
CS3350B Computer Organization
Chapter 3: CPU Control & Datapath

Part 1: Introduction to MIPS

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Thursday February 14, 2019

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 1 / 44

Outline

1 Overview

2 MIPS Assemebly

3 Instruction Fetch & Instruction Decode

4 MIPS Instruction Formats

5 Aside: Program Memory Space

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 2 / 44

Layers of Abstraction

We will put together the combinational circuits and state circuits to see
how a CPU actually works.

How does data flow through the CPU?
How are the path and circuits (MUX, ALU, registers) controlled?

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 3 / 44

Preview: MIPS Datapath

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 4 / 44

MIPS ISA

MIPS ISA: Microprocessor without Interlocked Pipelined Stages.
ë ISA: The language of the computer.
ë Microprocessor: a CPU.
ë Interlocking: To come in chapter 4.
ë Pipelined Stages: The data path is broken into a ubiquitous 5-stage

pipeline (also chapter 4).

MIPS is a RISC ISA.
RISC: Reduced Instruction Set Computer.

ë Provided instructions are simple, datapath is simple.
Contrast with CISC: Complex Instruction Set Computer.

ë Instructions can be very “meta”, each performing many lower-level
instructions.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 5 / 44

The 5-Stages of the Datapath

1 IF: Instruction Fetch

2 ID: Instruction Decode

3 EX/ALU: Execute/Arithmetic

4 MEM: Access Memory

5 WB: Write-back result

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 6 / 44

MIPS Datapath, Spot The Stages

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 7 / 44

Coupling of ISA and Datapath

A datapath must be built to satisfy the requirements of the ISA.
Instructions in the ISA determine what is needed internally.
Circuitry limit possible instructions.
Built from combinational blocks composed together.
Very hard to decouple the two.

We begin by looking at the MIPS ISA before looking at the datapath
components.

ë We need a common language to discuss the datapath and give
concrete examples.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 8 / 44

Layers of an ISA

Start at high-level and work down.
MIPS assembly
MIPS instruction formats
MIPS instruction binary

ë Everything on a computer is a number
ë Recall instruction memory cache (banked L1 cache)

MIPS assembly is a type of RTL: Register transfer language.
Everything in MIPS is specified by registers and movement between
them or between registers and memory.
Most often, we abstract away the concept of caches here and assume
CPU talks directly with memory.

ë In reality, the circuity of the cache automatically abstracts away the
memory hierarchy and handles cache hits/misses.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 9 / 44

Outline

1 Overview

2 MIPS Assemebly

3 Instruction Fetch & Instruction Decode

4 MIPS Instruction Formats

5 Aside: Program Memory Space

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 10 / 44

MIPS Assembly: The Basics

Registers:
32 general purpose 32-bit integer registers, denoted $0–$31.
$0 always holds the value 0.
$31 is reserved as the link register: stores the the point in instruction
memory to return to after a function call.
$PC holds the program counter – address of current instruction
$HI & $LO store results of multiplication/division

Memory:
32-bit words and 32-bit memory addresses.
Byte-addressable memory.
Indexed like a big array of bytes: Mem[0], Mem[1024], Mem[32768].

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 11 / 44

MIPS Assembly: RTL Examples

3-Operand Arithmetic:
add $8 $9 $10 ≡ R[8] ← R[9] + R[10];
sub $8 $9 $10 ≡ R[8] ← R[9] - R[10];

2-Operand Arithmetic (Immediate Arithmetic):
addi $8 $9 127 ≡ R[8] ← R[9] + 127;
addi $8 $9 913 ≡ R[8] ← R[9] + 913;
subi $8 $9 6 ≡ R[8] ← R[9] - 6;

Data Transfer (Memory Accesses):
lw $13 32($10) ≡ R[13] ← Mem[R[10] + 32];
sw $13 8($10) ≡ Mem[R[10] + 8] ← R[13];

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 12 / 44

MIPS Assembly: 3 Operand Arithmetic

op $rd $rs $rt ≡ $rd = $rs op $rt

$rd is the destination register.
$rs is the (first) source register.
$rt is the second source register.
op is some arithmetic operation:

ë add, addu, sub, subu, and, or, xor, . . .

These instructions assume an interpretation of the bits stored in the
register.

Programmer/compiler must choose proper instruction for data.
add vs addu

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 13 / 44

MIPS Assembly: 2 Operand Arithmetic

op $rd $rs imm ≡ $rd = $rs op imma

$rd is the destination register.
$rs is the (first) source register.
imm is an immediate—a number whose value is hard-coded into the
instruction.

ë C Example: int i = j + 12;
op is some arithmetic operations:

ë addi, addiu, subi, subiu, andi, ori, xori, . . .
ë sll, srl (logical shifts); sla, sra (arithmetic shifts)

These instructions assume an interpretation of the bits stored in the
register.

Programmer/compiler must choose proper instruction for data.
Signed vs unsigned arithmetic. Logical vs arithmetic shifts.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 14 / 44

MIPS Assembly: Data Transfer

lw $rt, offset($rs) ≡ $rt = Mem[$rs + offset]
sw $rt, offset($rs) ≡ Mem[$rs + offset] = $rt

$rt is the “value” register.
$rs is the “address” register.
offset is an immediate.

It is also possible to load and store bytes, halfwords:
lb, sb (byte);
lwr, swr (least-signficiant halfword);
lwl, swl (most-significant halfword).

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 15 / 44

MIPS: A View of Memory

Note: In reality the processor
interfaces with the L1 data cache

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 16 / 44

Aside: Endianness Defined

Endianness: The ordering of multiple bytes which are intended to be
interpreted together as a single number.

Important in memory layout, digital signals, networks, etc.

Consider the number: 0xAABBCCDD

Little-Endian: The least-significant byte is stored/sent first.
Ordering: 0xDD, 0xCC, 0xBB, 0xAA

Big-Endian: The most-significant byte is stored/sent first.
Ordering: 0xAA, 0xBB, 0xCC, 0xDD
MIPS is big-endian.

Big-endian conceptually easier but little-endian has performance benefits.
In reality, hardware handles all conversions to and from, so we rarely care.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 17 / 44

Outline

1 Overview

2 MIPS Assemebly

3 Instruction Fetch & Instruction Decode

4 MIPS Instruction Formats

5 Aside: Program Memory Space

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 18 / 44

MIPS Datapath, Instruction Fetch

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 19 / 44

Instruction Fetch

IF — Instruction Fetch
The simplest part of the datapath.
One job: fetch the next instruction to execute from memory.
Banked L1 cache Ô⇒ separate cache just for instructions

1. On the clock’s rising edge, update the value of PC—program counter.
ë Essentially the index into instruction memory.

2. Fetch the instruction from memory and pass it to next stage:
instruction decode.
3. Prepare for next instruction: calculate PC + 4 (4 bytes since
instructions are word-aligned).

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 20 / 44

MIPS Datapath, Instruction Decode

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 21 / 44

Instruction Decode

ID — Instruction Decode
Break the binary value of an instruction into its parts and decide
what to do.

ë Recall: instructions eventually get compiled down to bytecode (i.e.
binary).

Get the values ready for arithmetic: registers, immediates.

1. Break the instruction into individual bit segments.
2. Access operand values from registers.
3. Extend immediate to 32 bits (if using).

But how to break the instruction?

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 22 / 44

Aside: MIPS Special Register Names

$zero: the zero-valued register ($0)
$at: reserved for compiler ($1)
$v0, $v1: result values ($2, $3)
$a0 - $a3: arguments ($4–$7)
$t0 - $t9: temporaries ($8–$15, $24, $25)

ë Can be overwritten by callee
$s0 - $s7: saved ($16–$23)

ë Must be saved/restored by callee
$gp: global pointer for static data ($28)
$sp: stack pointer ($29)
$fp: frame pointer ($30)
$ra: return address ($31)

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 23 / 44

Outline

1 Overview

2 MIPS Assemebly

3 Instruction Fetch & Instruction Decode

4 MIPS Instruction Formats

5 Aside: Program Memory Space

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 24 / 44

MIPS Instruction Formats

Every instruction in MIPS is 32-bits.
A memory word is 32 bits, after all.

All instructions belong to 3 pre-defined formats:
R-Type: “Register”
I-Type: “Immediate”
J-Type: “Jump”

Each format defines how those 32 bits of instruction data are broken up
into individual “bit-fields” and how they are interpreted during ID stage.

The first 6 bits always encode the opcode.
The opcode determines the type of instruction and format of the
remaining bits.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 25 / 44

R-Type Instructions

R-Type instructions usually have 3 registers as its operands.
ë “Register type”.
ë General arithmetic operations.

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op — the opcode.
rs — first source register.
rt — second source register.
rd — destination register.
shamt — shift amount; used for shift instructions, 0 otherwise.
funct — the arithmetic function the ALU should perform.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 26 / 44

R-Type Examples 1
op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $t0, $s1, $s2

op $s1 $s2 $t0 shamt add
0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

sub $t0, $s1, $s2

op $s1 $s2 $t0 shamt sub
0 17 18 8 0 34

000000 10001 10010 01000 00000 100010

For R-Type instructions the opcode and funct together determine the
operations to perform.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 27 / 44

R-Type Examples 2

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

sll $s0, $t0, 4

op rs $t0 $s0 4 shift left
0 0 8 16 4 0

000000 00000 01000 10000 00100 000000

Note: shift instruction have two registers and an immediate, but are not
immediate instructions.

Here, the allowed value of the shift amount is only 5 bits, not 16 bits
as in an immediate-type instruction.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 28 / 44

R-Type Examples 3: Bit-Wise Logical Operations

Useful to mask (remove) bits in a word.
ë Select some bits, clear others to 0.

and $t0, $t1, $t2
$t2 0000 0000 0000 0000 0000 1101 1100 0000
$t1 0000 0000 0000 0000 0011 1100 0000 0000
$t0 0000 0000 0000 0000 0000 1100 0000 0000

Useful to include bits in a word.
ë Set some bits to 1, leave others unchanged.

or $t0, $t1, $t2
$t2 0000 0000 0000 0000 0000 1101 1100 0000
$t1 0000 0000 0000 0000 0011 1100 0000 0000
$t0 0000 0000 0000 0000 0011 1101 1100 0000

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 29 / 44

I-Type Instructions

I-Type instructions always have 2 registers and an immediate.
ë “Immediate type”.
ë Immediate arithmetic, data transfer, branch.

op rs rt immediate
6 bits 5 bits 5 bits 16 bits

op — the opcode.
rs — first source register.
rt — second source (or destination) register.
imm — the immediate/constant.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 30 / 44

I-Type Examples 1

op rs rt immediate
6 bits 5 bits 5 bits 16 bits

addi $t1, $t0, 10

op rs rt immediate
8 $t0 $t1 10

001000 01000 01001 0000000000001010

addiu $t1, $t0, 10

op rs rt immediate
9 $t0 $t1 10

001001 01000 01001 0000000000001010

Note: unsigned instructions will not signal exception on overflow.
Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 31 / 44

I-Type Examples 2

op rs rt immediate
6 bits 5 bits 5 bits 16 bits

lw $t1, 12($t0)

op rs rt immediate
35 $t0 $t1 12

100011 01000 01001 0000000000001100

sw $t1, 32($t0)

op rs rt immediate
43 $t0 $t1 32

101011 01000 01001 0000000000100000

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 32 / 44

I-Type Examples 3

op rs rt immediate
6 bits 5 bits 5 bits 16 bits

bne $t0, $t1, 24
if ($t0 != $t1)

PC = PC + 4 + (24 << 2);
else

PC = PC + 4;

op rs rt immediate
5 $t0 $t1 24

000101 01000 01001 0000000000110000

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 33 / 44

J-Type Instructions

J-Type instructions have just one big immediate, called a target.
ë “Jump type”.
ë Only two instructions: j (jump) and jal (jump and link).

op target (jump address)
6 bits 26 bits

op — the opcode.
target — the target memory address to jump to.

Note: target is always multiplied by 4 before being applied to program
counter...

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 34 / 44

J-Type Instructions and Pseudo-Direct Addressing

Pseudo-Direct Addressing: Almost a direct addressing of instruction
memory.

Compiler usually handles the calculation of the exact jump target.

Next value of PC is target × 4 combined with upper 4 bits of current PC.

nPC = (PC & 0xf0000000) | (target << 2);

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 35 / 44

Addressing Instruction Memory in MIPS

Pseudo-Direct: J-Type instructions

PC-Relative: Branch instructions

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 36 / 44

Addressing Operands in MIPS

Immediate Addressing, I-Type instruction.

Register Addressing, Almost all instructions.

Base Addressing, Data transfer instructions.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 37 / 44

MIPS ISA: Some Important Instructions
Category Instruction OP/ Example Meaning

funct
Logic add R 0/32 add $s1, $s2, $s3 $s1 = $s2 + $s3
& Arith. subtract R 0/34 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate I 8 addi $s1, $s2, 6 $s1 = $s2 + 6
and/or R 0/(36/37) (and/or) $s1, $s2, $s3 $s1 = $s2 (∧/∨) $s3
(and/or) immediate I 12/13 (andi/ori) $s1, $s2, 6 $s1 = $s2 (∧/∨) 6
shift right logical R 0/2 srl $rt, $rd, 4 $rd = $rt >> 4
shift right arithmetic R 0/3 sra $rt, $rd, 4 $rd = $rt >> 4

Data load word I 35 lw $s1, 24($s2) $s1 = Memory($s2+24)
Transfer store word I 43 sw $s1, 24($s2) Memory($s2+24) = $s1

load byte I 32 lb $s1, 25($s2) $s1 = Memory($s2+25)
store byte I 40 sb $s1, 25($s2) Memory($s2+25) = $s1

Cond. br on equal I 4 beq $s1, $s2, L if ($s1==$s2) go to L
Branch br on not equal I 5 bne $s1, $s2, L if ($s1 != $s2) go to L

set less than R 0/42 slt $s1, $s2, $s3 if ($s2<$s3) $s1=1
else $s1=0

set less than I 10 slti $s1, $s2, 6 if ($s2<6) $s1=1
immediate else $s1=0

Uncond. jump J 2 j 250 go to 1000
Jump jump register R 0/8 jr $t1 go to $t1

jump and link J 3 jal 250 go to 1000; $ra=PC+4

Note: knowing the binary values of each bit-field is not neccesary, but
understanding the semantic meaning of each instruction is important.
Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 38 / 44

Full Method Example: C to MIPS
void swap(int v[], int k) {

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

swap: sll $t1, $a1, 2 # $t1 = k * 4
add $t1, $a0, $t1 # $t1 = v+(k*4)

(address of v[k])
lw $t0, 0($t1) # $t0 (temp) = v[k]
lw $t2, 4($t1) # $t2 = v[k+1]
sw $t2, 0($t1) # v[k] = $t2 (v[k+1])
sw $t0, 4($t1) # v[k+1] = $t0 (temp)
jr $ra # return to calling routine

Note: words and int-type are both 32-bits here.
Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 39 / 44

Outline

1 Overview

2 MIPS Assemebly

3 Instruction Fetch & Instruction Decode

4 MIPS Instruction Formats

5 Aside: Program Memory Space

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 40 / 44

Revisiting Program Basics

Frame: The encapsulation of one method call; arguments, local
variables.

ë “Enclosing subroutine context”.

(Call) Stack (of frames): The stack of method invocations.
ë Base of stack is the main method, each method call adds a frame to

the stack.

Heap: globally allocated data that lives beyond the scope of the
frame in which it was allocated.

Static Data: Global data which is stored in a static memory address
throughout life of program.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 41 / 44

MIPS Special Registers

$v0, $v1: result values ($2, $3)
$a0 - $a3: arguments ($4–$7)
$t0 - $t9: temporaries ($8–$15, $24, $25)

ë Can be overwritten by callee
$s0 - $s7: saved ($16–$23)

ë Must be saved/restored by callee

$gp: global pointer for static data ($28)
$sp: stack pointer ($29)
$fp: frame pointer ($30)

ë The stack pointer before the current frame’s invocation.

$ra: return address ($31)

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 42 / 44

Memory Layout in MIPS (and most languages)

Text: program code

Static data: global variables
ë static/global variables, constant

arrays, etc.
ë $gp initialized to address

allowing ±offsets into this
segment

Dynamic data: heap
ë e.g., malloc in C, new in Java

Stack: “automatic” storage

Note: In this diagram the higher memory addresses are at top.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 43 / 44

Handling the Stack in MIPS

sort: addi $sp, $sp, -20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $s1 on stack
sw $s0, 0($sp) # save $s0 on stack
... # procedure body
... # call swap a bunch to do bubble sort

exit1: lw $s0, 0($sp) # restore $s0 from stack
lw $s1, 4($sp) # restore $s1 from stack
lw $s2, 8($sp) # restore $s2 from stack
lw $s3,12($sp) # restore $s3 from stack
lw $ra,16($sp) # restore $ra from stack
addi $sp, $sp, 20 # restore stack pointer
jr $ra # return to calling routine

Alex Brandt Chapter 3: CPU Control & Datapath , Part 1: Intro to MIPS Thursday February 14, 2019 44 / 44

CS3350B Computer Organization
Chapter 3: CPU Control & Datapath

Part 2: Single Cycle Datapath

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Tuesday February 26, 2019

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 1 / 41

Outline

1 Overview

2 The Five Stages

3 Tracing the Datapath

4 Datapath In-Depth

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 2 / 41

Defining Parts of the Processor

CPU/Processor: The encapsulation of the
“working” part of the computer. Performs all
the math, arithmetic, thinking, etc.

Datapath: The flow of data through the
processor. Contains circuits and logic,
arithmetic, etc. What does the actual work.

Control: Controls the flow of data through the
datapath. Controls the circuits’ operations (e.g.
what operation the ALU will perform).

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 3 / 41

Preview: MIPS Datapath

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 4 / 41

The 5-Stages of the Datapath

1 IF: Instruction Fetch

2 ID: Instruction Decode

3 EX/ALU: Execute/Arithmetic

4 MEM: Access Memory

5 WB: Write-back result

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 5 / 41

MIPS Datapath, Spot The Stages

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 6 / 41

A Simplified Datapath

IF ID EX MEM WB

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 7 / 41

5 Stages in the Path

Why is there 5 stages?
That’s just what the designers of MIPS came up with.

ë Also, SPARC and Motorola.
ë Has been deemed the “Classic RISC Pipeline”.

Many other architectures use a different number of stages.
ë Intel has used 7, 10, 20, and 31 stages.
ë More stages Ô⇒ More complexity in circuits and control.

Roughly speaking, each stage takes the same amount of time.
ë Prelude to Chapter 3: Part 4: The multi-cycle datapath

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 8 / 41

Single Cycle Datapath

What makes a datapath single cycle?
Flow of data through all stages of
the datapath must occur within one
clock cycle.
The tic of the clock corresponds to
the start of a new instruction
starting to execute.
One instruction is fetched, decoded,
executed per clock cycle.
Clock cycle must be long enough
account for propagation delay of
entire data path.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 9 / 41

Clock Cycle for Single Cycle Datapath

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 10 / 41

Critical Path Clocking

The critical path determines length of clock cycle.
Clock cycle must be long enough to accommodate the propagation
delay of the longest path through the combination logic/datapath.
Recall: all registers synchronized by the same rising edge of clock.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 11 / 41

Multi-Cycle Datapath

One clock cycle per stage within datapath.
Clock cycle must be long enough to accommodate slowest stage.
Allows for optimizations:

ë Skipping unused stages.
ë Pipelining.
ë We ignore these optimizations until the next chapter.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 12 / 41

Outline

1 Overview

2 The Five Stages

3 Tracing the Datapath

4 Datapath In-Depth

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 13 / 41

The Five Stages

The components of the datapath represent the union all circuitry
needed by every instruction.

Not every instruction will use every stage.

Not every instruction will use every component within a stage.

Nonetheless, all components are necessary to fulfill all instructions
specified in the Instruction Set Architecture.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 14 / 41

Instruction Fetch (1/2)

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 15 / 41

Instruction Fetch (2/2)

Instruction Fetch
The instruction must be fetched from the instruction memory
(banked L1 cache).

Instructions are themselves encoded as a binary number.

Instructions are stored in a memory word.
ë 32 bits in the case of MIPS.

Increment PC : update the program counter for the next fetch.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 16 / 41

Instruction Decode (1/2)

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 17 / 41

Instruction Decode (2/2)

Instruction Decode
Determine the type of instruction to execute.

ë Read the opcode; it’s always the first 6 bits in MIPS, regardless of the
eventual type of instruction.

Knowing the type of instruction, break up the instruction into the
proper chunks; determine the instruction operands.

Once operands are known, read the actual data (from registers) or
extend the data to 32 bits (immediates).

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 18 / 41

Execute (a.k.a. ALU) (1/2)

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 19 / 41

Execute (a.k.a. ALU) (2/2)

Execute
Do the actual work of the instruction.

ë Add, subtract, multiply, shifts, logical operations, comparisons.

For data transfer instructions, calculate the actual address to access.
ë Recall data transfer instructions have an offset and a base address.
ë lw $t1, 12($t0)
ë Calculates memory address $t0 + 12.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 20 / 41

Memory Access (1/2)

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 21 / 41

Memory Access (2/2)

Memory Access
Access the memory using the address calculated in EX stage.

Can be a read or a write.

If the particular instruction is not a memory-accessing instruction, just
do nothing.

Since memory is relatively slow, just reading (or writing) data from it
takes as much time as doing a full arithmetic operation.

ë But still quite fast due to caching and the memory hierarchy.
ë EX stage and MEM stage roughly same time. (Well really all stages are

all roughly the same time.)

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 22 / 41

Write Back (1/2)

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 23 / 41

Write Back (2/2)

Write Back
Write back the calculated value to the register.

Could be the result of some arithmetic operation.

Could be the result of some memory load.

If nothing is being written back (e.g. on a memory store) just do
nothing.

Not to be confused with write back cache policy.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 24 / 41

Outline

1 Overview

2 The Five Stages

3 Tracing the Datapath

4 Datapath In-Depth

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 25 / 41

Example 1: add (1/2)

add $3, $1, $2 ⇒ $3 = $1 + $2

op rs rt rd shamt funct
0 1 2 3 0 32

000000 00001 00010 00011 00000 100000

IF: Fetch instruction and increment PC.
ID: Read opcode, determine R-type instruction, read values of $rs, $rt.
EX: Perform addition operation on values stored in $1 and $2.
MEM: Do nothing.
WB: Write the sum back to $3.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 26 / 41

Example 1: add (2/2)

add $3, $1, $2

reg[3] = reg[1] + reg[2]

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 27 / 41

Example 2: slti (1/2)

slti $3, $1, 17 ⇒ $3 = ($1 < 17)

op rs rt immediate
001010 00001 00011 0000000000010001

IF: Fetch instruction and increment PC.
ID: Read opcode, determine I-type instruction, read values of $rs,
immediate.
EX: Perform comparison operation on value of $1 and immediate.
MEM: Do nothing.
WB: Write the comparison result back to $3.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 28 / 41

Example 2: slti (2/2)

slti $3, $1, 17

reg[3] = reg[1] < 17

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 29 / 41

Example 3: sw (1/2)

sw $3, 16($1) ⇒ Mem[$1 + 16] = $3

op rs rt immediate
101011 00001 00011 0000000000010001

IF: Fetch instruction and increment PC.
ID: Read opcode, determine I-type instruction, read values of $rs, $rt,
imm.
EX: Calculate memory address from reg[1] and 16 (offset).
MEM: Write value of $3 into Mem[reg[1] + 16].
WB: Do nothing.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 30 / 41

Example 3: sw (2/2)

sw $3, 16($1)

16

reg[1]
+16

Mem[r1+16]
=r3

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 31 / 41

Example 4: lw (1/2)

lw $3, 16($1) ⇒ $3 = Mem[$1 + 16]

op rs rt immediate
101011 00001 00011 0000000000010001

IF: Fetch instruction and increment PC.
ID: Read opcode, determine I-type instruction, read values of $rs,
imm.
EX: Calculate memory address from reg[1] and 16 (offset).
MEM: Read value of Mem[reg[1] + 16].
WB: Write value of Mem[reg[1] + 16] to $3.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 32 / 41

Example 4: lw (2/2)

lw $3, 16($1)

16

reg[1]
+16

reg[3] = Mem[reg[1] + 16]
Mem[reg[1] + 16]

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 33 / 41

Exercise: beq

beq $8, $9, 128

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 34 / 41

Outline

1 Overview

2 The Five Stages

3 Tracing the Datapath

4 Datapath In-Depth

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 35 / 41

Satisfying the ISA

Recall: The specification of the ISA and the datapath are highly
coupled.

ë We need enough circuity to accommodate every possible instruction in
the ISA.

Instructions belong to a few general categories. We need circuitry for
to satisfy each and every one.

ë All instructions use PC and instruction memory.
ë Arithmetic: ALU, Registers.
ë Data transfer: Register, Memory.
ë Conditional jumping: PC, Registers, Comparator (ALU).
ë Unconditional jumping: PC, Registers.

lw is one instruction which makes use of every stage.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 36 / 41

Missing Datapath Details

Many subtle details are missing from this simplified datapath.
Multiplexers needed to control flow to/from registers, ALU, memory.
Control which operation ALU performs.
Control whether reading or writing write to memory, registers.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 37 / 41

Multiplexers in the Datapath

Where do we need multiplexers to control data flow?

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 38 / 41

Multiplexers in the Datapath

Where do we need multiplexers to control data flow?

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 38 / 41

Controlling the Multiplexers, ALU, Circuitry

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 39 / 41

MIPS Datapath with Control Signals

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 40 / 41

Datapath Summary

ISA and circuitry highly coupled.

5 Stages: IF, ID, EX, MEM, WB.

Some stages go unused for some instructions.

Single cycle: clock cycle determined by propagation delay of entire
datapath.

Multi-cycle: clock cycle determined by propagation delay of slowest
stage.

Additional control (multiplexers, ALU, read/write) needed for the
datapath.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 2: Single Cycle Datapath Tuesday February 26, 2019 41 / 41

CS3350B Computer Organization
Chapter 3: CPU Control & Datapath

Part 3: CPU Control

Alex Brandt

Department of Computer Science
University of Western Ontario, Canada

Thursday February 28, 2019

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 1 / 32

Outline

1 Overview

2 Control Signals

3 Tracing Control Signals

4 Controller Implementation

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 2 / 32

Controlling the Datapath

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 3 / 32

Control Signals

Just as we saw with circuits like MUX, DEMUX, ALU, some circuits
need control signals to help data flow or control the operation of the
circuit.

For an entire CPU datapath, this is called the CPU controller.
ë The controller contains the logic which interprets instructions and

sends out control signals.
ë Many independent control signals are sent from the controller to each

stage.
ë Sometimes multiple signals are sent to one stage, each controlling a

different component within a stage.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 4 / 32

MIPS Datapath with Control Signals

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 5 / 32

Outline

1 Overview

2 Control Signals

3 Tracing Control Signals

4 Controller Implementation

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 6 / 32

Review: MUX

The control signal S determines which input is used to set the output.
Controls the flow of data.
Bit-width of control signal determined by number of inputs to choose
between, not the bit-width of the input.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 7 / 32

Review: ALU

The control signal OP determines which arithmetic or logical operation is
actually performed.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 8 / 32

Review: ALU Implementation

One possible ALU implementation. Do all of the operations, and control
signal just controls a MUX to output.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 9 / 32

Controlling Number Extenders

Extender: A circuit which extends the bit-width of wire while
maintaining its numerical value.
Recall: we have both unsigned and signed numbers.
Need a control signal to determine which to perform: ExtOp.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 10 / 32

Controlling Data Storage: Register

Normally, registers are controlled by the clock.
But, we can have special registers whose states are only updated
when a special control signal is activated.
These registers are updated when the control signal is 1 and the clock
tic occurs simultaneously.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 11 / 32

Controlling Data Storage: Many Registers

A register file is a collection of registers put together.
RA and RB are the indices of the registers we want to read from.
RW is the index of the register we want to write to.

ë On the clock, if write enable control signal is 1, then write the data on
busW to register RW.

Clock does not affect reads, only writes.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 12 / 32

Controlling Data Storage: Data Memory

A simplified data memory works much like a register file.
Address specifies the memory address to read from or write to.
DataOut is the data read from memory.
DataIn is the data to be written.
A write only occurs on the clock tic and when WriteEnable is 1.
Clock does not affect reads.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 13 / 32

MIPS with Control Signals

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 14 / 32

Outline

1 Overview

2 Control Signals

3 Tracing Control Signals

4 Controller Implementation

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 15 / 32

Controlling “Instruction Fetch Unit” and PC

For most instructions simply perform
PC = PC + 4.
For branch inst. we must do a special
extension of the immediate value and
then add it to PC..
The next PC is actually decided by
MUX and the nPC_sel control signal.
If the branch condition evaluates to
true, then the control signal is set to 1
and the MUX chooses the branch
address.

Recall: on branch instructions PC = PC + 4 + (imm << 2).
The + 4 will become clear in next chapter.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 16 / 32

Tracing add (1/2)
add $rd, $rs, $rt

Inst. writes to a register so the RegWr control signal must be true.
The ALUctr signal is decided from the instruction ⇒ op and funct.
add, addu, sub, subu, or, and, . . . , all have opcode = 0 but a
different funct.

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 17 / 32

Tracing add (2/2)

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 18 / 32

Tracing addui addui $rt, $rs, imm

Modify previous path to allow register or immediate as input to ALU.
Modify previous path to allow write to rd or rt.
R-type inst. have RegDst = ’rd’; I-type have RegDst = ’rt’.
R-type have ALUSrc = ’rt’ or ’busB’; I-type have ALUSrc = ’imm.’.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 19 / 32

Tracing lw
lw $rt, off($rs)

Add ExtOp to allow for negative immediates.
Add MemToReg to choose between ALU result and data read from
memory.
Arithmetic still occurs with $rs + off to get memory address.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 20 / 32

Tracing sw
sw $rt, off($rs)

Add a wire direct from register file to data memory.
Add MemWr control to only write the read register value on a store
instruction.
Arithmetic still occurs with $rs + off to get memory address.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 21 / 32

Controlling Instruction Fetch Unit: Branch instructions
beq $rt, $rs, imm.

nPC_sel ≡ Equal ∧ (opcode is a branch)
If branch condition fails (if $rs ≠ $rt) or instruction is not a branch
type, PC = PC + 4.
Remember: datapath generally computes everything, control signals
determine which results are actually read/redirected/stored/etc.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 22 / 32

Cumulative Datapath with Control Signals

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 23 / 32

Control Signals Values

nPC_sel: ’+4’, ’branch’
RegDst: ’rd’, ’rt’
RegWr: 1 ⇒ ’write’
ExtOp: ’zero’, ’signed’

ALUSrc: ’rt’/’busB’, imm.
MemWr: 1 ⇒ ’write’
MemToReg: ’ALU’, ’Mem’
ALUCtr: ’add’, ’sub’, ’<’,
’>’, ’==’, ’!=’, ’or’, ’and’,
. . .

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 24 / 32

Tracing add in full
add $rd, $rs, $rt

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 25 / 32

Summary of Control Signals

func 10 0000 10 0010 Doesn’t Matter
op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010

add sub ori lw sw beq jump
RegDst 1 1 0 0 x x x
ALUSrc 0 0 1 1 1 0 x
MemtoReg 0 0 0 1 x x x
RegWrite 1 1 1 1 0 0 0
MemWrite 0 0 0 0 1 0 0
nPC_sel 0 0 0 0 0 1 ?
Jump 0 0 0 0 0 0 1
ExtOp x x 0 1 1 x x
ALUctr Add Subtract Or Add Add Equal x

x = Don’t care / Doesn’t matter

Note: numeric values not really important. Just gives semantic meaning.
ë e.g. RegDst = ’rd’
ë e.g. nPC_sel = ’branch’

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 26 / 32

Outline

1 Overview

2 Control Signals

3 Tracing Control Signals

4 Controller Implementation

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 27 / 32

The Controller: Many Inputs, Many Ouputs

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 28 / 32

Possible Boolean Expressions for Controller
RegDst = add + sub
ALUSrc = o r i + lw + sw
MemtoReg = lw
RegWrite = add + sub + o r i + lw
MemWrite = sw
nPCsel = beq
Jump = jump
ExtOp = lw + sw
ALUctr [0] = sub + beq (assume ALUctr i s 00 ADD, 01 SUB, 10 OR)
ALUctr [1] = or

r t y p e = 𝑜𝑝5 ⋅ 𝑜𝑝4 ⋅ 𝑜𝑝3 ⋅ 𝑜𝑝2 ⋅ 𝑜𝑝1 ⋅ 𝑜𝑝0 ,
o r i = 𝑜𝑝5 ⋅ 𝑜𝑝4 ⋅ op3 ⋅ op2 ⋅ 𝑜𝑝1 ⋅ op0
lw = op5 ⋅ 𝑜𝑝4 ⋅ 𝑜𝑝3 ⋅ 𝑜𝑝2 ⋅ op1 ⋅ op0
sw = op5 ⋅ 𝑜𝑝4 ⋅ op3 ⋅ 𝑜𝑝2 ⋅ op1 ⋅ op0
beq = 𝑜𝑝5 ⋅ 𝑜𝑝4 ⋅ 𝑜𝑝3 ⋅ op2 ⋅ 𝑜𝑝1 ⋅ 𝑜𝑝0
jump = 𝑜𝑝5 ⋅ 𝑜𝑝4 ⋅ 𝑜𝑝3 ⋅ 𝑜𝑝2 ⋅ op1 ⋅ 𝑜𝑝0
add = r t y p e ⋅ f unc 5 ⋅ 𝑓𝑢𝑛𝑐4 ⋅ 𝑓𝑢𝑛𝑐3 ⋅ 𝑓𝑢𝑛𝑐2 ⋅ 𝑓𝑢𝑛𝑐1 ⋅ 𝑓𝑢𝑛𝑐0
sub = r t y p e ⋅ f unc 5 ⋅ 𝑓𝑢𝑛𝑐4 ⋅ 𝑓𝑢𝑛𝑐3 ⋅ 𝑓𝑢𝑛𝑐2 ⋅ f unc 1 ⋅ 𝑓𝑢𝑛𝑐0

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 29 / 32

Implementing The Controller

Look familiar? Same scheme as a programmable logic array (PLA).

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 30 / 32

Patterson & Hennessy: Controller

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 31 / 32

Single Cycle Processor: Summary

Instruction Set Architecture ↔ Datapath.
ë Instructions determine circuits needed in datapath.
ë Limitations of circuits influence allowable instructions.

Classic RISC Datapath: IF, ID, EX, MEM, WB.

Clock cycle must be long enough to account for time of critical path
through datapath.

MUX control flow of data through datapath.

Controller takes opcode and funct as input, outputting the control
signals that control MUXs, ALU, writing.

ë Boolean logic here is complex must account for every possibly
combination of instructions and data.

Alex Brandt Chapter 3: CPU Control & Datapath , Part 3: CPU Control Thursday February 28, 2019 32 / 32

