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Needing Multicore Architectures

Recall:
Processor-Memory gap.
Power Wall.
Moore’s law failing?
Great Ideas in Computer Architecture: Performance via Parallelism.

New reasons:
ILP has hit a peak within current power/thermal constraints.
Can leverage vector operations and SIMD processors but this limits
parallelism to a single instruction type.
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Needing Multicore: Performance Plot
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SIMD Processors
SIMD processors are sometimes called vector processors.
However, not all SIMD processors are vector processors.
They execute a Single Instruction on Multiple Data elements.
In a vector processor the data elements must be adjacent.
SSE (Streaming SIMD Extension) extends x86 for vectorized instrs.

ë Modern CPUs: intel, AMD.
Ex: The loop can be unrolled and executed using a 128-bit (4x32-bit
int) vectorized instruction.

int i = 0;
for (i; i < n; i++) {

A[i] += 10;
}

int i = 0;
for (i; i < n; i += 4) {

A[i] += 10;
A[i+1] += 10;
A[i+2] += 10;
A[i+3] += 10;

}
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Flynn’s Taxonomy

Flynn’s Taxonomy is a characterization of an architecture’s parallelism.

Single Instr. Stream Multiple Instr. Streams
Single Data SISD MISDStream

Multiple Data SIMD MIMDStreams

SISD – the normal architecture; basic von Neumann architecture.
SIMD – single instruction applied to multiple data elements.
Sometimes called a vector processor.
MISD – obscure and not usually used. A data pipeline where each
stage performs a different operation.
MIMD – a multiprocessor; multiple processors fetch different
instructions and operate on different data.
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Multiprocessors

Multiprocessors belong to the MIMD type.
Multiple, independent processors executing different
instructions/programs.
A computer with literally multiple processors.
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Multi-core Processors

Multi-core processors are still
MIMD type but differ from multi-
processors.

Also called chip-level
multiprocessor; the processor
itself has multiple processors
(datapaths).
Contrast with superscalar
(which is only SISD).
Each core can operate a
completely different
instruction stream.

Alex Brandt Chapter 5: Parallel Architectures Thursday March 21, 2019 9 / 47



Modern Multi-Core Circuitry

Sep.
L2
Sep.
L2
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Multiprocessor vs Multi-core

Each processor in a multiprocessor system can also be multi-core.
To operating system each core seen as an independent processor.
But notice that cores within a processor usually share some cache.
This gives better performance to processes which need to share
information (e.g. multiple threads within a single process).
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Simultaneous Multi-threading
Simultaneous Multi-threading (SMT) is hardware-level support within a
single core to handle multiple threads at once.

One SMT core presents itself to the OS as multiple processors, one
for each possible thread.
Called hyperthreading by intel.
Not necessarily completely duplicate hardware as in cores, but some
redundancy in datapath.
Sort of like superscalar for ILP but with different instruction streams.

Within an
SMT core
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Pros and Cons of Multi (core) Processors

Possible throughput increases are stellar.

Allows multi-tasking in OS.

Parallelism tackles power wall, moore’s law, performance bottlenecks.

However, a single program cannot always make use of multiple cores
or processors.

Must program explicitly for parallelism.
Parallel programming is hard.

ë Must explicitly program for thread-level parallelism (TLP)
ë Some tools try to help: compiler vectorization, Open-MP, Cilk.

Still only one global memory.
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Multi-core Configurations
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The Problem of Cache Coherence

If each processor (core) has its own (L1) cache then it also has its
own copy of memory.

If two cores both have a copy, how does one core get the write
updates of another core?

This is the problem of cache coherence.

Writing back to lower levels of cache which are shared by multiple
processors (cores) is not sufficient. Must also propagate change
upwards?

This is particularly a problem if this lowest level is very slow memory.
What can we do?

Note: cache coherency is usually performed on a per cache block basis,
not per memory word/address.
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Cache Coherency and Consistency

Coherency: If processor P1 reads a value of a particularly memory address
after processor P2 writes to it (and no other writes have occurred to that
address) then P1 must read the value P2 wrote.

(Sequential) Consistency: all writes to a memory address must be
performed in some sequential order.

Coherency is about what value is read while consistency is when the
value is read.

Cache coherency requires two parts in a solution:
Write propagation: writes to a cache block must be propagated to
other copies of that same cache block in other caches.
Transaction serialization: reads and writes to a particular address
must be seen by all processors in the same order.
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Snooping Policies

Whenever a processor reads from or writes to a lower level of cache, these
transactions are broadcast on some shared global bus.

A snooping policy (a.k.a bus sniffing) has all cores monitor this bus for
all requests and responses and act accordingly.

Write invalidate protocol: when a write is broadcast, all other cores
which share a copy of the address being written to invalidate their
copies.
Write update protocol: when a write is broadcast, all other cores
which share a copy of that address being written to update their
local copy with the value which was broadcast.
In either case, serialization is handled by mutually exclusive access to
global bus. Core stalls if bus is busy.
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Invalidate vs Update

Consider multiple writes to same memory address without any reads.
Consider writes to adjacent memory words within a single cache block.

Both of these cases common due to temporal/spatial locality.
Both of these cases require multiple update signals and new values to
be sent across the bus.
However, only one invalidate signal would be needed in either case.

Bus bandwidth is a precious resource.
Invalidate protocols preferred due to less bandwidth required.
Invalidate protocols used in modern CPUs over update protocols.
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The MESI Protocol (1/2)

MESI: an invalidate snooping protocol which adds several optimizations
to further reduce bus bandwidth.

Recall that a normal cache has a “valid” state and, if using a
write-back policy, a “dirty” state.

MESI adds “Exclusive” and “Shared” states. M ⇒ dirty, I ⇒ invalid.

If cache block is “Exclusive” avoid broadcasting a write.

MESI can be described by looking at what happens on read misses, read
hits, write misses, and write hits.
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The MESI Protocol (2/2)

Each cache block in each processor’s cache has one of 4 states:

Modified: The cache block is exclusively owned by the processor and is
dirty (i.e. it differs from main memory).

Exclusive: The cache block is exclusively owned by the processor and is
clean (i.e. the same value as main memory).

Shared: The cache block is shared between multiple processors and is
clean.

Invalid: The cache block was loaded into cache but its value is no longer
valid.

.
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MESI Read Hit

The cache block’s state is one of MES to be considered a hit.

Nothing to do; just return the value and do not change states.

If state is M then the cache block is dirty but that’s fine for this
particular core.
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MESI Read Miss (1/2)

Case 1: No copies anywhere.
The requesting core waits for response from lower level memory.
The value is stored in cache with state E.

Case 2: One cache has an E copy.
The snooping cache hears read request, puts copy of value on bus.
The access to lower level memory is abandoned.
The requesting core reads value from bus.
Both cores set cache block’s state to S.
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MESI Read Miss (2/2)

Case 3: Several caches have an S copy.
One snooping cache hears request, puts copy on bus.
The access to lower level memory is abandoned.
The requesting core reads value from bus and sets state to S.
All copies are still in state S.

Case 4: One cache has an M copy.
The snooping cache hears read request, puts copy on bus.
The access to lower level memory is abandoned.
The requesting core reads value from bus and sets state to S.
The snooping core sets state to S and writes updated value back to
main memory.
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MESI Write Hit
The cache block’s state is one of MES to be considered a hit.

If in M state:
Cache block is exclusively owned and already dirty.
Update cache value, no state change.

If in E state:
Cache block is exclusively owned and clean.
Update cache value, set state to M.

If in S state:
Cache block is shared but clean.
Requesting core broadcasts invalidate on the bus.
Snooping cores with S copy change to I state.
Requesting core updates cache value and sets state to M.
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MESI Write Miss
This one is tricky. Need to read first and then write.

Case 1: No other copies.
Read from main memory, write new value in cache, set state to M.

Case 2: Other copy is in E state / Other copies are in S state.
The requesting cache requests Read With Intent To Modify.
The snooping cache(s) hear RWITM request, puts copy on bus, sets
own state to I.
Requester reads value from bus, updates value, sets state to M.

Case 3: Other copy in M state
The snooping cache hears RWITM, puts copy on bus, writes back to
main memory, sets its own state to I.
Requester reads value from bus, updates value, sets state to M.
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MESI: An Example

Consider a system with 3 processors where all processors are referencing
the same cache block.

Using the MESI protocol fill the table to describe the cache block’s state
in each processor’s cache.

Request P1 P2 P3 Data Supplier
Initially - - - -
P1 Read E - - Main Mem.
P1 Write M - - -
P3 Read S - S P1 Cache
P3 Write I - M -
P1 Read S - S P3 Cache
P3 Read S - S -
P2 Read S S S P1 or P3 Cache
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Block Size and Cache Coherency

Recall: Memory always moved to and from a cache as a full cache
block.

In MESI, a write invalidates an entire cache block.

Cache blocks larger than 1 word can cause false sharing.
ë Two cores are writing to different memory addresses that just happen

to be in the same cache block.
ë False sharing disproportionately increases cache misses in

write-invalidate schemes.
ë Can cause thrashing of invalidate signals.
ë Not a problem if cores share a cache (but, in modern processors, each

core has its own L1 cache).

Core1 Core2
↕ ↕

A B 4 word cache block
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True Sharing vs False Sharing

True sharing caused by communication of data between threads.
Data is truly invalided and must be read again.
Would still occur if cache block size was 1 word.

False sharing caused by multiple processors writing to different memory
addresses within a single cache block.

The cache block is shared but no word within the block is actually
shared.
Miss would not occur if cache block size was 1 word.
Invalidation on each write causes a cache miss for the other processor.
Goes back and forth in this way ⇒ thrashing.
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Multiprocessor Cache Performance
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False Sharing Example

Let x1 and x2 belong in the same cache block. Processor 1 and Processor
2 each want to access either x1 or x2. Let us assume both processors
begin with the cache block loaded into cache.

Time P1 P2 True, False, Hit? Why?
1 Write x1 Hit; invalidate x1 in P2
2 Read x2 False miss; x1 irrelevant to P2
3 Write x1 Hit; x1 irrelevant to P2
4 Write x2 False miss; x1 irrelevant to P2
5 Read x2 True miss; invalidate x2 in P1
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Combating False Sharing

Change the algorithm
Change the “stride” of the loop to access data in different cache line.
Re-evaluate: do these threads really need to be accessing memory
which is this close together?
Have different threads access different, far away parts of memory.

Change the data structure
Add “padding” to data structures so that data is better aligned in
memory (with respect to memory word or cache line).
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What is Multithreading?

Multithreading is not multi-core or multiprocessor.
ë But together they give us performance.

Multithreading is a programming model which allows for multiple,
concurrent threads of execution, each with their own context.

Thread: the smallest processing unit that can be scheduled by the OS.
Context: A thread’s own and unique local variables, PC, register
values, stack.
But, threads within the same process share an address space (heap).

Process: An instance of a program being executed. Usually handled by
the operating system and requires a lot of overhead to instantiate and
set-up properly. A process can contain many threads.
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Multithreading Memory Model (1/2)
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Multihreading Memory Model (2/2)

It is also possible to separate the heap into “thread-local” or private
memory and shared memory.

Different programming languages allow this construct.
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Multithreading and Multi-core
Using multiple threads does not require multiple cores (processors).

A single processor can handle multiple threads via time-division
multiplexing: the sharing of time on the datapath between threads.

ë This requires context switching—updating the state of the processor’s
register file, PC, stack pointer, etc. to match the thread’s context.

With multiple cores (processors), threads can run simultaneously.
ë Each core/processor has its own registers, etc. ⇒ no context switching.
ë If the number of threads exceeds the number of processors (cores) then

multiple threads must run on one processor (core) via context
switching.

Thread scheduling is hard. Generally, the OS and hardware handle
this. We’ll ignore this.

ë Preemptive scheduling: threads are interrupted and context switches
are forced.

ë Non-Preemptive scheduling: a.k.a cooperative scheduling, threads yield
themselves to allow others to run. Threads are not interrupted.
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Context Switching

To switch contexts, the context/state begin switched from must first
be saved in some way.

Generally, this occurs by storing all the values of the registers, PC,
etc. in some special data structure (e.g. a process control block) and
storing that somewhere in memory.

ë Usually in the operating system’s memory address space.

Context switching is expensive, particularly if threads are not from the
same processes.

ë Of course, an operating system can switch between multiple processes.
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Data Races

Via MESI, we know cache
coherency is a problem.
If two threads both attempt to
write to same memory location
at the same time, one must be
first.
Recall: transaction serialization.
But, what order do the writes
occur?
Non-Determinism

void setAddress(int* addr, int val) {
*addr = val;

}

int main(int argc, char** argv) {
int* p = new int[1];
*p = 0;

std::thread t1(setAddress, p, 1);
std::thread t2(setAddress, p, 2);
t1.join();
t2.join();
std::cerr << "p: " << *p << "\n";
return 0;

}
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Data Races In Action
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More Data Races

What happens if multiple
threads reading and writing?

ë Need synchronization between
threads.

What are the possible values of
p that could be printed?

1 or 2 ⇒ non-determinism.
Context switch could occur
between reading from address
and writing back updated result.

void incrAddr(int* address) {
int val = *address;
val++;
*address = val;

}

int main(int argc, char** argv) {
int* p = new int[1];
*p = 0;

std::thread t1(incrAddr, p);
std::thread t2(incrAddr, p);
t1.join();
t2.join();
std::cerr << "p: " << *p << "\n";
return 0;

}

Alex Brandt Chapter 5: Parallel Architectures Thursday March 21, 2019 42 / 47



More Data Races

What happens if multiple
threads reading and writing?

ë Need synchronization between
threads.

What are the possible values of
p that could be printed?
1 or 2 ⇒ non-determinism.
Context switch could occur
between reading from address
and writing back updated result.

void incrAddr(int* address) {
int val = *address;
val++;
*address = val;

}

int main(int argc, char** argv) {
int* p = new int[1];
*p = 0;

std::thread t1(incrAddr, p);
std::thread t2(incrAddr, p);
t1.join();
t2.join();
std::cerr << "p: " << *p << "\n";
return 0;

}

Alex Brandt Chapter 5: Parallel Architectures Thursday March 21, 2019 42 / 47



Fixing Data Races
To fix data races we need thread synchronization.

ë Only one thread can execute some critical section at one time.
ë This is called mutual exclusion.

We generally use locks whose “ownership” allows a thread to access a
critical section.
If a thread tries to “lock” (a.k.a take/own/capture) a lock that is
already locked by another thread, it waits for the lock to be unlocked
and then tries to lock it again.

std::mutex mutex;
void incrAddr(int* address) {

mutex.lock(); //wait here until successful lock
int val = *address;
val++;
*address = val;
mutex.unlock();

}
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Implementing a Lock
Semaphore: a counter used to control access to a critical section.

Locks usually use a specialized binary semaphore: its value is 0 or 1.

The simplest lock is a spinlock.
It waits by “spinning ” until the lock can be acquired.
A bad, non-working, but simple example:

void spinlock::lock() {
int spins = 0;
while(this.semaphore == 1) {

++spins;
}
this.semaphore = 1;

}

If multiple threads spinning on same spinlock, which one is first to set
the semaphore to 1? (i.e. which one owns the lock?) Which one goes
back to spinning?
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Better Lock Implementation: “Test and Set”

“Test and set” is an atomic operation that
sets a variable’s value, returning its old value.
Atomic: an operation (many instructions)
which is viewed as happening instantly across
all threads. Cannot be interrupted by a
context switch.
this.setSemaphore() is atomic.

void spinlock::lock() {
int spins = 0;
while(this.semaphore == 1) {

++spins;
}
int oldVal = this.setSemaphore(1);
if (oldVal == 1) {

//another thread got there first
this.lock();

}
}
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Automatic Multithreading

Some tools exist to automatically parallelize code.
ë Cilk (GCC 5-7), OpenMP (GCC 4.2+)

These tools are good but can’t replace a fine-tuned implementation of
a human.
But writing efficient parallel code is even harder than getting it
working in the first place.

ë Automatic tuning of parallel code ⇒ one of my current research topics.

void parallelAdd(int* a, int n) {
//cilk_for: each loop iteration done in parallel
cilk_for(int i = 0; i < n; ++i) {

a[i] += 10;
}

}
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Summary

Serial execution has hit many walls: memory, power, ILP.

Parallelism needed for performance.

One processor can give us vectorized instructions (SIMD).

Multi-core and multiprocessor (MIMD) gives us a way to effectively
use multithreading.

Cache coherency a problem with multiple cores, but can be fixed with
snooping policies (e.g. MESI).

False sharing impacts cache performance.

Multithreading ⇒ Parallelism on Multiprocessors ⇒ Performance.

Want more? CS4402 - Distributed and Parallel Systems
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