a− q(i)b− (r(i) +Rk))

= lt((h`a− q(i)b− r(i))− r̃(i))

< lt(r̃(i)) = r̃(i)

Similarly, r̃(i) = lt(h`a−q(i)b−r(i)), thus their difference must have a leading term strictly
less than r̃(i).

The loop therefore terminates. The correctness is implied by the condition that r̃ = 0
at the end of the loop. The condition deg(r) < deg(b) is ensured because the only times
terms are added to the remainder is when xγ - r̃ holds, that is, until deg(h`a−qb) < deg(b)
holds. ut

Heap-optimization of Algorithm 4.4 proceeds in much the same way as for division.
The only additional consideration required for Algorithm 4.5 is the accounting for factors
of h in the computation of lt(h`a − qb − r). This only requires adding as many factors
of h to Ak that have been added to the quotient up to the current iteration. Since `
terms have been added to q, we multiply Ak by h` each time we use one of the terms.
Additional factors of h are added when the previous quotient is multiplied by h prior to
the computation of the next quotient term. Other than this, the shift from Algorithm 4.4
to Algorithm 4.5 follows the analogous shift between Algorithms 4.2 and 4.3 exactly. We
therefore have the following:

4.4. Pseudo-Division 69

Algorithm 4.5 heapPseudoDividePolynomials(a,b)

a, b ∈ D[x], a =
∑na
i=1 aix

αi =
∑na
i=1 Ai, 0 6= b =

∑nb
j=1 bjx

βj =
∑nb
j=1Bj ;

return q, r ∈ D[x] and ` ∈ N such that h`a = qb+ r, with deg(r) < deg(b).

1: (q, r, l) := 0
2: h := lc(b); γ := deg(b)
3: k := 1
4: while (δ := heapPeek()) > −1 or k ≤ na do
5: if δ < αk then
6: r̃ := h`Ak
7: k := k + 1
8: else if δ = αk then
9: r̃ := h`Ak − heapExtract()
10: k := k + 1
11: else
12: r̃ := − heapExtract()

13: if xγ | r̃ then
14: q := hq
15: ` := `+ 1
16: Q` := r̃/xγ

17: q := q +Q`
18: heapInsert(Q`, B2)
19: else
20: r := r + r̃

21: end
22: return (q, r, `)

Proposition 4.5 Algorithm 4.5 terminates and is correct.

Proof: Let D be an integral domain and a, b ∈ D[x] with deg(b) > 0. If b ∈ D then this
degenerative case proceeds as in Proposition 4.4. Then r = 0 with deg(r) = −∞ < 0 =
deg(b) and we are done.

Observe that there are two main conditionals (lines 5–12 and 13–20) in the while
loop. Given Proposition 4.4, it is enough to show that the first conditional computes
lt(h`a−qb−r) and the second uses r̃ to add terms to either q or r, depending on whether
or not γ | r̃.

We initialize q, r = 0, k = 1 (index into a), ` = 0 (index into q), δ = −1 (heap empty
condition) since the heap is initially empty. The key modification of Algorithm 4.4 to
reach Algorithm 4.5 is to use terms of qb from the heap to compute r̃ = lt(h`a− qb− r).
This requires tracking three cases: (1) r̃ is an uncancelled term of h`a; (2) r̃ is a term of
the difference (h`a− r)− (qb); and (3) r̃ is a term of −qb such that all remaining terms
of h`a − r have smaller degree. Notice that all of the terms of q are computed before
the terms of r since this is essentially univariate division with respect to the monomials.
Therefore we can ignore r in the sub-expression h`a−r. Thus, computing lt(h`a−qb−r)
in order simply requires computing terms of (h`a− qb) in order.

These three cases for computing r̃ are handled by the first conditional. Let akX
αk =

Ak be the greatest uncancelled term of a. In case 1, either the heap is empty (indicating
that no terms of q have yet to be computed or all terms of qb have been extracted) or if
deg(qb) = δ > −1 but δ < αk. In either situation δ < αk holds and r̃ is chosen to be Ak.
The term r̃ is a term of the difference (h`a − qb) (case 2) if both Ak and the top term

70 Chapter 4. Polynomial Arithmetic

of the heap have the same degree (δ = αk) and r̃ is chosen to be the difference of h`Ak
and the greatest uncancelled term of qb. Lastly, r̃ is a term of −qb (case 3) in any other
situation, that is, δ > αk. Thus, the first conditional computes lt(h`a− qb− r), provided
that the second conditional correctly adds terms to q and r.

The second conditional adds terms to the quotient when xγ | lt(h`a − qb) holds.
Since each new quotient term adds another factor of h, we must first multiply all previous
quotient terms by h. We then construct the new quotient term to cancel lt(h`a − qb)
by setting Q`+1 = lt(h`a − qb)/xγ, as in Algorithm 4.4. Since Q`B1 cancels a term of
(h`a−qb) by construction, then line 18 initializing a new stream with Q`B2 is also correct.
If, on the other hand, xγ - lt(h`a− qb), all remaining r̃ terms are remainder terms, which
are correctly added by line 20. ut

In order to estimate the cache complexity of heapPseudoDividePolynomials, we
must notice that coefficients are, in general, polynomials. Whether they be polynomials
or simple numbers let us denote cache misses as a result of multiplication over D to
be Cm. Then, the cache complexity is much like heapDividePolynomials with the
addition of updating the quotient (q := hq) and multiplying Ak by h`. Again, let N
denote the number of terms in both the quotient and remainder. The number of cache
misses resulting from heap operations is O(3 lg(N)N/L), the number of cache misses for
updating the quotient is O(CmN

2) (the update can occur N times), and the number of
cache misses for multiplying Ak by h` is O(Cmna) (this multiplication occurs na times).
Hence, the number of cache misses for Algorithm 4.5 is:

O

(
1 +

3 lg(N)N

L
+ Cmna + CmN

2

)

4.4.1 Implementation

As we saw in the previous section, the algorithm for division can easily be adapted for
pseudo-division. With only the modification of multiplying the dividend and quotient
by the divisor’s initial, we obtained an algorithm for pseudo-division that efficiently pro-
duces terms in order. However, the implementation between these two algorithms is very
different. In essence, pseudo-division is a univariate operation, viewing the input multi-
variate polynomials recursively. That is, the dividend and divisor are seen as univariate
polynomials over some arbitrary (polynomial) integral domain. Therefore, coefficients
can be, and indeed are, entire polynomials themselves. Coefficient arithmetic becomes
non-trivial. We can make use of the recursive array structure as seen in Section 3.4 in
order to efficiently work with polynomials in this recursive manner.

With the recursive view of a polynomial efficiently implemented, it is then important
to consider efficiency of coefficient arithmetic. As coefficients are now full polynomials
there is more overhead in manipulating them and performing arithmetic. One important
implementation detail is to perform the addition (and subtraction) of like-terms in-place

4.4. Pseudo-Division 71

(Section 4.1). Such combinations occur when computing the leading term of h`a − qb
and when combining like-terms in the quotient-divisor product. In-place addition allows
for the re-use of underlying GMP data. Therefore, performance of in-place addition
compared to out-of-place becomes increasingly better as coefficients grow throughout the
pseudo-division algorithm.

Similarly, the update of the quotient by multiplying by the initial of the divisor,
requires a multiplication of full polynomials. If we wish to save on memory movement we
should perform this multiplication in place. However, notice that, in our recursive rep-
resentation, coefficient polynomials are tightly packed in a continuous array. To modify
them in place would require shifting all following coefficients down the array to make room
for the strictly large product polynomial. To avoid this unnecessary memory movement,
we modify the recursive data structure exclusively for the pseudo-quotient polynomial.
We break the continuous array of coefficients into many arrays, one for each coefficient.
This allows them to grow without displacing the following terms. This representation
is shown in Figure 4.10. At the end of the algorithm, once the quotient has finished
being produced, we collect and compact all of these disjoint polynomials into a single,
packed array. In contrast, the remainder is never updated once its terms are produced.
Moreover, we do not require any recursively viewed operations on the remainder. Hence,
as terms of the remainder are produced, we store them directly in the normal, distributed
representation, avoiding conversion out of the recursive representation and any memory
overhead of the additional recursive array.

3 y2z 6 y2z 4 yz 7 z

3 1 2 2 0 1

Figure 4.10: An example recursive polynomial representation for a pseudo-quotient polynomial. Notice
how the coefficient polynomials are in disjoint arrays, allowing them to grow in-place without affecting

other coefficient polynomials.

Just as with division, the remainder and quotient are of indeterminate size and so
we do not pre-allocate a maximum space for them. We follow the same techniques of
division, continuously doubling the allocated space for either quotient or remainder as
they grow to fill their previously allocated space.

Lastly, our final optimization is common among other sparse pseudo-division al-
gorithms, such as sprem in Maple. We perform a divisibility test between a newly
produced quotient term and the initial of the divisor. If division is exact, we avoid one
multiplication of the quotient with the divisor’s initial, and the newly produced quotient
term is replaced by its quotient calculated by the exact division. This divisibility test is
little overhead as the test usually fails very early. Often, this divisibility test is instead
performed by a GCD calculation in order to always multiply the quotient by the small-
est possible polynomial instead of the full initial of the divisor. However, we note that
multivariate GCD calculations can result in excessive overhead.

72 Chapter 4. Polynomial Arithmetic

4.4.2 Experimentation

Just as in multiplication and division, we proceed to perform benchmarking for pseudo-
division with both rational number and integer polynomials. These experiments are,
again, done using Maple as a comparison point, since Maple has the current leading
implementation of integer polynomial arithmetic [56–59].

We note one slight variation in the terminology of this round of experimentation
compared to that of multiplication or division. In particular, the meaning of sparsity,
coefficient bound, and number of terms has changed. Since pseudo-division is essentially
univariate, the polynomials are defined recursively, belonging to the ring D[x2, . . . , xv][x1].
So, the number of terms means the number of terms of the polynomial with respect to
this recursive representation (essentially the number of distinct values of the exponents
on x1 in the polynomial). Similarly, sparsity is defined in the univariate sense, being the
smallest integer which is greater than the maximum degree difference (with respect to
x1) of any two adjacent terms in the polynomial. Coefficient bound now, in addition to
describing the maximum number of bits needed to encode numerical coefficients of the
base ring, also defines the number of terms in the polynomial coefficients which belong
to D[x2, . . . , xv]. For example, with a coefficient bound of 3 and number of terms to be
10, if distributed out, the polynomial actually has 30 terms.

For both integer polynomials (Figure 4.11) and rational number polynomials (Fig-
ure 4.12) we fix the number of terms in the polynomial and vary sparsity. The importance
for doing this is that our pseudo-division algorithm is particularly concerned with effec-
tively operating with sparse polynomials. The algorithm essentially provides no benefit
when sparsity is low. In those cases, the naive variation (Algorithm 2.2) works just as
well as our heap-based algorithm. Moreover, for a fixed sparsity and increasing number
of terms, the computations become limited by (numerical) coefficient arithmetic (coeffi-
cients grow immense during pseudo-division by repeated multiplication by h).

Thus, the benchmarks provided by varying sparsity more drastically is both impor-
tant and interesting. We note that, since sparsity is defined in the univariate sense, and
we are working over multivariate polynomials, a sparsity of 10 is actually very sparse,
especially so with more variables in the coefficient polynomials. It is clear from the plots
that running times between our algorithm and Maple’s implementation quickly diverge.
For integer polynomials in particular, the running time of Maple is following a nearly
exponential trend as sparsity increases while our implementation is close to linear.

As a comparison point, we also implement an optimized version of the naive pseudo-
division algorithm (Algorithm 2.2). This highlights the benefits gained purely from al-
gorithmic differences as both implementations make use of the same data structure and
optimization techniques. These experiments are highlighted in Figure 4.13, where the
scale of the plot is more conducive to direct comparison.

4.4. Pseudo-Division 73

2 4 6 8 10

0

1

2

3

4

Sparsity (s)

R
u
n
n
in

g
T

im
e

(s
)

Z[x1, x2, x3] Pseudo-Division
Running Time vs Sparsity

Naive

BPAS

Maple

Figure 4.11: Comparing pseudo-division of integer polynomials. The number of variables is fixed at 3,
and the coefficient bound at 3. The number of terms in the dividend is 175, and the number of terms

in the divisor is 50. Sparsity varies on the x-axis.

2 4 6 8 10

0

20

40

60

80

100

Sparsity (s)

R
u
n
n
in

g
T

im
e

(s
)

Q[x1, x2, x3] Pseudo-Division
Running Time vs Sparsity

Naive

BPAS

Maple

Figure 4.12: Comparing pseudo-division of rational number polynomials. The number of variables is
fixed at 3, and the coefficient bound at 3. The number of terms in the dividend is 175, and the number

of terms in the divisor is 50. Sparsity varies on the x-axis.

74 Chapter 4. Polynomial Arithmetic

2 4 6 8 10

10

20

30

Sparsity (s)

R
u
n
n
in

g
T

im
e

(s
)

Q[x1, x2, x3] Pseudo-Division
Running Time vs Sparsity

Naive

BPAS

Figure 4.13: Comparing naive and heap-based pseudo-division of rational number polynomials. The
number of variables is fixed at 3, and the coefficient bound at 3. The number of terms in the dividend

is 175, and the number of terms in the divisor is 50. Sparsity varies on the x-axis.

Beyond randomly generated instances we also compare our implementation with
Maple on specific examples found in the literature. For each example we begin with
a known polynomial system and perform a triangular decomposition on it. We then
pseudo-divide a related polynomial by the main polynomial (highest-ordered) of the
triangular decomposition. That is, the divisor comes the triangular decomposition while
the dividend is some other polynomial. The first example (Example 4.1) [28, Example
7.2] uses (xyz)i as the dividend while the second example (Example 4.2) [13, Example
Rose] uses zi as the dividend. Table 4.2 displays the results for these two examples.
We use the prem command in Maple for computing pseudo-remainder and pseudo-
quotient, comparing it to our own (non-lazy) pseudo-division implementation. Various
values of i are chosen to increase the complexity of the problem and solution. We note the
remarkable difference in memory usage between BPAS and Maple. Our implementation
uses 10-15 times less memory to perform the same operation.

Example 4.1 
x2yz + xy2z + xyz2 + xyz + xy + xz + yz,

x2y2z + xy2z2 + x2yz + xyz + yz + x+ z,

x2y2z2 + x2y2z + xy2z + xyz + xz + z + 1

(4.1)

Example 4.2

7y4 − 20x2,

2160x2z4 + 1512xz4 + 315z4 − 4000x2 − 2800x− 490,

−10080000x4z3 − 28224000x3z3 − 15288000x2z3 − 1978032xz3 − 180075z3 − 23520000x4yz2

−41395200x3yz2 − 26726560x2yz2 − 7727104xyz2 − 852355yz2 + 40320000x6y2z + 28800000x5y2z
+21168000x3y2z + 4939200x2y2z + 347508xy2z + 67200000x5y3 + 94080000x4y3 + 40924800x3 ∗ y3
+2634240x2y3 − 2300844xy3 − 432180y3

(4.2)

4.5. Normal Form and Multi-Divisor Pseudo-Division 75

i BPAS Maple

50 1.80 (0.03GB) 1.77 (0.38GB)

100 26.01 (0.27GB) 43.00 (2.27GB)

150 136.31 (0.96GB) 235.39 (15.47GB)

200 434.35 (2.18GB) 907.18 (33.31GB)

(a) Example 1

i BPAS Maple

50 4.50 (0.03GB) 6.670 (0.60GB)

100 68.78 (0.27GB) 82.66 (4.97GB)

150 327.14 (0.89GB) 387.91 (11.79GB)

200 1011.96 (2.10GB) 1195.51 (20.10GB)

(b) Example 2

Table 4.2: Comparing pseudo-division on examples of triangular decompositions coming from the
literature. Table (a) shows pseudo-division of (xyz)i by the main polynomial of the triangular

decomposition of Example 4.1. Table (b) shows pseudo-division of zi by the main polynomial of the
triangular decomposition of Example 4.2

4.5 Normal Form and Multi-Divisor Pseudo-Division

We mention, briefly, a direct application of our division and pseudo-division algorithms.
Indeed, we claim them to be fundamental and foundation to higher-leveled algorithms.
Such natural extensions exist as normal form with respect to Gröbner bases and multi-
divisor pseudo-division (or more practically, pseudo-division by a triangular set), which
each extend multivariate polynomial division and pseudo-division, respectively.

We saw reduction in the sense of Gröbner bases in Section 2.2.4. Normal form is
one name for the remainder of a polynomial that is reduced with respect to a Gröbner
basis. Since reduction occurs with respect to an arbitrary Gröbner basis, that is, one with
possibly more than one element, our multivariate division algorithm (Algorithms 4.2 and
4.3) would be insufficient. Our multivariate division algorithms use only a single divisor,
while normal form requires dividing by many divisors multiple times. However, just as
the general reduction algorithm is explained by the repeated application of reduction
in one step (Equation 2.1), one can define a normal form algorithm which is simply
repetitive calls to the basic multivariate division algorithm with one divisor. This method
is described in [3] with [3, Algorithm 7] in particular showing a specialized normal form
where the divisors form a triangular set.

In a very similar manner, one can describe pseudo-division with respect to many
divisors simultaneously. This is similar to normal form except that each reduction in one
step is done by the fraction-free pseudo-division instead of the normal multivariate divi-
sion. This process is called multi-divisor pseudo-division or, in specializes cases, pseudo-
division with respect to a triangular set [4]. Practical implementations of pseudo-division
with respect to a triangular set, using single-divisor pseudo-division as the foundational
operation, are provided in [3, Algorithms 6 and 8]

Chapter 5

Symbolic and Numeric Polynomial
Interpolation

There are various flavours of interpolation including nearest-neighbour, linear, polyno-
mial, and trigonometric. However, polynomial interpolation is generally the most useful,
and indeed, “must be considered fundamental” [23, p. 330]. It is useful to both sym-
bolic and numeric computations. From real analysis, the Weierstrass approximation
theorem [5, Theorem 17.7] (also called StoneWeierstrass theorem) tells us that, within
some region, any function continuous in that region can be accurately approximated by
a polynomial. Moreover, polynomials themselves are very easy to work with. Their
derivatives and integrals are themselves polynomials, and are easily computable. Hence,
approximation of a function by a polynomial, and thus polynomial interpolation, is used
most often [18, Chapter 3]. Various forms of polynomial interpolation exist, such as, La-
grange, Newton’s, Hermite, and cubic splines. Lagrange interpolation “is in most cases
the method of choice for dealing with polynomial interpolants” [10, p. 501].

Although Lagrange interpolation is praised analytically, it is traditionally numeri-
cally unstable. However, given the right approaches and algorithms (such as through the
formulas of barycentric interpolation [10]), it is still a viable numerical option. In such
cases, it is even more stable than Newton’s interpolation which has been the preferred
method before improvements to Lagrange were made [23]. Classically, Lagrange interpo-
lation is a univariate interpolation method. In this case, Lagrange is well-behaved and
well-studied, and indeed we will use it as a method for univariate interpolation, and later
for sparse multivariate interpolation (Section 5.3), where univariate interpolation forms
the basis of these algorithms.

Although multivariate interpolation can be done by a generalization of the univari-
ate Lagrange interpolation [26, 67, 68], it is a difficult, troublesome, and “particularly
annoying” [26, p. 1] problem due to numerical issues [23] and limitations on the geomet-
ric configuration of the points being interpolated (see Section 5.2.2). Nonetheless, ideas
from Lagrange interpolation extend to other (dense) multivariate interpolation schemes

76

5.1. Univariate Polynomial Interpolation 77

(Section 5.2).

Indeed, the configuration of the points being interpolated are an important aspect
to consider. Some algorithms (not withstanding geometric limitations) can interpolate
a polynomial where the points and values, (πi, βi), are supplied (see Section 5.2). Other
algorithms [8, 24, 75, 76] require a black-box representation of the underlying function
in order to perform the interpolation using pre-determined (or random) points (see Sec-
tion 5.3). A black-box is some method which, given some point πi, returns the value
of the underlying function at that point. Straight line programs and arithmetic circuit
representations are possible implementations of black boxes [32].

These black-box algorithms require that the values obtained for the underlying func-
tion be exact. In contrast, the values we wish to interpolate may be noisy, especially
when the values come from experimental observations. In such cases, symbolic methods
are not well suited, and hence numerical methods should be employed. In particular,
if the number of observations over-determine the interpolating polynomial (say because
we restrict the degree of the interpolating polynomial), then we have moved from the
problem of interpolation to that of curve fitting. This can often occur in real-world ex-
perimentation. Both the problems of noisy data and over-determined systems can be
solved with the same technique using numerical methods (Section 5.4).

Throughout the following sections we use the following notations. πi are (possibly
multivariate) points which we wish to interpolate. βi are the corresponding values of the
underlying function evaluated at πi. The function resulting from the interpolation, the
interpolant, is denoted by f .

5.1 Univariate Polynomial Interpolation

Univariate polynomial interpolation has long been studied. In Section 2.5 we gave a short
description of various interpolation techniques like Lagrange, Newton’s, and a brute-
force solution to a system of linear equations. Of course, just as with our polynomial
arithmetic, our interpolation implementation uses exact arithmetic (using GMP multi-
precision numbers). Hence, we are not subject to the numerical concerns which often
plague Lagrange interpolation. Because of this, along with the fact that the Lagrange
interpolating polynomial is so simple to obtain directly, we do not bother implementing
Newton’s. We will also note that solving systems of equations exactly is a very slow
process (a sentiment echoed in [23]). Our Lagrange method is an order of magnitude
faster than solving a system of linear equations exactly (see Figure 5.1), even using a
state of the art linear system solver (see Section 5.3).

78 Chapter 5. Symbolic and Numeric Polynomial Interpolation

Recall the Lagrange basis polynomials (Section 2.5.1):

φj(x) =
(x− π1) . . . (x− πj−1)(x− πj+1) . . . (x− πn)

(πj − π1) . . . (πj − πj−1)(πj − πj+1) . . . (πj − πn)

=
m∏
i=1
i 6=j

(x− πi)
(πj − πi)

=
qj(x)

dj

and the Lagrange interpolating polynomial :

f(x) =
m∑
j=1

βjφj(x)

Based on our efficient polynomial representations (Chapter 3) we wish to obtain a
unique distributed polynomial for our interpolant. Our algorithm does so by computing a
distributed form for each φj and efficiently performing the summation See Algorithms 5.1
and 5.2.

An interesting aspect of this algorithm is balancing the arithmetic costs with the
memory costs. There is a lot of repetition among the factors of each of the φj(π) basis
polynomials. Naturally, it makes sense to cache1 these factors instead of computing them
multiple times. This is especially true for the factors in the denominators. Although there
are many such factors, once expanded, they reduce to a single rational number, dj. So,
we pre-compute and cache each dj. To be precise, we actually multiply it by βj to obtain
βj/dj and cache this rational number. This is nice as, after this initial pre-computation,
βj is never needed again. The list of values is iterated exactly once. In contrast, the
list of points must be iterated through n times to compute the factors (πi − πj) for each
possible combination of i and j.

Next, we also construct and cache the n possible degree-1 polynomial factors (factori =
(x−πi)) appearing in the qj polynomials. Of course these factors will each be used n− 1
times, each one per qj polynomial with j 6= i. Hence, the trade-off for memory usage is
worth the computational savings. Moreover, we then only need to iterate through the
list of points once to obtain all of these factors. And at this stage, we no longer need the
list of points either for remainder of the algorithm.

After all of this pre-computation completes, we look to be as efficient as possible with
the use of memory for effective cache usage. We construct f iteratively, and efficiently,

1Cache here is meant in the programmatic sense, where temporary values are stored in temporary
memory during the course of an algorithm instead of recomputing them multiple times.

5.1. Univariate Polynomial Interpolation 79

using our in-place polynomial addition algorithm (Section 4.1):

f (0) := 0

f (1) := f (0) + β1φ1

...

f (i) := f (i−1) + βiφi
...

f := f (n) := f (n−1) + βnφn

We call this in-place addition addPolynomials InPlace.

What remains is to compute the distributed form of each φj by multiplying to-
gether the pre-computed factors (π − πi), i 6= j. Notice that one of the operands of the
multiplication is always a degree-1 polynomial. Hence, we have implemented a specific
algorithm to efficiently multiply a generic polynomial by a univariate polynomial with
degree 1 (Algorithm 5.2) instead of using generic polynomial multiplication. Moreover,
this multiplication by a binomial is done in-place. Since we are accumulating the factors
into a single resulting polynomial (φj) this is only natural, and again, is an effective use
of memory.

Combining all of these aspects together we obtain our Lagrange interpolation algo-
rithm, LagrangeInterpolation, Algorithm 5.1.

Algorithm 5.1 LagrangeInterpolation(πi,βi)
πi, βi ∈ Q, 1 ≤ i ≤ n; returns the unique interpolating polynomial f(x) ∈ Q[x].

#Set-up denominators
1: dj = 1, 1 ≤ j ≤ n
2: for j = 1 to n do
3: for i = 1 to n, i 6= j do
4: dj = dj ∗ (πj − πi)
5: dj =

βj
dj

#Set-up numerator factors
6: for i = 1 to n do
7: factori = (x− πi)

#Produce each qj in turn, reusing p variable, and sum into f
8: f = 0
9: for j = 1 to n do
10: p = 1
11: for i = 1 to n do
12: if i 6= j then
13: prod = multiplyByBinomial InPlace(prod, factori)

14: prod = dj · prod
15: f =addPolynomials InPlace(f, prod)

return f

80 Chapter 5. Symbolic and Numeric Polynomial Interpolation

Algorithm 5.2 multiplyByBinomial InPlace(f ,b)
f ∈ D[x1, . . . , xv], b = cxi + d, c, d ∈ D, 1 ≤ i ≤ n; returns nothing, the result is
computed in-place for f .

1: g = empty polynomial of nf terms
2: for i = 1 to nf do
3: gi = dfi
4: #Note xi · fi is only a simple addition of exponent vectors
5: fi = cxi · fi
6: addPolynomials InPlace(f, g)

Using our LagrangeInterpolation algorithm, we compare it against the brute-
force linear equations solution for various numbers of interpolation points. The Lagrange
method is more than an order of magnitude faster than the linear equations method. We
also compare our implementation against Maple’s CurveFitting:-PolynomialInterpolation
method for univariate interpolation with a monomial basis. Our Lagrange implementa-
tion is also nearly an order of magnitude faster than Maple’s. These results are shown
in Figure 5.1. Note on the plot the y-axis has a log scale.

10 25 40 55 70 85 100 115

10−2

10−1

100

101

Number of points (n)

R
u
n
n
in

g
T

im
e

(s
)

Univariate Interpolation Running Time

Maple

Lagrange

Linear Systems

Figure 5.1: Comparing our LagrangeInterpolation algorithm to the brute-force linear system
solving. For n = 10, 15 Lagrange was too fast to measure. The y-axis has a log-scale.

We conclude with possibilities for yet further improvement. Notice that the compu-
tation of each φj is independent, using read-only access to some cached data elements.
It should be very easy then to compute each φj in parallel. Moreover, under this scheme
we could use parallel reduction [63] in order to effectively sum f using a binary-tree of
partial sums to minimize addition operations.

Nonetheless, this efficient implementation of univariate interpolation will be very
helpful as a starting point for further algorithms. As we will see, the sparse multivariate
interpolation algorithm (Section 5.3) relies heavily on univariate interpolation.

5.2. Dense Multivariate Interpolation 81

5.2 Dense Multivariate Interpolation

We have seen how it is possible to set up a system of linear equations in order to
solve the problem of interpolation (Section 2.5). Using the set of univariate monomi-
als {1, x, x2, x3, . . . } as basis functions, as in (univariate) polynomial interpolation, the
sample matrix becomes a Vandermonde matrix. This same idea can be generalized to
the set of multivariate monomials, assuming the number of variables is known. Such a
set over 3 variables could look like:{

1, x, y, z, xy, xz, yz, xyz, x2y, x2z, xy2, y2z, xz2, yz2, x3, y3, z3, . . .
}

What is important to observe is how many monomials exist in this list even with small
degree. With a maximum (total) degree of 3 there are only 4 univariate monomials.
However, in 3 variables there are 17 such monomials. In general, say there are v vari-
ables, each with maximum partial degree di. Then, the maximum number of v-variable
monomials with respective partial degrees less than or equal to di is

v∏
i=1

(di + 1)

If di = d for all variables, then we obtain a more familiar looking equation: (d+ 1)v.
If one were to consider d as a total degree instead, then the number of multivariate
monomials is

(
v+d
d

)
[22]. In either case, clearly the number of such monomials grows very

large very quickly.

If one were to set up a system of equations for the multivariate monomial basis, the
sample matrix would very quickly grow huge. This is important for two reasons. First,
solving a system of equations requires O(n3) operations [23], n being the dimension of
the matrix. Second, we require n sample points and function values to solve this system.
Evaluating the function may be costly depending on the application and underlying
function. Since the dimension of the sample matrix is given by the number of basis
functions, say n = (d+ 1)v, then we get that solving this system is roughly O((d+ 1)3v).
But, when degrees and number of variables are low, this is not a necessarily horrible
solution.

Therefore, it is by solving a system of linear equations using the multivariate mono-
mials as the basis functions that we arrive at a scheme for dense multivariate interpola-
tion. Other schemes exist, such as [74, Section 14.1], where each variable is interpolated
one after another, by a univariate algorithm. However, this method by solving a single
system of equations is more direct. Moreover, the ideas (and parts of the implementa-
tion) of this dense interpolation scheme will carry over into sparse interpolation, albeit
with many tricks. We then dedicate the remainder of this section to describing our
implementation of linear system solving using exact arithmetic.

Highly optimized libraries exist for solving systems of linear equations exactly [9, 39,
71]. Through comparative benchmarks the Integer Matrix Library (IML) [21] has been

82 Chapter 5. Symbolic and Numeric Polynomial Interpolation

shown to be the current leader for solving systems of arbitrary-precision integers [20]. We
make use of this library to solve the linear systems constructed by dense interpolation.
This library solves systems using the following general scheme:

(1) Convert the input system to a prime field, Z/p2, for a suitably small prime so that
the integer can fit within the mantissa of a floating point number.

(2) Perform numerical linear algebra using BLAS [11].
(3) Reconstruct the solution.

However, this library is limited to working with integer matrices. Thus, for the case
of rational numbers, we must first convert the system of linear equations to one over the
integers. This is a very simple process. Let A ∈ Qn×n, b,x ∈ Qn×1 and C ∈ Zn×n,
d ∈ Zn×1. We compute the least common multiple of the denominators in A and b, dA
and db, respectively, factoring them out as a scalar multiple. We then proceed as follows.

Ax = b

1

dA
Ãx =

1

db
b̃

dbÃx = dAb̃

Cx = d

Notice that our solution vector, x, has not changed. Hence, the solution to this integer
system is the same as the original rational number systems. Indeed, we have only mul-
tiplied by a factor of 1 twice, as dA/dA and db/db. With this scheme for solving rational
number linear systems we can proceed with dense multivariate interpolation for rational
number polynomials.

Before we can construct the linear system, there is one difficulty for multivariate
interpolation not found in univariate interpolation: the choice of (multivariate) monomi-
als. The degree bound – the maximal allowed degree of the interpolant – of a univariate
polynomial interpolant is implicit by the number of data points. That degree is one less
than the number of points. In general, one additional point is needed to interpolate
one additional (partial) degree. For example, to move from x2y to x2y2 one additional
point is needed. However, that same point could be used to move from x2y to x3y. The
number of points is ambiguous, for multivariate monomials for determining the partial
degrees of the interpolant. Rather, explicit degree bounds must be given for each variable
to unambiguously determine the set of (multivariate) monomials to use as the function
basis.

Say we wish to interpolate a polynomial over D[x, y, z] with degree bounds dx = 2,
dy = 1, dz = 1. We can enumerate all monomials with partial degrees less than or equal

2A prime field is simply a field with a finite number of elements. These elements of integers ranging
in value from 0 to p− 1.

5.2. Dense Multivariate Interpolation 83

to these to obtain the set of monomials for the interpolation:{
1, x, y, z, xy, xz, yz, xyz, x2, x2y, x2z, x2yz

}
It is more clear to write these out explicitly as monomials in three variables:{

x0y0z0, x0y1z0, x1y1z0, x1y0z1, x1y1z1, x2y0z0, x2y1z0, x2y0z1, x2y1z1
}

This shows the set up of one row of the resulting sample matrix. Simply, for each point
πi, evaluate that point at each monomial in the set and use that as row i in the sample
matrix.

Given any degree bounds, then we know the number of required point-value pairs
needed to interpolate. Of course, the number of monomials in the function basis (and
thus the size the of the linear system) is given by n =

∏v
i=1(di + 1). So, with degree

bounds, we determine the set of monomials, the size of the linear system, and the number
of required points, in order to set up a sample matrix just as in univariate interpolation.
Using again the example with dx = 2, dy = 1, and dz = 1, we get the linear system:

1 x|π1 y|π1 z|π1 . . . x2yz|π1
1 x|π2 y|π2 z|π2 . . . x2yz|π2
...

...
...

...
. . .

...
1 x|πn y|πn z|πn . . . x2yz|πn



α1

α2
...
αm

 =


β1

β2
...
βn


Assuming the sample matrix is non-singular (and thus n = m), this system can

easily be solved for the coefficients, αi, and an interpolant uniquely constructed. But
what if the sample matrix is singular? From univariate interpolation, we know that
pairwise distinct points πi are sufficient to ensure that the (Vandermonde) matrix be non-
singular [68]. Unfortunately, it is not that simple for this matrices formed by multivariate
monomials, as we will see in Section 5.2.2. But, assuming non-singularity let us discuss
our implementation of dense interpolation and the technique of early termination. The
mechanism used in early termination is also used to handle the non-singularity of the
input matrix.

5.2.1 Implementing Early Termination for Multivariate Inter-
polation

Early termination is the process of terminating an interpolation early, once the interpo-
lating polynomial does not change as more points are “added” to the interpolation [43,
45, 50]. Consider a subset of size k, 2 < k < n, of the input points: {πi | 1 ≤ i ≤ k}. If
an interpolant is found to interpolate these k points, say fk. That is, fk(πi) = βi. Then
it is possible to determine, with high probability, that this interpolant will interpolate
all n points. If fk = fk+1 = · · · = fk+δ then fk = fn with probability which increases

84 Chapter 5. Symbolic and Numeric Polynomial Interpolation

(exponentially, in the univariate case [50, Theorem 2.1]) with respect to δ. To the best of
our knowledge, early termination strategies have only yet been implemented for sparse or
univariate interpolations. In this section we present a simple scheme for early termination
in dense multivariate interpolation.

Notice, that we say points are “added” to the interpolation. This is because in these
existing early termination schemes interpolation is done via a black-box. The algorithm
itself is responsible for choosing points and evaluating the underlying function. This is
not a very general scheme. Sometimes a black-box in unavailable, or sometimes, the
range of possible function evaluation points are from some (unknown) discrete set.

Our algorithm works more generically, working in a sort of producer-consumer pat-
tern. This pattern in common in parallel programming where one thread produces data
an another thread consumes it [54, Chapter 5]. It is also possible that both produce
and both consume. The producer/consumer pattern does not have to be limited to the
context of parallel synchronization. We make use of this pattern for our interpolation.
The producer or driver function is the code supplying points and values, while the con-
sumer or interpolator is our dense interpolation algorithm, accumulating the points and
values. The consumer, in this case, also produces, namely the interpolant. Our interpo-
lation algorithm thus works in a sort of state-based way, remembering all the previously
“added” points. The rough pseudo-code for this early-terminating dense interpolation is
presented in Algorithm 5.3.

Algorithm 5.3 denseInterpolation Driver(dj , πi, βi, δ)
dj ∈ N0, 1 ≤ j ≤ v, v is the number of variables,
πi ∈ Dv , βi ∈ D, 1 ≤ i ≤ n, n >=

∏v
j=1(dj + 1),

δ ≥ 1, the number of points to try in early termination;
returns f ∈ D[x1, . . . , xv] or Failure

1: Interpolator := initializeInterpolator(v, dj)
2: for i = 1 ; i ≤ n ; i++ do
3: addPoint(Interpolator, πi, βi)
4: (fi, valid) := getInterpolant(Interpolator)
5: if valid then
6: #Assuming i+ j ≤ n
7: for j = 1 to δ do
8: if fi(πi+j) 6= βi+j then
9: valid := false

10: if valid then
11: break

12: end
13: if valid then
14: return fi
15: else
16: return Failure

initializeInterpolator is a simple function which just caches the number of
variables and degree bounds for the interpolator’s memory state. addPoint adds a point
to the interpolator for consideration and getInterpolant asks the interpolator to try
and interpolate all points added so far. This function returns a status, representing
whether or not the interpolation succeeded with the i points added so far. The driver
function then tests δ more points to determine if this function still matches the underlying

5.2. Dense Multivariate Interpolation 85

function over more points.

What remains then it so explain how we can “interpolate all points added so far”.
Essentially, the idea is to pretend the degree bounds are less than they are and interpolate
a polynomial in that lower degree. Or, equivalently, choose a subset of the basis functions
to use, explicitly setting the others to be have coefficients of 0. This works well for a
monomial basis where the basis functions have some ordering and can be enumerated
easily. In implementation, this choosing of a subset, works by simply blocking our sample
matrix into an i × i sub-matrix for i points added so far, and an n − i × n − i identity
sub-matrix. Similarly, the vector of values is set so the n− i bottom elements are 0.



φ1(π1) . . . φi(π1)
...

. . .
... 0

φ1(πi) . . . φi(πi)

0 I





α1

...

αi
αi+1

...

αn


=



β1

...

βi
0
...

0


In general, this system can be solved to find an interpolant for only the i points. However,
testing even one extra point is usually enough to rule out false interpolants. For example,
a line can always be used to interpolate two points, but adding a third point usually rules
that out a line as an interpolant immediately. What remains is to deal with singularity
in the sample matrix.

Our algorithm handles this simply by returning false for the valid state in getInterpolant.
Moreover, during the process of attempting to solve a system of equations with a rank-
deficient sample matrix, it is easy to determine the troublesome (linearly dependent)
rows, say from its row echelon form.3 In this case, as new points are added, instead of
reducing the identity sub-matrix and adding a new row, we replace the troublesome rows
with the new input point, hoping to make the matrix non-singular. But why do some
points cause the sample matrix to become singular? This is not a simple question.

5.2.2 The Difficulties of Multivariate Interpolation

By the connection between Vandermonde matrices and univariate polynomial interpola-
tion, we know that the sample matrix, in this case, is non-singular if each point, πi, is
unique. We say that the points π1, . . . , πn are poised for the basis functions φ1, . . . , φn
if the sample matrix produced by these points and functions is non-singular. Similarly
we can say that the points are (multivariate) polynomially poised to mean the points are

3Row echelon form is the form resulting from a Gaussian elimination. That is, sort of an upper
triangular form, where the bottom rows are 0 if the matrix is rank deficient.

86 Chapter 5. Symbolic and Numeric Polynomial Interpolation

posed for the basis functions of (multivariate) monomials. The number of points deter-
mine the number of monomials used, generally by limiting the degree of the monomials.
Recall, that for v variables and a maximum total degree d, there are n =

(
v+d
d

)
mono-

mials. So, n points are polynomially poised means an interpolating polynomial exists
whose degree is at most d.

There are several different theorems which determine if a set of points are polyno-
mially poised. The first is the most succinct but least intuitive.

Theorem 5.1 Given v variables and a maximum total degree of d, the n =
(
v+d
d

)
points,

π1, . . . , πn are polynomially poised if and only if they do not belong to a common algebraic
hypersurface of degree ≤ d [64, Theorem 4.1].

Equivalently, as long as no non-zero polynomial, with degree no more than d, exists
which vanishes at all points, then the points are polynomially poised. That is, there is
no p 6= 0 ∈ R[x1, . . . , xv], deg(p) ≤ d such that p(πi) = 0 for 1 ≤ i ≤ n.

The next theorem is more intuitive and is based on the aptly-called geometric char-
acterization condition (condition GC) for a collection of points.

Definition 5.1 (Condition GC for the points π1, . . . , πn)

For each point πi there exists d distinct hyperplanes pi1, . . . pid such that:

(1) πi does not lie on any of these hyperplanes,
(2) All other points lie on at least one of these hyperplanes.

Written mathematically:

πj ∈
d⋃
`=1

pi` ⇐⇒ i 6= j, 1 ≤ i, j ≤ n

Notice that, in the univariate case, this condition reduces to the fact that all points
must be distinct (since a hyperplane in one dimension is a single point). This corre-
sponds to the result obtained via the singularity of the Vandermonde matrix. Using this
geometric condition we have the following theorem regarding if points are polynomially
poised.

Theorem 5.2 Let Π be the points π1, . . . , πn ∈ Rv. If Π satisfies Condition GC then Π
is polynomially poised for a polynomial of degree ≤ d [22, Theorem 1].

For example, for a 2-dimensional collection of points and a maximum total degree
of 2, the sample points are poised if, for each point, there exists two lines for which all
other points lie on and the selected point does not. Figure 5.2 shows this example, a
collection of points satisfying condition GC for v = 2, d = 2, and n = 6 =

(
v+d
d

)
.

5.2. Dense Multivariate Interpolation 87

1 2 3

1

2

3

x

y

Points satisfying condition GC

Figure 5.2: A collection of points satisfying condition GC. A selected point, and its corresponding
hyperplanes, are highlighted in black.

The idea of geometric characterization can be generalized to hypersurfaces instead of
hyperplanes. We call this the generalized geometric characterization condition (condition
GGC).

Definition 5.2 (Condition GC for the points π1, . . . , πn)

For each point πi there are d distinct hypersurfaces si1, . . . , sid with degrees di1, . . . , did
such that:

(1) πi does not lie on any of these hypersurfaces,
(2) All other points lie on at least one of these hypersurfaces,
(3) di1 + · · ·+ did = d, for 1 ≤ i ≤ n,

where a degree 0 hypersurface is regarded as the empty set. Written mathematically:

πj ∈
d⋃
`=1

si` ⇐⇒ i 6= j, 1 ≤ i, j ≤ n

Again, using this generalized condition, we obtain a generalized theorem regarding
whether or not a collection of points are polynomially poised.

Theorem 5.3 Let Π be the points π1, . . . , πn ∈ Rv. If Π satisfies Condition GGC then
Π is polynomially poised for a polynomial of degree ≤ d [22, Theorem 7].

88 Chapter 5. Symbolic and Numeric Polynomial Interpolation

From the previous three theorems, we can see that choosing polynomially poised
points is not an easy task, nor is it necessarily intuitive. If one performs the interpolation
via a black-box using random points drawn from a large enough set, then the points
will be poised with high probability (as we will see in the next section). But, if using
user-supplied points, say points drawn from some experimental data, then it is likely
the points will be colinear or at least organized in some regular pattern. Clearly, this
regularity will likely cause many points to lay on the same hyperplane/hypersurface,
leading to ill-poised collections of points. This problem is hard to avoid. However, as we
have seen, our early-termination strategy provides an adaptive method for dealing with
troublesome, ill-poised points.

5.2.3 Rational Function Interpolation

It is worthwhile to note that the same techniques of solving linear systems, along with
early termination, as presented in the previous sections, can be adapted to also interpolate
rational functions. A rational function (in x1, . . . , xv over D) is nothing more than a
fraction of polynomials (in x1, . . . , xv over D). To be precise, they are the field of fractions
of D[x1, . . . , xv], D(x1, . . . , xv) = {p/q | p, q ∈ D[x1, . . . , xv]} [32, Section 25.3]. In this
section, we briefly detail one way to extend polynomial interpolation to rational functions.

For interpolating rational functions, one can solve a system of equations similar to
polynomial interpolation. Say we have a rational function:

f(x1, . . . , xv) =
p(x1, . . . , xv)

q(x1, . . . , xv)
,

p(x1, . . . , xv) = α1φ1(x1, . . . , xv) + · · ·+ αm1φm1(x1, . . . , xv),

q(x1, . . . , xv) = αm1+1ψ1(x1, . . . , xv) + · · ·+ αm1+m2ψm2(x1, . . . , xv),

where m1 and m2 are chosen by the degree bounds on each variable (here we allow
different degree bounds to be specified for the numerator p and the denominator q). For
a single point-value pair, say (πi, βi), we can set up the equation

f(πi) =
p(πi)

q(πi)
= βi =⇒ p(πi)− βiq(πi) = 0.

We can perform such a transformation to obtain many linear equations, and then, just
as before, we can set up a system of linear equations for the monomial bases φi and ψj.

5.2. Dense Multivariate Interpolation 89

We denote the point-value pairs as (πi, βi) as usual.

Ax = b

φ1(π1) . . . φm1(π1) −β1ψ1(π1) . . . −β1ψm2(π1)
φ1(π2) . . . φm1(π2) −β2ψ1(π2) . . . −β2ψm2(π2)
φ1(π3) . . . φm1(π3) −β3ψ1(π3) . . . −β3ψm2(π3)
φ1(π4) . . . φm1(π4) −β4ψ1(π4) . . . −β4ψm2(π4)

...
. . .

...
...

. . .
...

φ1(πn) . . . φm1(πn) −βnψ1(πn) . . . −βnψm2(πn)





α1
...

αm1

αm1+1
...

αm1+m2


=



0
0
0
0
...
0


Notice that in this system our right-hand vector, b, is equal to the zero vector, 0. We

no longer have the normal interpolation problem of solving Ax = b. We have a similar
yet distinct problem, solving a homogeneous system of linear equations, Ax = 0. Such
a problem has two solutions: if A has full row rank then there is exactly one solution,
the trivial solution, where x = 0. Otherwise, there are infinitely many solutions [62].
Moreover, since we are interpolating a rational function now instead of a polynomial, it is
always possible to multiply the rational function by 1 = e/e, e ∈ D, to scale the non-zero
coefficients of p and q however we see fit. Therefore, we normalize the denominator, q, by
fixing one of its coefficients equal to 1. This can be accomplished by simply adding a row
to the matrix which is all zeros except for a single 1, with the corresponding right-hand
vector element also equal to 1. This forces our system of equations to be heterogeneous.
As we look to normalize the denominator, we should choose a column corresponding to
one of αm1+1, . . . , αm1+m2 to hold the single non-zero element 1. Say we choose αm1+1 to
be 1, then we get the system of linear equations:

φ1(π1) . . . φm1(π1) −β1ψ1(π1) . . . −β1ψm2(π1)
φ1(π2) . . . φm1(π2) −β2ψ1(π2) . . . −β2ψm2(π2)
φ1(π3) . . . φm1(π3) −β3ψ1(π3) . . . −β3ψm2(π3)
φ1(π4) . . . φm1(π4) −β4ψ1(π4) . . . −β4ψm2(π4)

...
. . .

...
...

. . .
...

φ1(πn) . . . φm1(πn) −βnψ1(πn) . . . −βnψm2(πn)
0 . . . 0 1 . . . 0





α1
...

αm1

αm1+1
...

αm1+m2


=



0
0
0
0
...
0
1


However, it is unfair to fix αm1+1 = 1 as we cannot guarantee that αm1+1 6= 0

in the actual function f (we can only perform this arbitrary scaling for the non-zero
terms of f). Therefore, we actually solve m2 different systems of equations, fixing one
of αm1+j = 1, 1 ≤ j ≤ m2, for each system, obtaining up to m2 different solutions. Of
course, by fixing one of the αj to be 1, the resulting system of equations may become
singular and produce no solution. Of the systems of equations which are non-singular,
their results will be equal up to a scale factor. This is a result of having normalized a
different term in the denominator polynomial q.

It is also possible that the matrix be non-square. Say when n > m1 + m2. Then
the system can be solved in a least-squares sense (see Section 2.5.3). In this case there

90 Chapter 5. Symbolic and Numeric Polynomial Interpolation

will indeed by m2 different solutions, as a curve will always be fit to the data, although
sometimes very poorly. Thus, we accept the solution which produces the minimal residual
(as was defined in Section 2.5.3). The outliers (say when we set αm1+j = 1 when it should
in fact be 0) will have residuals which are clearly unacceptable and much higher than
correct solutions.

5.3 Sparse Multivariate Interpolation

For multivariate polynomial interpolation (in symbolic computations), sparse algorithms
have been the focus for decades [8, 24, 43, 50, 75, 76] and [74, Chapter 14]. Of course, this
is important considering multivariate polynomials grow exponentially with the number
of variables (Section 2.3). Unlike dense interpolation, these algorithms focus on interpo-
lating functions given as black-boxes. That is, they need to determine the value of the
underlying function for arbitrary points. These points may be randomly chosen, such
as in probabilistic methods (Section 5.3.1), or be specific well-chosen points, such as in
deterministic methods (Section 5.3.2).

5.3.1 Probabilistic Method

Zippel’s work [76] presented a very important algorithm for sparse interpolation, influ-
encing many other developments. This algorithm is probabilistic, by the fact that the
resulting interpolant is correct with high probability, due to the randomness of the eval-
uation points chosen. Hence, this algorithm works using a black-box function, where the
underlying function can be evaluated at any point.

Let the desired interpolant be f ∈ K[x1, . . . , xv]. The general idea of this algorithm
is to view the interpolant recursively, as one in K[x2, . . . , xv][x1], and then interpolate
the function as if it was in K[x1], say f1. With this univariate interpolant, view each
of its coefficients as a polynomial in K[x3, . . . , xv][x2] and interpolate another univariate
function as if it was in K[x2] for each coefficient. The resulting polynomial is say f2 ∈
K[x3, . . . , xv][x1, x2]. This process continues for each variable, interpolating one after
the other. We call the step in which variable xi is being interpolated stage i, with the
result of stage i being the polynomial fi. At each step, the size of the support of the
interpolant fi increases monotonically. Moreover, we call the support of fi the skeleton
of stage i, as we are not particularly concerned with the coefficients of stage i < v. The
final interpolation of fv ∈ K[x1, . . . , xv−1][xv] determines the scalar coefficients in K of f .
All earlier interpolations merely determine the support for each variable.

The ability to interpolate polynomial coefficients like this is due to the fact that all
variables of index greater than the one currently being interpolated are evaluated at fixed
points. This is best shown by an example, as seen in [75, Section 4.1].

5.3. Sparse Multivariate Interpolation 91

Consider wishing to obtain the interpolant f ∈ K[x, y, z] whose partial degrees are
at most d for every variable. For ease of discussion, say this interpolant exactly matches
the underlying black-box function. Begin by choosing an initial point, (x0, y0, z0). Using
some univariate interpolation algorithm, one can interpolate f1 = f(x, y0, z0) ∈ K[x] from
the points (x0, y0, z0), . . . , (xd, y0, z0) as inputs to the black-box. This interpolant f1 will
have some support in x. Say f1 = c0x

5 + c1x + c2 for ci ∈ K. Then really, this function
is just f(x, y0, z0) = g0(y0, z0)x5 + g1(y0, z0)x+ g2(y0, z0) for some unknown polynomials
g0, g1, g2 ∈ K[y, z]. Notice that the support of f with respect to x is fully determined as
x5, x1, and x0. We say that all other monomials in x with exponents different from these
are pruned.

The next step is to interpolate polynomials in y. To do this, we could use the
polynomials f(x, y0, z0), f(x, y1, z0), . . . , f(x, yd, z0). Since we know the support of f in x
we know these polynomials would look like:

f(x, y0, z0) = c0x
5 + c1x+ c2

f(x, y1, z0) = c3x
5 + c4x+ c5

f(x, y2, z0) = c6x
5 + c7x+ c8

...

f(x, yd, z0) = c3dx
5 + c3d+1x+ c3d+2

From these ci coefficients, we can consider the function g0 evaluated at d+1 different
points. Namely, g0(y0, z0) = c0, g0(y1, z0) = c3, . . . , g0(yd, z0) = c3d. Similarly for g1 and
g2. Thus, just as we interpolated f1 as a univariate function in x, we could determine
g0, g1, g2 as a univariate functions in y. To determine these coefficients, c3, . . . c3d+2,
we evaluate more points using the black-box to create a system of linear equations,
one system for each f(x, yi, z0). This is much like the dense (univariate) interpolation
algorithm. However, instead of using all monomials from degree 0 to d, we choose only
the monomials present in the support of f with respect to x. Namely, x5, x1, x0. Then,
only 3 additional points are needed instead of d+ 1. For f(x, y1, z0) this system of linear
equations would look like:x5|x1 x1|x1 x0|x1

x5|x2 x1|x2 x0|x2
x5|x3 x1|x3 x0|x3

c3

c4

c5

 =

f(x1, y1, z0)
f(x2, y1, z0)
f(x3, y1, z0)


Thus, we determine the coefficients c3, . . . , c3d+2 using d systems of linear equations,

and then interpolate 3 univariate functions in y. This results in some bivariate function
f2 in x and y. This process is then repeated to recover the variable z and obtain f3 = f .

There are two things of importance to notice with this scheme.

(1) The values x0, x1, . . . , y0, y1, . . . , z0, z1, . . . are all randomly chosen, and
(2) The support obtained from each univariate interpolation is assumed to be correct.

92 Chapter 5. Symbolic and Numeric Polynomial Interpolation

Both of these aspects lead to this algorithm being probabilistic and non-deterministic.
The critical aspect here is the assumption that the support is correct. Consider if f1 =
g0(y0, z0)x5+g1(y0, z0)x+g2(y0, z0)+g3(y0, z0)x3, but, g3(y0, z0) = 0. It would be assumed,
simply from a poor choice of y0 and z0, that f1 had fewer non-zero terms than it actually
did. In such a case, the point (x0, y0, z0) is called a bad starting point. Note that this
phenomenon can occur during the univariate interpolation of any variable, not just from
the initial point. To remedy these troubles, we choose random values from a large enough
set to determine, with high probability, that the assumed support obtained for each
variable is correct. This result comes from the fact that polynomials vanish at relatively
few points compared to the number of possible evaluation points [75, Propositions 9, 12].

The precise probability is given by the following formula [76, Theorem 1]. Consider
the true interpolant of a set of points, f , with v variables, each variable with degree no
more than d, and having t non-zero terms. Then, the algorithm will return the incorrect
result with probability less than ε if the random values chosen as the components of the
randomly chosen initial point come from a set of size at least:

v2dt

ε

If t, or some bound on t, is not known, then one can use the worst case bound t = (d+1)v,
the maximum number of terms in a degree d polynomial in v variables. The number of
variables v appears in the numerator as we must choose v values to make up a single
point.

We note that in Zippel’s presentation, the set must actually be of size: vd2t2/ε
[75, Proposition 10] to account for the possible singularity of the sample matrix due to
randomly chosen points. As we will see in Algorithm 5.4 we remedy this just as was
done in dense interpolation, by replacing rows in the sample matrix that are linearly
dependent. Doing so, there is a higher chance that the matrix will initially be singular,
but arithmetic throughout the entire algorithm is faster since the values come from a
smaller set and are smaller in size (and hence fewer bits are needed to encode them).

Generally, the algorithm proceeds as follows:

(1) Determine the set from which random values are chosen as {1..B} ⊂ Z, B =
v2d(d+ 1)v/ε (or use a bound on t, if known, instead of (d+ 1)v),

(2) Choose an initial point (x10, x20, . . . , xv0),
(3) Interpolate f1(x1, x20, . . . , xv0), and
(4) Perform stage i, for 2 ≤ i ≤ v, to add each xi to the interpolation, determining fi.

We present stage i as Algorithm 5.4 and the complete probabilistic algorithm in
Algorithm 5.5.

5.3. Sparse Multivariate Interpolation 93

Algorithm 5.4 sparseInterpolation StageI(B, di, fi−1, π0, B)
B, the black-box for evaluation, di, the degree bound on variable xi, fi−1, the interpolant of stage
i − 1, π0, the initial point (x10, . . . , xv0), B the size of the random value set; returns fi, the
interpolant of stage i.

1: (xi1, . . . xidi) := pairwise distinct random values in {1..B}.
2: Si−1 := skeleton(fi−1)
3: t := |Si−1|.
4: for j = 1 to di do
5: #Determine coefficients of f(x1, . . . , xi−1, xij , x(i+1)0, . . . , xv0)

6: for k = 1 to t do
7: (y0, . . . , yi−1) := random values in 1..B
8: πk:= (y0, . . . , yi−1, xij , x(i+1)0, . . . , xv0)

9: βk := B(πk)

10: #Solve system of equations to determine coefficients.
11: A ∈ Kt×t has one row for Si−1 evaluated at the first i− 1 components of πk, k = 1..t
12: while rank(A) < t do
13: Repeat lines 7-11, replacing πk, βk that resulted in linearly dependent rows in A.

14: x ∈ Kt×1 = (cjdj , . . . , cjdj+t−1) #the sought coefficients

15: b ∈ Kt×1 = (βk)
16: Solve Ax = b
17: end
18: #Interpolate t polynomials in xi as the coefficients of fi−1

19: for k = 0 to t− 1 do
20: #xi0 is from π0 while c0, . . . , ct−1 are the coefficients of fi−1

21: gk(xi) := univariateInterpolation((xi0, . . . , xidi), (cjt+k, 0 ≤ j ≤ di)).

22: return fi := (Si−1 distributed over coefficient polynomials gk)

Algorithm 5.5 sparseInterpolation(B, di, ε, T)
B, the black-box for evaluation, di, the degree bound on variable xi (1 ≤ i ≤ v), ε, probability
bound for incorrect interpolant, T , bound on number of terms in interpolant; returns f , the
interpolating polynomial.

1: if T < 0 then
2: T :=

∏v
i=1(di + 1)

3: B := v2dT/ε
4: π0 := (x10, . . . , xv0), a randomly chosen starting point with components in {1..B}
5: (x10, . . . , x1d1) := pairwise distinct random values in {1..B}
6: βj := B(x1i, x20, . . . , xv0) for 0 ≤ j ≤ di.
7: f1 :=univariateInterpolation((x10, . . . , x1d1), (β0, . . . , βd1))
8: for i = 2 to v do
9: fi := sparseInterpolation StageI(B, di, fi−1, π0, B)

10: return fv

We summarize the departures our algorithm takes from Zippel’s original probabilistic
algorithm presented in [76] and [75]:

(1) There is no failure to interpolate when one of the linear systems has a singular
matrix. We choose additional points to make it non-singular.

(2) From (1), the components of the randomly chosen initial point can be chosen from
a much smaller sized set, one of size v2dt/ε instead of vd2t2/ε.

(3) Degree bounds are given for each variable, di, instead of a single bound on all partial
degrees, reducing the required number of systems to solve and size of univariate
interpolations.

While probabilistic algorithms can be fast, usually much faster than deterministic
ones, certainty is sometimes needed. In Section 5.3.3 we experiment and look at the

94 Chapter 5. Symbolic and Numeric Polynomial Interpolation

speed of the probabilistic algorithm, while in the next section, we look at transforming
the sparseInterpolation algorithm to be deterministic.

5.3.2 Deterministic Method

In [75, Section 6] and [74, Section 14.3] Zippel briefly proposes a strategy to transform
his probabilistic sparse interpolation algorithm to be deterministic. However, discussion
(or lack thereof) regarding this algorithm in the literature seems to be overshadowed by
another deterministic algorithm presented 2 years prior by Ben-Or and Tiwari [8]. This
work has been used extensively by others [24, 25, 34, 43–45, 50]. But, no attention has
been given to the proposed deterministic variation of Zippel’s algorithm.

Ben-Or and Tiwari’s algorithm is not as straight-forward as Zippel’s probabilistic
one [74]. It relies on linear system solving, finding roots of polynomials, and integer
factorization [8], while Zippel’s uses only linear system solving and generic univariate
interpolation. Moreover, Ben-Or and Tiwari’s algorithm, at least in its original pre-
sentation, only works for integer polynomials [74, Section 14.4]. We do note, however,
that Ben-Or and Tiwari’s algorithm has asymptotically better performance and relies
on fewer black-box evaluations [75, Section 1]. On the other hand, Zippel’s algorithm is
much simpler, and transforming Zippel’s probabilistic algorithm to become deterministic
is relatively straight forward. Here, we discuss this variation, and actually implement it.
The deterministic and probabilistic variations are compared in Section 5.3.3.

There are two sources of probabilistic error in Zippel’s sparse interpolation algorithm.
The first results from randomly choosing evaluation points causing singularity in the
matrix when solving the linear system (Algorithm 5.4, lines 6-11). The second is a
result of assuming the support of the previous stage’s interpolant is correct, where this
is caused by the random choice of the initial point. As we saw in the previous section,
we solved the singularity problem by simply using additional evaluation points. Another
possible solution is to use evaluation points that, by construction, always create a non-
singular sample matrix. This main idea is also used by Ben-Or and Tiwari’s deterministic
algorithm. It is given as Proposition 10 in [74]:

Proposition 5.1 Let p be a polynomial in U [x1, . . . , xv] where U be a unique factoriza-
tion domain with characteristic 0 and p has at most T terms. Then, if π0 is a sequence of
v different primes, then either p is identically 0 or, for one of πj0, 0 ≤ j < T , p(πj0) 6= 0.

Proof: Let mi denote the ith monomial of p evaluated at π0 and ci be the ith coefficient
of p for 1 ≤ i ≤ T . We know the mi are distinct as the components of π0 are different
primes, and so simply evaluating different monomials at that point maintains distinctness
by unique factorization. Then, if p vanished at all of πj0 we could set up the following

5.3. Sparse Multivariate Interpolation 95

system of equations:

c1 + · · ·+ cT = 0

c1m1 + · · ·+ cTmT = 0

c1m
2
1 + · · ·+ cTm

2
T = 0

...

c1m
T−1
1 + · · ·+ cTm

T−1
T = 0

This system forms a Vandermonde matrix inmi. Since eachmi is distinct by construction,
then the matrix is non-singular. Thus, all ci must equal zero, and p is identically 0. The
other option is that p(πj0) 6= 0 for some j. ut

This proposition tells us that a non-zero polynomial cannot vanish at more than
T − 1 points. The same idea can be generalized to a collection of monomials:

Proposition 5.2 For non-zero polynomials p1, . . . , ps ∈ U [x1, . . . , xv] for a unique fac-
torization domain U , where #(p1) + · · · + #(ps) = T , if π0 is a sequence of v different
primes in U , then for some integer j, 0 ≤ j ≤ T − s, all of pi(π

j
0) are non-zero.

Proof: By Proposition 5.1 we know polynomial pi cannot vanish at more than #(pi)− 1
points. Thus polynomials p1, . . . , ps can collectively vanish at no more than T − s points,

s∑
i=1

(#(pi)− 1) =
s∑
i=1

#(pi)− s = T − s,

when the components of those points are different primes. Since πj0, 0 ≤ j ≤ T − s is a
set of T − s+ 1 points whose components are different primes, then for at least one j, all
pi(π

j
0) must be non-zero. ut

We note that in [75, Proposition 15] or [74, Proposition 102] this proposition was
given as requiring T + 1 points, based on polynomial pi vanishing for at most #(pi)
points. But really, it vanishes for at most #(pi)−1 points, leading to this tighter bound.

Using Proposition 5.2 we can derive a method to ensure the skeleton at each stage
of the interpolation is correct. The procedure works inductively, assuming that stage
i − 1 produced the correct skeleton and then produces the correct skeleton for stage i.
Consider the stage i interpolant, fi ∈ U [xi+1, . . . , xv][x1, . . . , xi]. The skeleton of this
interpolant will be incorrect if any coefficient in U [xi+1, . . . xv] vanishes at our choice of
initial point. Thus, one simply performs stage i using many initial points to ensure no
coefficient vanishes. Proposition 5.2 gives us the number of points required, T − s, where
T is be the bound on the number of terms of f = fv and s is number of terms in fi.
Yet, the number of terms in fi has not yet been determined. We can use the number
of terms in fi−1 instead since as the number of terms increases monotonically with each
interpolant.

96 Chapter 5. Symbolic and Numeric Polynomial Interpolation

Of course, this essentially means that each stage of the sparse interpolation algo-
rithm must be done O(T) times, greatly increasing the overall number of steps required
for the algorithm in general. As we will see in Section 5.3.3, this does not necessarily
result in a slower algorithm. But first, we present the modified, deterministic versions of
Algorithms 5.4 and 5.5 as Algorithms 5.6 and 5.7, respectively.

Algorithm 5.6 sparseInterpolation StageI Deterministic(B, di, T , fi−1)
B, the black-box in v variables for evaluation, di, the degree bound on variable xi, T , the bounds on
number of terms in final interpolant, fi−1, the interpolant of stage i−1, returns fi, the interpolant
of stage i..

1: Si−1 := skeleton(fi−1)
2: t := |Si−1|.
3: #Perform stage i a total of T − t+ 1 times to ensure no coefficients vanish
4: for ` = 0 to T − t do
5: #The initial point for this iteration of stage i. pm denotes the mth prime.
6: π0 := (p`i+1, . . . , p

`
v).

7: for j = 0 to di do
8: #Determine coefficients of f(x1, . . . , xi−1, xij , π0)

9: xij := pji .
10: for k = 1 to t do
11: #Use structures points instead of random ones, to force non-singularity.
12: πk:= (pk−1

1 , pk−1
2 , . . . , pk−1

i−1 , xij , π0)

13: βk := B(πk)

14: #Solve system of equations to determine coefficients.
15: A ∈ Kt×t has one row for Si−1 evaluated at the first i− 1 components of πk, k = 1..t
16: x ∈ Kt×1 = (cjdj , . . . , cjdj+t−1), the sought coefficients

17: b ∈ Kt×1 = (βk)
18: Solve Ax = b
19: end
20: #Interpolate t polynomials in xi as the coefficients of fi−1

21: for k = 0 to t− 1 do
22: gk(xi) := univariateInterpolation((xi0, . . . , xidi), (cjt+k, 0 ≤ j ≤ di)).
23: fi` := Si−1 distributed over coefficient polynomials gj .

24: return fi := max
fi`

(#(fi`))

Algorithm 5.7 sparseInterpolation Deterministic(B, di, T)
B, the black-box for evaluation, di, the degree bound on variable xi (1 ≤ i ≤ v), T , bound on
number of terms in interpolant; returns f , the interpolating polynomial.

1: if T < 0 then
2: T :=

∏v
i=1(di + 1)

3: for ` = 0 to T − 1 do
4: #pm denotes the mth prime.
5: π0 := (p`2, . . . , p

`
v)

6: for j = 0 to d1 do
7: x1j := pj1
8: βj := B(x1j , π0)

9: f1` := univariateInterpolation((x10, . . . , x1d1), (β0, . . . , βd1))

10: f1 := max
f1`

(#(fi`))

11: for i = 2 to v do
12: fi := sparseInterpolation StateI Deterministic(B, di, T , fi−1)

13: return fv

5.3. Sparse Multivariate Interpolation 97

5.3.3 Experimentation

Our sparse multivariate interpolation algorithms work essentially by only univariate in-
terpolation and linear system solving. Section 5.1 showed that our implementation of
univariate system solving is quite optimized, and we know the library we use for linear
system solving is also highly optimized (see Section 5.2). These two together form a basis
of implementation for both variations of sparse interpolation algorithms.

Naturally, one thinks of probabilistic algorithms as running faster than deterministic
ones. However, if the probability for error becomes small enough, this may cause large
slow-downs. In the case of probabilistic sparse interpolation, the probability of error
influences the size of the set from which random numbers are drawn. The actual number
of steps in the algorithm does not change with the probability, but the size of the numbers
do, and thus the cost of the arithmetic with them. The size of this set is B = v2dtε−1, with
v being the number of variables, d being the bound on partial degrees in the interpolant,
t being the number of terms in the interpolant, and ε, the maximum probability of
returning an incorrect result. Using the integers {1..B} as the set for random numbers,
we can see these numbers require O(lg(B)) = O(lg(v2dtε−1)) bits to be stored. For
example, consider v = 3, d = 5, t = 20. Then with ε > 10−16 these integers become
multi-precision, greatly slowing down the arithmetic.

In this experimentation we used sparsity to indicate the percentage of zero-terms in
the polynomial, when compared to the maximum possible number of terms. Recall, the
maximum number of terms in a polynomial in v variables each with maximum partial
degree d is (d+1)v. Further, the definition of T varies slightly here from its definition used
in the previous sections. Instead of T being a bound on the number of terms, the bound
is rather calculated as min(#(f) + T, (d + 1)v) where f is the underlying polynomial
being interpolated. Also, if T < 0 then the bound is taken to be (d+ 1)v.

In Figures 5.3a-5.3f we compare the probabilistic and deterministic algorithms vary-
ing many different parameters. Within a single plot we vary the degree bound, d, and
the probability bound, ε. The green surfaces are the running time of the probabilistic
algorithm, while the transparent purple surfaces are the running time of the deterministic
algorithm. For a fixed d, the probabilistic algorithm increases as lg(ε). Notice that both
the probability (ε) axis and running time axis are log-scaled.

Comparing multiple plots, the left column shows the effect of varying the bounds on
the number of terms in the interpolant. If the bound is tight, then the deterministic algo-
rithm performs more favourably than if it is loose. The right column shows the impact of
varying the sparsity of the underlying polynomial (and thus the sparsity of the generated
interpolant). The more dense the interpolant, the more coefficient polynomials must be
computed for each stage of the interpolation. Surprisingly, the probabilistic algorithm
is not always the winner. When the bound on the number of terms in the interpolant
is somewhat tight, and the probability of an incorrect solution is only moderately low
(10−20 or smaller), the deterministic algorithm outperforms the probabilistic.

98 Chapter 5. Symbolic and Numeric Polynomial Interpolation

(a) sparsity = 90%, T = 3 (b) sparsity = 90%, T = 34

(c) sparsity = 90%, T = 20 (d) sparsity = 50%, T = 3

(e) sparsity = 90%, T = -1 (f) sparsity = 10%, T = 3

Figure 5.3: Comparing probabilistic (green surfaces) and deterministic (transparent purple surfaces)
sparse interpolation algorithms. The number of variables is fixed at 3.

4This data is intentionally repeated for visual comparison within the column.

5.4. Numerical Interpolation (& Curve Fitting) 99

5.4 Numerical Interpolation (& Curve Fitting)

In the previous two sections, we studied both dense and sparse polynomial interpolation
using exact arithmetic. For completion, we also present here a numerical flavour of
polynomial interpolation. Simply put, numerical interpolation is sometimes needed in
circumstances where exact arithmetic will fail or is not well suited. These circumstances
occur frequently in practice, with real-world observations and experimentation, where
the precision of a measurement could be limited by the measuring device itself, or more
generally, the measurements are perturbed by some noise.

With such noisy data, exact arithmetic is ill-suited. The noise will be maintained
throughout an algorithm and also appear in the result. The issue with this is that when
two values are intended to be the same, or at least converge toward the same value, they
never will in the presence of noise using exact arithmetic. Numerical methods however
can easily deal with such noise.

Using the same algorithm, numerical methods for interpolation can also solve the
problem of curve fitting. Further still, one algorithm can be used which handles in-
terpolation, curve fitting, as well as rank-deficient systems which can often occur (see
Section 5.2.2). This algorithm is solving a system of linear equations by singular value
decomposition (Section 2.2.6).

Our numerical interpolation scheme is exactly like that of our dense interpolation
(Section 5.2), with the only difference being that the linear system created is solved using
numerical methods instead of exact ones. Indeed, aspects like early termination can also
be employed in the exact same manner. Therefore, we limit the discussion here only the
the differences in solving the linear system.

We begin by setting up a system of linear equations just as in dense interpolation.
We use the multivariate monomials as basis functions. With v variables and partial
degree bounds for each variable, di, 1 ≤ i ≤ v, the set of monomials becomes fixed. Say
this set contains m monomials. Then, from a set of n point-value pairs (πi, βi), we obtain
the system:

Ax = b
φ1(π1) φ2(π1) . . . φm(π1)
φ1(π1) φ2(π2) . . . φm(π2)

...
...

. . .
...

φ1(πn) φ2(πn) . . . φm(πn)



α1

α2
...
αm

 =


β1

β2
...
βn


The solution of this system yields a function, f , which is a linear combination of the
φj functions with coefficients αj. If m = n the function is an interpolant, precisely
interpolating the points. That is, f(πi) = βi. If m > n, then the a solution can still be
obtained in a least-squares sense giving a curve fit rather than an interpolant.

100 Chapter 5. Symbolic and Numeric Polynomial Interpolation

Using orthogonal factorizations, we can easily solve this system in either case: in-
terpolation or curve fitting. For interpolation, simply obtain the factorization and solve
the system directly, by say backward substitution. For the least-squares variation, if
the matrix has full rank, then the system can also be solved directly as the resulting
factorization will have a triangular (or diagonal) factor. QR-factorization is one such
orthogonal factorization method. It is both efficient and numerically stable. However,
it will fail if the original matrix A is column rank deficient, much like the method by
normal equations (Section 2.5.3). Further still, it is susceptible to instability if A is
numerically rank deficient [49]. This presents a problem as our sample matrix can often
be (numerically) rank-deficient in this case of multivariate interpolation.

Singular value decomposition presents a solution. By SVD it is possible to obtain a
least squares solution regardless of the rank of A [23]. Of course, if A is rank deficient,
there is no unique solution to the least squares problem, but by SVD we can compute
the minimum norm solution using the 2-norm.

We sketch, very simply, the method to solve linear least squares by SVD with
A ∈ Rn×m, n ≥ m. Of course, if n = m and rank(A) = n, then we are solving
the interpolation problem and the unique solution will have a residual of 0 (up to any
numerical discrepancies).

x = min
x
||b−Ax||22

= min
x
||b−UDVTx||22

= min
x
||UTb−DVTx||22

Letting VTx = z and UTb = w gives min
z
||w −Dz||22. Since D = diag(σ1, . . . , σm) is a

diagonal matrix, we can easily solve for z. Say rank(D) = r ≤ n. The, we proceed by
zk = wk/σk, k ≤ r. If r < n then we are looking for the minimal norm solution, and we
look to minimize z. Thus, we set zk = 0, r + 1 ≤ k ≤ n. Lastly, we obtain the solution
in x by simply multiplying z by the orthonormal matrix V:

VTx = z

VVTx = Vz

x = Vz

Note that it is possible to solve a system of equations by SVD even for n < m. That is,
fewer point-value pairs than the number of basis functions. We refer the reader to [23,
33, 49] for detailed methods and solutions in the general case.

Chapter 6

Conclusions and Future Work

The basic arithmetic of polynomials, along with their interpolation, are fundamental op-
erations in computer algebra. These operations form the foundations of many more ad-
vanced and applicable algorithms. Of course, algorithms without arithmetic would surely
be impossible. Therefore, we have given highly optimized algorithms and implementa-
tions for sparse polynomial arithmetic and interpolation to provide a high-performance
basis from which more interesting algorithms can be developed. Particular interest is in
polynomial system solving via triangular decompositions and regular chains.

Our concerns for high-performance stem from the knowledge of the current state
of modern computer architectures, including their limitations. The processor-memory
gap is one such limitation that was not of much concern before the 1980s. This issue
can be addressed by optimizing for cache complexity and making smart choices for data
locality in the development of data structures and algorithms. This motivation differs
from some historical algorithms – where historical in the sense of computing technology
is upwards of 50 years – which attempted to minimize the amount of memory used. This
was accomplished by representing polynomials sparsely, without particular concern for
how memory was used. Therefore, by using the classical sparse algorithms as a starting
point, we have improved and adapted them for modern architectures.

In Chapter 3 we presented data structures for encoding sparse polynomials with
particular interest in data locality and cache complexity, displaying results which indicate
the relations between cache complexity and running time. In Chapter 4 we put these
data structures to use as we adapt and optimize Johnson’s sparse arithmetic algorithms
[42] to modern day computers. In this chapter we also propose a new algorithm for sparse
pseudo-division. We prove the algorithm’s correctness and performance by implementing
this algorithm and comparing its results against the classical, yet still well-implemented,
algorithm as well as the commercial implementation within Maple.

Lastly, in Chapter 5, we provide various algorithms and implementation techniques
for polynomial interpolation and curve fitting. In particular, we obtain a highly opti-

101

102 Chapter 6. Conclusions and Future Work

mized univariate Lagrange interpolation algorithm, dense multivariate interpolation, and
probabilistic sparse multivariate interpolation. We also provide an implementation of de-
terministic sparse multivariate interpolation, an algorithm which seems to have only ever
been proposed and never implemented. Thus, we also give detailed experimentation to
compare the probabilistic and deterministic variations, concluding in which situations
which algorithm is optimal. We close this chapter by presenting numerical methods –
a departure from the symbolic computation throughout this thesis – in order to solve
problems with noisy data that strictly exact arithmetic admittedly cannot solve.

With these algorithms and optimal implementations, we look to better the Basic
Polynomial Algebra Subprograms (BPAS) library in its quest for a high-performance
implementation of triangular decomposition via regular chains. Our foundational algo-
rithms will surely support this. But yet more is still possible. We wish to parallelize our
algorithms, as others have attempted [56, 58], in order to gain even more performance
on modern architectures with multi-core processors.

However, the BPAS library could be yet further improved beyond just improving its
already fast arithmetic. One could hope to improve its software engineering aspects as
well as end-user usability. In 1984, Zippel published an open letter in the ACM SIGSAM
Bulletin titled The Future of Computer Algebra [77]. In this letter he praises the algorith-
mic and implementation developments and improvements within the computer algebra
community over that past decade. However, he points to a critical area of improve-
ment. He says, “we must build systems better organized and tuned to solve problems
in particular scientific and engineering domains.” He also notes that the solutions for
this come from “an emphasis on building tools to build systems, rather than building
systems themselves”. While some improvements have been made on this front such as
with Maple, Mathematica and Matlab, these systems are proprietary and expen-
sive. There lacks a strong foundational library for computer algebra upon which other
system can be built. Think of a computer algebra equivalent of the Basic Linear Algebra
Subprograms (BLAS) library [11] – the ubiquitous library for linear algebra.

In mathematical and academic software, one major downfall is the negligence to-
wards software engineering aspects, usability, and end-user considerations. Researchers
are more interested in creating and implementing innovative and complex algorithms.
Software maintainability, robustness, documentation, and ease of use, are all considera-
tions which are historically missing from mathematical and research-based software. Un-
fortunately, this creates a massive barrier between library developers and possible users.
Such barriers are artificially limiting the advancement of other works, both academic
and industrial, which could make use of such new and advanced algorithms. It is our
goal then to continue the progress of high-performance within BPAS using well-designed
algorithms, efficient data structures, and parallelization all the while being proactive in
the software engineering and usability aspects of this mathematical, high-performance
library. The overlap between high-performance computing, mathematics, and software
engineering is a very niche, yet undoubtedly important, area of research that is missing
much needed care and attention.

Bibliography

[1] William W Adams and Philippe Loustaunau. An Introduction to Gröbner Bases.
American Mathematical Soc., 1994.

[2] Mohammadali Asadi, Alexander Brandt, Changbo Chen, Svyatoslav Covanov, Far-
nam Mansouri, Davood Mohajerani, Robert H. C. Moir, Marc Moreno Maza, Ning
Xie, and Yuzhen Xie. Basic Polynomial Algebra Subprograms (BPAS). http://
www.bpaslib.org. 2018.

[3] Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, and Marc Moreno
Maza. “Sparse Polynomial Arithmetic with the BPAS Library (forthcoming)”. In:
Computer Algebra in Scientific Computing (CASC) 2018. Proceedings of the 20th
International Workshop on. Springer. 2018.

[4] Philippe Aubry, Daniel Lazard, and Marc Moreno Maza. “On the theories of tri-
angular sets”. In: Journal of Symbolic Computation 28.1-2 (1999), pp. 105–124.

[5] Robert G. Bartle. The elements of real analysis. 2nd. Wiley New York, 1964.
[6] Thomas Becker and Volker Weispfenning. Gröbner bases, volume 141 of Graduate

Texts in Mathematics. 1993.
[7] Bernhard Beckermann. “The condition number of real Vandermonde, Krylov and

positive definite Hankel matrices”. In: Numerische Mathematik 85.4 (2000), pp. 553–
577.

[8] Michael Ben-Or and Prasoon Tiwari. “A deterministic algorithm for sparse mul-
tivariate polynomial interpolation”. In: Proceedings of the twentieth annual ACM
symposium on Theory of computing. ACM. 1988, pp. 301–309.

[9] L. Bernardin, P. Chin, P. DeMarco, K. O. Geddes, D. E. G. Hare, K.M. Heal, G.
Labahn, J. P. May, J. McCarron, M. B. Monagan, D. Ohashi, and S. M. Vorkoet-
ter. Maple Programming Guide. www.maplesoft.com/documentation_center/
maple2018/ProgrammingGuide.pdf. 2018.

[10] Jean-Paul Berrut and Lloyd N Trefethen. “Barycentric Lagrange interpolation”.
In: SIAM review 46.3 (2004), pp. 501–517.

[11] BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/.
2017.

[12] M. Bodrato and A. Zanoni. “Integer and polynomial multiplication: towards opti-
mal Toom-Cook matrices”. In: ISSAC. 2007, pp. 17–24.

[13] W Boege, Rüdiger Gebauer, and Heinz Kredel. “Some examples for solving systems
of algebraic equations by calculating Groebner bases”. In: Journal of Symbolic
Computation 2.1 (1986), pp. 83–98.

103

http://www.bpaslib.org
http://www.bpaslib.org
www.maplesoft.com/documentation_center/maple2018/ProgrammingGuide.pdf
www.maplesoft.com/documentation_center/maple2018/ProgrammingGuide.pdf
http://www.netlib.org/blas/

104 BIBLIOGRAPHY

[14] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma algebra system
I: The user language”. In: Journal of Symbolic Computation 24.3-4 (1997), pp. 235–
265.

[16] M. Bronstein, M. Moreno Maza, and S.M. Watt. “Generic programming techniques
in ALDOR”. In: Proceedings of AWFS 2007. 2007, pp. 72–77.

[17] Bruno Buchberger and Franz Winkler, eds. Gröbner bases and applications. Vol. 251.
Cambridge University Press, 1998.

[18] Richard L. Burden and J. Douglas Faires. Numerical Analysis. 9th. Brooks/Cole,
Boston, MA, 2011.

[19] Changbo Chen and Marc Moreno Maza. “Algorithms for computing triangular
decomposition of polynomial systems”. In: J. Symb. Comput. 47.6 (2012), pp. 610–
642. doi: 10.1016/j.jsc.2011.12.023. url: https://doi.org/10.1016/j.
jsc.2011.12.023.

[20] Zhuliang Chen and Arne Storjohann. “A BLAS based C library for exact linear
algebra on integer matrices”. In: Proceedings of the 2005 international symposium
on Symbolic and algebraic computation. ACM. 2005, pp. 92–99.

[21] Zhuliang Chen, Arne Storjohann, and Cory Fletcher. IML - Integer Matrix Library.
cs.uwaterloo.ca/~astorjoh/iml.html. 2015.

[22] Kwok Chiu Chung and Te Hai Yao. “On lattices admitting unique Lagrange inter-
polations”. In: SIAM Journal on Numerical Analysis 14.4 (1977), pp. 735–743.

[23] Robert M Corless and Nicolas Fillion. A graduate introduction to numerical meth-
ods. Springer, 2013.

[24] Annie Cuyt and Wen-shin Lee. “A new algorithm for sparse interpolation of mul-
tivariate polynomials”. In: Theoretical computer science.-Amsterdam 409.2 (2008),
pp. 180–185.

[25] Annie Cuyt and Wen-shin Lee. “Sparse interpolation of multivariate rational func-
tions”. In: Theoretical Computer Science 412.16 (2011), pp. 1445–1456.

[26] Carl De Boor and Amos Ron. “On multivariate polynomial interpolation”. In:
Constructive Approximation 6.3 (1990), pp. 287–302.

[27] Richard Fateman. “Comparing the speed of programs for sparse polynomial mul-
tiplication”. In: ACM SIGSAM Bulletin 37.1 (2003), pp. 4–15.

[28] Jean-Charles Faugere, Patrizia Gianni, Daniel Lazard, and Teo Mora. “Efficient
computation of zero-dimensional Gröbner bases by change of ordering”. In: Journal
of Symbolic Computation 16.4 (1993), pp. 329–344.

[29] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. “Cache-oblivious
algorithms”. In: 40th Annual Symposium on Foundations of Computer Science.
1999, pp. 285–297. doi: 10.1109/SFFCS.1999.814600.

[30] Ralf Fröberg. An introduction to Gröbner bases. John Wiley & Sons, 1997.
[31] Mickaël Gastineau and Jacques Laskar. “Trip: a computer algebra system dedi-

cated to celestial mechanics and perturbation series”. In: ACM Communications
in Computer Algebra 44.3/4 (2011), pp. 194–197.

[32] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. 2nd ed. NY, USA:
Cambridge University Press, 2003. isbn: 0521826462.

[33] James E Gentle, Wolfgang Karl Härdle, and Yuichi Mori. Handbook of computa-
tional statistics: concepts and methods. Springer Science & Business Media, 2012.

https://doi.org/10.1016/j.jsc.2011.12.023
https://doi.org/10.1016/j.jsc.2011.12.023
https://doi.org/10.1016/j.jsc.2011.12.023
cs.uwaterloo.ca/~astorjoh/iml.html
https://doi.org/10.1109/SFFCS.1999.814600

BIBLIOGRAPHY 105

[34] Mark Giesbrecht, George Labahn, and Wen-shin Lee. “Symbolic–numeric sparse
interpolation of multivariate polynomials”. In: Journal of Symbolic Computation
44.8 (2009), pp. 943–959.

[35] Alessandro Giovini and Gianfranco Niesi. “CoCoA: a user-friendly system for com-
mutative algebra”. In: International Symposium on Design and Implementation of
Symbolic Computation Systems. Springer. 1990, pp. 20–29.

[36] Gaston H Gonnet and J Ian Munro. “Heaps on heaps”. In: SIAM Journal on
Computing 15.4 (1986), pp. 964–971.

[37] Torbjørn Granlund et al. GNU MP 6.0 Multiple Precision Arithmetic Library. Free
Software Foundation, Inc, 2015.

[38] Andrew D Hall Jr. “The ALTRAN system for rational function manipulation-a
survey”. In: Proceedings of the second ACM symposium on Symbolic and algebraic
manipulation. ACM. 1971, pp. 153–157.

[39] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory.
V. 2.4.3, http://flintlib.org.

[40] Joris van der Hoeven and Grégoire Lecerf. “On the bit-complexity of sparse poly-
nomial and series multiplication”. In: J. Symb. Comput. 50 (2013), pp. 227–254.
doi: 10.1016/j.jsc.2012.06.004. url: https://doi.org/10.1016/j.jsc.
2012.06.004.

[41] Bing-Chao Huang and Michael A Langston. “Practical in-place merging”. In: Com-
munications of the ACM 31.3 (1988), pp. 348–352.

[42] Stephen C Johnson. “Sparse polynomial arithmetic”. In: ACM SIGSAM Bulletin
8.3 (1974), pp. 63–71.

[43] Erich Kaltofen and Wen-shin Lee. “Early termination in sparse interpolation algo-
rithms”. In: Journal of Symbolic Computation 36.3-4 (2003), pp. 365–400.

[44] Erich Kaltofen and Lakshman Yagati. “Improved sparse multivariate polynomial
interpolation algorithms”. In: International Symposium on Symbolic and Algebraic
Computation. Springer. 1988, pp. 467–474.

[45] Erich Kaltofen and Zhengfeng Yang. “On exact and approximate interpolation of
sparse rational functions”. In: Proceedings of the 2007 international symposium on
Symbolic and algebraic computation. ACM. 2007, pp. 203–210.

[46] Anatolii Alekseevich Karatsuba and Yu P Ofman. “Multiplication of many-digital
numbers by automatic computers”. In: Doklady Akademii Nauk. Vol. 145. 2. Rus-
sian Academy of Sciences. 1962, pp. 293–294.

[47] Jyrki Katajainen, Tomi Pasanen, and Jukka Teuhola. “Practical in-place merge-
sort”. In: Nord. J. Comput. 3.1 (1996), pp. 27–40.

[48] Donald E Knuth. The Art of Programming, vol. 2, Semi-Numerical Algorithms.
Addison Wesley, Reading, MA, 1981.

[49] Do Q Lee. Numerically efficient methods for solving least squares problems. 2012.
[50] Wen-shin Lee. “Early termination strategies in sparse interpolation algorithms”.

PhD thesis. Raleigh, NC, USA: North Carolina State University, 2001.
[51] Solomon Lefschetz. Algebraic Geometry. Dover, 2005.
[52] Charles E. Leiserson. “Cilk”. In: Encyclopedia of Parallel Computing. 2011, pp. 273–

288. doi: 10.1007/978-0-387-09766-4_289. url: https://doi.org/10.1007/
978-0-387-09766-4%5C_289.

http://flintlib.org
https://doi.org/10.1016/j.jsc.2012.06.004
https://doi.org/10.1016/j.jsc.2012.06.004
https://doi.org/10.1016/j.jsc.2012.06.004
https://doi.org/10.1007/978-0-387-09766-4_289
https://doi.org/10.1007/978-0-387-09766-4%5C_289
https://doi.org/10.1007/978-0-387-09766-4%5C_289

106 BIBLIOGRAPHY

[53] Francois Lemaire, Marc Moreno Maza, and Yuzhen Xie. “The RegularChains li-
brary in MAPLE”. In: ACM SIGSAM Bulletin 39.3 (2005), pp. 96–97. doi: 10.
1145/1113439.1113456. url: http://doi.acm.org/10.1145/1113439.1113456.

[54] Calvin Lin and Lawrence Snyder. Principles of parallel programming. Pearson, 2009.
[55] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B.

Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-
taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-
dregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo,
Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. “SymPy:
symbolic computing in Python”. In: PeerJ Computer Science 3 (Jan. 2017), e103.
issn: 2376-5992. doi: 10.7717/peerj-cs.103. url: https://doi.org/10.7717/
peerj-cs.103.

[56] M. B. Monagan and R. Pearce. “Parallel sparse polynomial multiplication using
heaps”. In: ISSAC. 2009, pp. 263–270.

[57] Michael B. Monagan and Roman Pearce. “Sparse polynomial division using a
heap”. In: J. Symb. Comput. 46.7 (2011), pp. 807–822. doi: 10.1016/j.jsc.

2010.08.014. url: https://doi.org/10.1016/j.jsc.2010.08.014.
[58] Michael Monagan and Roman Pearce. “Parallel sparse polynomial division using

heaps”. In: Proceedings of PASCO 2010. ACM. 2010, pp. 105–111.
[59] Michael Monagan and Roman Pearce. “Polynomial division using dynamic arrays,

heaps, and packed exponent vectors”. In: CASC 2007. Springer. 2007, pp. 295–315.
[60] Michael Monagan and Roman Pearce. “The design of Maple’s sum-of-products and

POLY data structures for representing mathematical objects”. In: ACM Commu-
nications in Computer Algebra 48.3/4 (2015), pp. 166–186.

[61] Harvey Motulsky and Arthur Christopoulos. Fitting models to biological data using
linear and nonlinear regression: a practical guide to curve fitting. Oxford University
Press, 2004.

[62] Ferrante Neri et al. Linear algebra for computational sciences and engineering.
Springer, 2016.

[63] J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable Parallel Programming
with CUDA”. In: Queue 6.2 (2008), pp. 40–53. issn: 1542-7730.

[64] Peter J Olver. “On multivariate interpolation”. In: Studies in Applied Mathematics
116.2 (2006), pp. 201–240.

[65] Gert-Martin Pfister, Gerhard Greuel, and Hans Schonemann. “Singular-A com-
puter algebra system for polynomial computations”. In: Symbolic Computation and
Automated Reasoning: The CALCULEMUS-2000 Symposium. AK Peters/CRC Press.
2001, p. 227.

[66] Harald Prokop. “Cache-Oblivious Algorithms”. MA thesis. Cambridge, MA: Mas-
sachusetts Institute of Technology, 1999.

[67] Kamron Saniee. “A Simple Expression for Multivariate Lagrange Interpolation”.
In: SIAM Undergraduate Research Online (SIURO) 1 (1 2008), pp. 1–9.

[68] Thomas Sauer and Yuan Xu. “On multivariate Lagrange interpolation”. In: Math-
ematics of Computation 64.211 (1995), pp. 1147–1170.

https://doi.org/10.1145/1113439.1113456
https://doi.org/10.1145/1113439.1113456
http://doi.acm.org/10.1145/1113439.1113456
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1016/j.jsc.2010.08.014
https://doi.org/10.1016/j.jsc.2010.08.014
https://doi.org/10.1016/j.jsc.2010.08.014

BIBLIOGRAPHY 107

[69] A. Schönhage and V. Strassen. “Schnelle Multiplikation großer Zahlen”. In: Com-
puting 7.3-4 (1971), pp. 281–292.

[70] Robert Sedgewick and Kevin Wayne. Algorithms. 4th. Addison-Wesley, 2011. Chap. 2.
[71] Victor Shoup. NTL: A library for doing number theory. www.shoup.net/ntl/.
[72] Stephen Wolfram. Mathematica: a system for doing mathematics by computer.

Addison-Wesley, 1991.
[73] Wm A Wulf and Sally A McKee. “Hitting the memory wall: implications of the

obvious”. In: ACM SIGARCH computer architecture news 23.1 (1995), pp. 20–24.
[74] Richard Zippel. Effective polynomial computation. Vol. 241. Springer Science &

Business Media, 2012.
[75] Richard Zippel. “Interpolating polynomials from their values”. In: Journal of Sym-

bolic Computation 9.3 (1990), pp. 375–403.
[76] Richard Zippel. “Probabilistic algorithms for sparse polynomials”. In: Symbolic and

algebraic computation. Springer, 1979, pp. 216–226.
[77] Richard Zippel. “The future of computer algebra”. In: ACM SIGSAM Bulletin 18.2

(1984), pp. 6–7.

 www.shoup.net/ntl/

Curriculum Vitae

Name: Alexander Brandt

Post-Secondary University of Western Ontario
Education and London, ON
Degrees: 2017 - 2018 M.Sc.

Memorial University of Newfoundland
St. John’s, NL
2013 - 2017 B.Sc. (Hons.)

Related Work Teaching Assistant
Experience: University of Western Ontario

2017 - 2018

Research Assistant
Ontario Research Center for Computer Algebra
University of Western Ontario
2017 - 2018

Software Developer
Whitecap Scientific Corporation
2016 - 2018

Research Assistant
Memorial University of Newfoundland
2016 - 2017

Publications:

• Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, and Marc Moreno
Maza. “Sparse Polynomial Arithmetic with the BPAS Library (forthcoming)”. In:
Computer Algebra in Scientific Computing (CASC) 2018. Proceedings of the 20th
International Workshop on. Springer. 2018

108

BIBLIOGRAPHY 109

• Alexander Brandt. “On the formalization and computational complexity of soft-
ware modularization”. Honours Thesis. St. John’s, NL, Canada: Memorial Uni-
versity of Newfoundland, 2017

	Certificate of Examination
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Existing Computer Algebra Systems and Software
	Reinventing the Sparse Polynomial Wheel?
	Contributions

	Background
	Memory, Cache, and Locality
	Cache Performance and Cache Complexity

	Algebra
	The Many Flavours of Rings
	Polynomials: Rings, Definitions, and Notations
	Arithmetic in a Polynomial Ring
	Pseudo-division

	Gröbner Bases, Ideals, and Reduction
	Algebraic Geometry
	(Numerical) Linear Algebra

	Representing Polynomials
	Working with Sparse Polynomials
	Interpolation & Curve FittingThe unpublished work of George Miminis, Introduction to Scientific Computing, is to thank for the lovely details interconnecting basis polynomials, interpolation, and curve fitting.
	Lagrange Interpolation
	Newton Interpolation
	Curve Fitting and Linear Least Squares

	Symbols and Notation

	Memory-Conscious Polynomial Representations
	Coefficients, Monomials, and Exponent Packing
	Linked Lists
	Alternating Arrays
	Recursive Arrays

	Polynomial Arithmetic
	In-place Addition and Subtraction
	Multiplication
	Implementation
	Heap Optimizations

	Experimentation

	Division
	Implementation
	Experimentation

	Pseudo-Division
	Implementation
	Experimentation

	Normal Form and Multi-Divisor Pseudo-Division

	Symbolic and Numeric Polynomial Interpolation
	Univariate Polynomial Interpolation
	Dense Multivariate Interpolation
	Implementing Early Termination for Multivariate Interpolation
	The Difficulties of Multivariate Interpolation
	Rational Function Interpolation

	Sparse Multivariate Interpolation
	Probabilistic Method
	Deterministic Method
	Experimentation

	Numerical Interpolation (& Curve Fitting)

	Conclusions and Future Work
	Bibliography
	Curriculum Vitae

