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Solving Systems of Equations

Find values of 𝑥, 𝑦, 𝑧 which satisfy 𝐹 =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑎(𝑥, 𝑦, 𝑧) = 0
𝑏(𝑥, 𝑦, 𝑧) = 0
𝑐(𝑥, 𝑦, 𝑧) = 0

• Solving systems of equations is a fundamental problem in scientific
computing

• Numerical methods are very efficient and useful in practice, but only
find approximate solutions as floating point numbers

ë Newton’s method, Homotopy methods, Gradient descent

• Symbolic methods to find exact solutions are required in robotics,
celestial mechanics, cryptography, signal processing [13]

ë Particularly used to find a complete description of all solutions
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Solving a Linear System of Equations

Step 1: triangularization

(a) by elimination of variables:
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 3𝑦 − 2𝑧 = 6
3𝑥 + 5𝑦 + 6𝑧 = 7
2𝑥 + 4𝑦 + 3𝑧 = 8

solve for 𝑥Ð→
substitute 𝑥

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 = 5 − 3𝑦 + 2𝑧
−4𝑦 + 12𝑧 = −8
−2𝑦 + 7𝑧 = −2

solve for 𝑦Ð→
substitute 𝑦

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 = 5 + 2𝑧 − 3𝑦
𝑦 = 2 + 3𝑧
𝑧 = 2

(b) by Gaussian elimination:

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
3 5 6 7
2 4 3 8

⎬⎠⎠⎠⎠⎠⎮
Ô⇒

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
0 1 −3 2
0 −2 7 −2

⎬⎠⎠⎠⎠⎠⎮
Ô⇒

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
0 1 −3 2
0 0 1 2

⎬⎠⎠⎠⎠⎠⎮

Step 2: back-substitution to find particular values for 𝑥, 𝑦, 𝑧

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 3𝑦 − 2𝑧 = 6
3𝑥 + 5𝑦 + 6𝑧 = 7
2𝑥 + 4𝑦 + 3𝑧 = 8
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Solving a Non-Linear System of Equations
Via Gröbner Basis we can “solve” a non-linear system

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Ô⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

“Solving” a system is not just about finding particular values, rather:

“find a description of the solutions from which we can easily
extract relevant data”

Why?
• A positive-dimensional system has infinitely many solutions
• Underdetermined linear systems, and most non-linear systems
• Univariate polynomials of degree > 4, it may not be possible to have

their solutions described in radicals
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Decomposing a Non-Linear System
Many ways to “solve” a system

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Gröbner BasisÔ⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2 + 2𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

Both solutions are equivalent (via a union)
• by using triangular decomposition, multiple components are found,

suggesting possible component-level parallelism

Ô
⇒ Triangular Decomposition
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Research Themes

Solving equations is a fundamental computational problem.
Triangular decomposition is a core operation in general
computer algebra routines (solve in Maple).

1 Provide algorithmic schemes and implementation techniques for
high-performance polynomial system solvers

ë Implementations of triangular decomposition are not as
sophisticated as those based on Gröbner bases

2 Explore high-level, irregular parallelism in symbolic computation
ë Typically limited to low-level, regular parallelism (e.g. arithmetic)

3 Examine software design for accessibility and maintainability of
high-performance mathematical software

ë Re-use, maintainability, and adaptability often missing
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3 Concurrency in Triangular Decomposition
Regular Chains
Concurrency Opportunities & Parallel Patterns
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Lazy Multivariate Power Series
Hensel Factorization

5 Conclusions and Future Work
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Incremental Decomposition of a Non-Linear System
Intersect one equation at a time with the current solution set

𝐹 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥2
+ 𝑦 + 𝑧 = 1

𝑥 + 𝑦2
+ 𝑧 = 1

𝑥 + 𝑦 + 𝑧2
= 1

∅
𝐹 (︀1⌋︀ ↓
{𝑥2 + 𝑦 + 𝑧 = 1}

𝐹 (︀2⌋︀ ↓

{ 𝑥 + 𝑦2 + 𝑧 = 1
𝑦4 + (2𝑧 − 2)𝑦2 + 𝑦 + (𝑧2 − 𝑧) = 0 (︀

𝐹 (︀3⌋︀ ↙ ↙ ↘ ↘
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2
+ 2𝑧 − 1 = 0

,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0
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Motivations and Challenges
Motivations:

• Symbolic solving is difficult but still desirable in many fields

• Algorithmic development has come a long way [7]; must now focus on
implementation techniques, making the most of modern hardware

ë Multicore processors, cache hierarchy
ë Must apply parallel computing and data locality

Challenges:
• The application of high-performance techniques to high-level

geometric algorithms

• Different problem instances have different “hot spots”:
pseudo-division, subresultants, factorization, GCDs, etc.

• Potential parallelism is problem-dependent and not algorithmic
ë Geometry may or may not split into different components
ë Finding splittings is as difficulty as solving the problem
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Unbalanced and Irregular Parallelism

• More parallelism exposed as more components found,
• Work unbalanced between branches; this is irregular parallelism
• Mechanism needed for adaptive, dynamic parallelism
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Previous Works
• Long history of theoretical and algorithmic development in triangular

decomposition [3, 5, 7–9, 19, 22, 23]

• Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

ë Such as in Gröbner Bases [2, 6, 11] and CAD [21]

• Recent parallelism of low-level routines with regular parallelism:
ë Polynomial arithmetic [12, 16]
ë Modular methods for GCDs and Factorization [14, 18]

• High-level computer algebra algorithms, often with irregular
parallelism, have seen little progress in research or implementation

ë The normalization algorithm of [4] finds components serially, then
processes each component with a simple parallel map

ë Early work on parallel triangular decomposition was limited by
symmetric multi-processing and inter-process communication [20]
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Contributions in this Thesis

1 Algebraic Class Hierarchy

2 Object-Oriented Parallel Support

3 High-Performance Triangular Decomposition

4 Designing the Next Generation of Triangular Decomposition

5 Lazy & Parallel Hensel Factorization
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BPAS Library

• An open-source C/C++ library for polynomial algebra
ë Univariate, bivariate, multivariate polynomials over Z,Q,Z⇑𝑝Z,C
ë GCDs, Factorization, (multi-dimensional) FFTs, Symbolic integration
ë Triangular decomposition, Hensel factorization

• High-performance implementations for modern architectures: data
locality, parallelism

• Over 600,000 lines of code.
• Encapsulate complexity for ease-of-use, maintainability, extensibility
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Algebraic Class Hierarchy

Compile-time introspection, Template Metaprogramming,

Ring IntegralDomain EuclideanDomain Field

• Ring-like algebraic structures naturally form a hierarchy, but elements
of different Rings may not be mathematically compatible

• Static polymorphism, implicit conversion ensures compile-time
mathematical type safety

• Other libraries like Singular, CoCoA, LinBox use run-time values to
check compatibility

“Dynamic” type creation
• Creation of new types from composition of others
• Given 𝑅, is 𝑅(︀𝑥⌋︀ a ring? integral domain? Euclidean domain?
• Conditional Export: modify interface of Type<T> based on T
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Object-Oriented and Cooperative Parallelism

• Motivated by dynamic multithreading concurrency platforms
ë Cilk, OpenMP, TBB
ë User specifies where concurrency is possible
ë Runtime decides what and how to execute in parallel

• Framework entirely encapsulates parallel computing constructs:
ë Clean user-code
ë Allows for dynamic multithreading

• Support for parallel patterns: meta-algorithms for efficient parallel
computing

• Composition and Cooperation of parallel regions:
ë Layers of parallelism allow for dynamic load-balancing via dynamic

resource distribution supports irregular parallelism
ë Priority tasks
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High-Performance Triangular Decomposition

1 High-performance triangular decomp., core operations in C/C++

2 Cooperative component-level parallelism and low-level parallelism

3 Large-scale and systematic experimentation of triangular
decomposition

Next-Generation Triangular Decomposition
1 Modular algorithms to avoid expression swell

2 Advances in parallel multivariate polynomial multiplication

3 Algorithms and data structures to avoid redundant computations
ë Speculative subresultants avoids unnecessary computation
ë Regular chain universe
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Lazy & Parallel Hensel Factorization

Towards computing limit points, an efficient implementation of EHC,
multivariate power series, Laurent series, Puiseux series.

1 Hensel factorization via Weierstrass Preparation Theorem
ë Computes roots of 𝐹 (𝑋1, . . . , 𝑋𝑛, 𝑌 ) as power series in 𝑋1, . . . , 𝑋𝑛

2 High-performance, lazy, multivariate power series
ë First known implementation in a compiled code
ë A basis toward Laurent series and Puiseux series

3 Complexity analyses for Hensel factorization, WPT

4 Parallel pipeline implementation of Hensel factorization to compute
all roots simultaneously

ë First known pipeline implementation in symbolic computation
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Hensel’s Lemma: A Brief Overview
An approximate factorization can be “lifted” to the true factorization

1 The Polynomial Case
ë 𝐹 (𝑋1, . . . , 𝑋𝑛, 𝑌 ) = 𝐹 (𝑋, 𝑌 ) = 𝑓1 𝑓2⋯ 𝑓𝑟, 𝑓𝑖 are polynomials
ë Given upper bounds on the degs. of 𝑓𝑖: evaluation-interpolation
ë Over Z𝑝(︀𝑋, 𝑌 ⌋︀, Hensel lifting can be done in 𝒪(𝑑𝑋

2𝑑𝑌 + 𝑑𝑋𝑑𝑌
2) [17]

2 Polynomials with Puiseux series roots, 𝑘 is num. terms in series
ë Newton-Puiseux Theorem: for 𝐹 ∈ C(︀𝑋, 𝑌 ⌋︀, 𝒪(𝑑2𝑀(𝑘)) [15]

𝐹 (𝑋, 𝑌 ) = (𝑌 − 𝑓1)⋯(𝑌 − 𝑓𝑟), 𝑓𝑖 are Puiseux series in 𝑋

ë Extended Hensel Construction: for 𝐹 ∈ K(︀𝑋, 𝑌 ⌋︀, 𝒪(𝑘2𝑑𝑀(𝑑)) [1]
𝐹 (𝑋, 𝑌 ) = (𝑌 − 𝑓1)⋯(𝑌 − 𝑓𝑟), 𝑓𝑖 are Puiseux series in 𝑋

3 Polynomials with Power Series Coefficients
ë EHC : in theory (not implemented) factors polys with power series coefs
ë Our solution: 𝐹 = (𝑌 − 𝑓1)⋯(𝑌 − 𝑓𝑟), 𝑓𝑖 are power series in 𝑋

Over K(︀(︀𝑋⌋︀⌋︀(︀𝑌 ⌋︀: 𝒪(𝑑2
𝑌 𝑘2)

Assume 𝐹 is squarefree;

𝑀(𝑛) is the time required to multiply two polynomials of degree 𝑛; K is algebraically closed
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Polynomial Notations
• Let K be a perfect field (e.g. Q or C) and K its algebraic closure

• Let K(︀𝑋⌋︀ be the set of multivariate polynomials (a polynomial ring)
with 𝑛 ordered variables, 𝑋 = 𝑋1 < ⋯ < 𝑋𝑛.

• For 𝑝 ∈ K(︀𝑋⌋︀:
ë the main variable of 𝑝 is the maximum variable with positive degree
ë the initial of 𝑝 is the leading coeff. of 𝑝 with respect to its main variable
ë the tail of 𝑝 is the terms leftover after setting its initial to 0

(2𝑦 + 𝑏𝑎)𝑥2 + (𝑏𝑦)𝑥 + 𝑎2 ∈ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

• The zero set of 𝐹 ⊂ K(︀𝑋⌋︀ is an algebraic variety—the geometric
representation of its solutions

ë 𝑉 (𝐹 ) = {(𝑎1, . . . , 𝑎𝑛) ∈ K
𝑛 ⋃︀ 𝑓(𝑎1, . . . , 𝑎𝑛) = 0, ∀𝑓 ∈ 𝐹}

• For any subset 𝑆 ⊂ K𝑛, its Zariski closure 𝑆 is the smallest algebraic
variety containing 𝑆.
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Triangular Sets and Regular Chains
A triangular set 𝑇 ⊂ K(︀𝑋⌋︀ is a collection of polynomials with pairwise
different main variables

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑇𝑣 = ℎ 𝑣𝑑 + tail(𝑇𝑣)

𝑇−𝑣 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ K(︀𝑋⌋︀

Example:

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(2𝑦 + 𝑏𝑎)𝑥 − 𝑏𝑦 + 𝑎2

2𝑦2 − 𝑏𝑦 − 𝑎2

𝑎 + 𝑏

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

A triangular set is a regular chain if:
(𝑖) 𝑇 −𝑣 is a regular chain, and

(𝑖𝑖) ℎ (i.e. init(𝑇𝑣)) is regular (neither 0 nor a zero-divisor) w.r.t. 𝑇−𝑣

The dimension of a regular chain 𝑇 is 𝑛 − ⋃︀𝑇 ⋃︀.
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The foundation of splitting: regularity testing
To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion

• either the initial is regular, or it is not regular

𝑓 = (𝑦 + 1)𝑥2 − 𝑥

𝑇 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦2 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 − 1 = 0
𝑧 − 1 = 0

𝑇3 =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇4 =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

2𝑥2 − 𝑥 = 0
𝑦 − 1 = 0
𝑧 − 1 = 0

𝑦 +
1 =

0

𝑦 + 1 ≠ 0

𝑓 = 𝑥

𝑓 = 2𝑥2
− 𝑥

This actually forms a direct product isomorphism:
K(︀𝑥, 𝑦, 𝑧⌋︀⇑sat(𝑇 ) ≅ K(︀𝑥, 𝑦, 𝑧⌋︀⇑sat(𝑇1) ⊗ K(︀𝑥, 𝑦, 𝑧⌋︀⇑sat(𝑇2)
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Quasi-Components and Triangular Decomposition

Quasi-component of a regular chain: Let ℎ𝑇 =∏𝑝∈𝑇 init(𝑝)

• 𝑊 (𝑇 ) ∶= 𝑉 (𝑇 ) ∖ 𝑉 (ℎ𝑇 ) • 𝑊 (𝑇 ) = 𝑉 (𝑇 ) ∖ 𝑉 (ℎ𝑇 ) • 𝑊 (∅) = K𝑛

A triangular decomposition of an input system 𝐹 ⊆ K(︀𝑋⌋︀ is a set of
regular chains 𝑇1, . . . , 𝑇𝑒 such that:

(Lazard-Wu decomposition) 𝑉 (𝐹 ) = ⋃𝑒
𝑖=1 𝑊 (𝑇𝑖), or

(Kalkbrener decomposition) 𝑉 (𝐹 ) = ⋃𝑒
𝑖=1 𝑊 (𝑇𝑖)

Some 𝑇𝑖 may be redundant; ∃𝑗 𝑊 (𝑇𝑖) ⊆ 𝑊 (𝑇𝑗)
• Should not return excessive solutions to client code/users
• Suggests some branches of computation are wasteful and unnecessary
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All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

ë In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize RemoveReundancies

Intersect
IntersectFree

CleanChain

IntersectAlgebraicRegularize

RegularGCD

Extend

Alex Brandt Design & Implementation of a High-Performance System Solver August 2, 2022 25 / 57



Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition
Regular Chains
Concurrency Opportunities & Parallel Patterns
Experimentation
Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
Limits Points & Extended Hensel Construction
Lazy Multivariate Power Series
Hensel Factorization

5 Conclusions and Future Work

Alex Brandt Design & Implementation of a High-Performance System Solver August 2, 2022 26 / 57



Concurrency Opportunities

Component-level parallelism
• Concurrency in incremental decomposition: “triangularize tasks”

ë Map (parallel for-loop), Workpile (queue with parallel while-loop)
• Concurrency between the many subroutines which call Regularize

ë Asynchronous Generators (Producer-Consumer), Pipeline

• Removing redundant components
ë Divide-and-Conquer like mergesort Ô⇒ Fork-Join

Low-level parallelism
• Subresultant chains

ë Applies Map to computing modular images for interpolation and
Chinese Remainder Theorem.

ë Limited to univariate and bivariate subresultants
• Factorization, polynomial arithmetic (work in progress)
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Triangularize: a task-based approach
Algorithm 1 TriangularizeByTasks(𝐹 )
Input: a finite set 𝐹 ⊆ K(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ K(︀𝑋⌋︀ such that 𝑉 (𝐹 ) = 𝑊 (𝑇1)∪⋯∪𝑊 (𝑇𝑒)
1: Tasks ∶= { (𝐹,∅) }; 𝒯 ∶= ∅
2: while ⋃︀Tasks ⋃︀ > 0 do
3: (𝑃, 𝑇 ) ∶= pop a task from Tasks
4: Choose a polynomial 𝑝 ∈ 𝑃 ; 𝑃 ′ ∶= 𝑃 ∖ {𝑝}
5: for 𝑇 ′ in Intersect(𝑝, 𝑇 ) do
6: if ⋃︀𝑃 ′⋃︀ = 0 then 𝒯 ∶= 𝒯 ∪ {𝑇 ′}
7: else Tasks ∶= Tasks ∪ {(𝑃 ′, 𝑇 ′)}
8: return RemoveRedundantComponents(𝒯 )

• Performs a depth-first search

• Tasks is essentially a data structure for a task scheduler

• A task can create more tasks, workers pop Tasks until none remain.
• Adaptive to load-balancing, no inter-task synchronization
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Triangularize Subroutine Pipeline

Triangularize

Intersect
IntersectFree

CleanChain
IntersectAlgebraicRegularize

RegularGCD
Extend

• Function call stack creates a dynamic parallel pipeline as several
generators (producers) invoked and consumers process the data.

• Data streams between subroutines; all soubroutines are effectively
non-blocking

• Pipeline creates fine-grained parallelism since work diminishes with
each recursive call
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Experimental Setup

• A suite of >3000 polynomial systems has been compiled from systems
in the literature, user-data, and bug reports provided by Maplesoft

• Only 1076 of these systems result in more than one component in
their triangular decomposition

• In all other cases:
ë No speed-up expected from component-level parallelism
ë Some slow-down is expected, due to parallel overheads

• Four separate parallel schemes can be active or inactive
ë Triangualrize tasks, generators, removing redundancies, subresultants

• Experiments run on a node with two 6-core Intel Xeon X5650 CPUs
ë 24 physical threads with hyperthreading
ë 12x4GB DDR3 RAM at 1.33 GHz
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Serial Performance

Serial triangular decomposition, BPAS vs RegularChains library of Maple
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Performance of Individual Parallel Schemes
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Performance of Combined Parallel Schemes
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Avoiding Redundant Computations: Dynamic Evaluation

Two branches are likely to share geometric and algebraic features

𝑇1 = {
𝑎(𝑥, 𝑦)
𝑐(𝑦)𝑑(𝑦) 𝑇2 = {

𝑏(𝑥, 𝑦)
𝑐(𝑦)𝑑(𝑦)

• Computations may split 𝑇1 into {𝑎(𝑥, 𝑦), 𝑐(𝑦)} and {𝑎(𝑦, 𝑧), 𝑑(𝑦)}
• 𝑇2 hould automatically split into {𝑏(𝑥, 𝑦), 𝑐(𝑦)} and {𝑑(𝑦, 𝑧), 𝑑(𝑦)}

Inspired by cylindrical trees in Cylindrical Algebraic Decomposition [10]
1 Each regular chain should exist only once in the universe
2 A split found in one regular chain should automatically be applied to

other chains sharing that constraint
3 A unique and shared data structure Ô⇒ thread safety required
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Regular Chains as Paths, Latent Splits

∅

𝑑(𝑥3)

𝑐(𝑥2, 𝑥3)

𝑎(𝑥1, 𝑥2, 𝑥3) 𝑏(𝑥1, 𝑥2, 𝑥3)

(︀0, 0, 0⌋︀

(︀0, 0, 1⌋︀

(︀0, 1, 1⌋︀

(︀1, 1, 1⌋︀ (︀2, 1, 1⌋︀

𝑇1 ∶ (︀1, 1, 1⌋︀ 𝑇2 ∶ (︀2, 1, 1⌋︀

∅

𝑑1(𝑥3) 𝑑2(𝑥3)

𝑐(𝑥2, 𝑥3)

𝑎(𝑥1, 𝑥2, 𝑥3) 𝑏(𝑥1, 𝑥2, 𝑥3)

(︀0, 0, 0⌋︀

(︀0, 0, 2⌋︀ (︀0, 0, 3⌋︀

(︀0, 1, 1⌋︀

(︀1, 1, 1⌋︀ (︀2, 1, 1⌋︀

𝑇1 ∶ (︀1, 1, 1⌋︀ 𝑇3 ∶ (︀2, 1, 2⌋︀

𝑇4 ∶ (︀2, 1, 3⌋︀
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Triangular Decomposition, Limit Points
Triangular decomposition for an input set 𝐹 ⊂ K(︀𝑋⌋︀, find regular chains
𝑇1, . . . , 𝑇𝑒 such that:

• 𝑉 (𝐹 ) = 𝑊 (𝑇1) ∪ 𝑊 (𝑇2) ∪ ⋯ ∪ 𝑊 (𝑇𝑒) (Kalkbrener)

• 𝑉 (𝐹 ) = 𝑊 (𝑇1) ∪ 𝑊 (𝑇2) ∪ ⋯ ∪ 𝑊 (𝑇𝑒) (Lazard-Wu)

In Kalkbrener decomp. 𝑇1, . . . , 𝑇𝑒 represent only generic zeros of 𝑉 (𝐹 )
• Computing a Kalkbrener decomposition is much easier
• The non-trivial limit points of a regular chain are 𝑊 (𝑇 ) ∖𝑊 (𝑇 ).

Example:
𝑇1 = {

𝑏𝑥 + 𝑦
𝑎𝑦 − 𝑏2 Ô⇒ { 𝑥 = −𝑦

𝑏

𝑦 = 𝑏2

𝑎

where 𝑏 ≠ 0, 𝑎 ≠ 0

𝑊 (𝑇1) = 𝑊 (𝑇1) ∪
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0
𝑏 = 0

∪
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 = 0
𝑎 = 0
𝑏 = 0
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Computing Limit Points: Extended Hensel Construction

• Given a one-dimensional regular chain 𝑇 , 𝑊 (𝑇 ) is an algebraic curve

• The limit points of 𝑊 (𝑇 ) can be computed as limits of sequences of
points along “branches” of an algebraic curve [1]

• Computing branches of an algebraic curve 𝐹 (𝑋, 𝑌 ) involves
computing the roots of 𝐹 in 𝑌 as Puiseux series in 𝑋

Newton-Puiseux Theorem:

𝐹 (𝑋, 𝑌 ) = (𝑌 − 𝑓1)⋯ (𝑌 − 𝑓𝑑), 𝑓𝑖 are Puiseux series in 𝑋

Extended Hensel Construction (Hensel–Sasaki Construction):

𝐹 (𝑋1, . . . , 𝑋𝑛, 𝑌 ) = (𝑌 − 𝑓1)⋯ (𝑌 − 𝑓𝑑), 𝑓𝑖 are Puiseux series in 𝑋1, . . . , 𝑋𝑛

ë If 𝐹 is monic, the 𝑓𝑖 are power series in 𝑋1, . . . , 𝑋𝑛

Alex Brandt Design & Implementation of a High-Performance System Solver August 2, 2022 40 / 57



Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition
Regular Chains
Concurrency Opportunities & Parallel Patterns
Experimentation
Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
Limits Points & Extended Hensel Construction
Lazy Multivariate Power Series
Hensel Factorization

5 Conclusions and Future Work

Alex Brandt Design & Implementation of a High-Performance System Solver August 2, 2022 41 / 57



Power Series: Definition

A = K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ is the ring of multivariate formal power series

• Let K be algebraically closed.
• 𝑓 = ∑𝑒 𝑎𝑒𝑋𝑒 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀
• 𝑋𝑒 = 𝑋𝑒1

1 ⋯𝑋𝑒𝑛
𝑛 , ⋃︀𝑒⋃︀ = 𝑒1 +⋯ + 𝑒𝑛

• homogeneous part of degree 𝑘 : 𝑓(𝑘) = ∑⋃︀𝑒⋃︀=𝑘 𝑎𝑒𝑋𝑒

• ℳ = ∐︀𝑋1, . . . , 𝑋𝑛̃︀ is the maximal ideal of A ⇒ 𝑓(𝑘) ∈ℳ𝑘 ∖ℳ𝑘+1

Example:
𝑓 = 1 + 𝑋1 + 𝑋1𝑋2 + 𝑋2

2 + 𝑋1𝑋2
2 + 𝑋3

1 + ⋯ is known to precision 3

𝑓(1) = 𝑋1 𝑓(2) = 𝑋1𝑋2 +𝑋2
2 𝑓(3) = 𝑋1𝑋2

2 +𝑋3
1

A(︀𝑌 ⌋︀ is the ring of Univariate Polynomials over Power Series (UPoPS)
• 𝑓 = ∑𝑑

𝑖=0 𝑎𝑖𝑌
𝑖, 𝑎𝑖 ∈ A, 𝑎𝑑 ≠ 0, is a UPoPS of degree 𝑑
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Lazy Power Series: Design
Motivation: allow for terms to be computed on demand

1 Only compute terms explicitly needed:
ë requested by user; needed for subsequent operations

2 Ability to resume and increase precision of an existing power series

Our lazy power series:
1 store previously computed homogeneous parts;
2 return previously computed homogeneous parts and, otherwise,
3 use an update function to compute homogeneous parts as needed;
4 capture parameters required for the update function.

ë (3) and (4) effectively create a closure

Where update parameters are power series, they are called ancestors.
Addition, 𝑓 = 𝑔 + ℎ

• 𝑓(𝑘) = 𝑔(𝑘) + ℎ(𝑘)

Multiplication 𝑓 = 𝑔ℎ

• 𝑓(𝑘) = ∑𝑘
𝑖=0 𝑔(𝑖)ℎ(𝑘−𝑖)
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Ancestry Example

𝑝 = 𝑓𝑔 + 𝑎𝑏

𝑓 = 𝑔 = 𝑎 = 𝑏 =
1 + 𝑥 + 𝑦𝑧 + . . . 1 + 𝑧 + 𝑦 + . . . 1 + 𝑦 + 𝑥2 + . . . 1 + 𝑦𝑧 + 𝑥𝑧 + . . .

× ×

ℎ = 𝑐 =
1 + 𝑧 + 𝑦 + 𝑥 + 𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦 + . . . 1 + 𝑦 + 𝑦𝑧 + 𝑥𝑧 + 𝑥2 + . . .

+

𝑝 =
2 + 𝑧 + 2𝑦 + 𝑥 + 2𝑦𝑧 + 2𝑥𝑧 + 𝑥𝑦 + 𝑥2 + . . .
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Weierstrass Preparation: Informally

Weierstrass Preparation is a factorization of a UPoPS into two:
a distinguished polynomial and a unit

Let 𝑓 = 𝑎𝑑+𝑚𝑌 𝑑+𝑚 + 𝑎𝑑𝑌 𝑑 +⋯ + 𝑎2𝑌 2 + 𝑎1𝑌 + 𝑎0 be a UPoPS where:
• 𝑎𝑑+𝑚, . . . , 𝑎1, 𝑎0 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀
• 𝑎𝑑−1(0) = ⋯ = 𝑎0(0) = 0
• 𝑚 ∈ Z≥0

Weierstrass Preparation Theorem tells us:
• 𝑓 = 𝑝 𝛼

• 𝑝 = 𝑌 𝑑 + 𝑏𝑑−1𝑌 𝑑−1 +⋯ + 𝑏1𝑌 + 𝑏0, 𝑏𝑑−1(0) = ⋯ = 𝑏0(0) = 0
• 𝛼 is an invertible element of K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀(︀𝑌 ⌋︀⌋︀

A constructive proof of this theorem tells us that 𝑝 and 𝛼 can be
computed lazily from power series arithmetic in 𝒪(𝑑𝑚𝑘2) operations in K
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Hensel Factorization

Algorithm 2 HenselFactorization(𝑓)

Input: 𝑓 = 𝑌 𝑑 +∑𝑑−1
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀.
Output: 𝑓1, . . . , 𝑓𝑟 s.t. ∏𝑟

𝑖=1 𝑓𝑖 = 𝑓 , 𝑓𝑖(0, . . . , 0, 𝑌 ) = (𝑌 − 𝑐𝑖)𝑑
𝑖

1: 𝑓 = 𝑓(0, . . . , 0, 𝑌 )
2: (𝑐1, . . . , 𝑐𝑟), (𝑑1, . . . , 𝑑𝑟) ∶= roots and their multiplicities of 𝑓
3: 𝑓1 ∶= 𝑓
4: for 𝑖 ∶= 1 to 𝑟 − 1 do
5: 𝑔𝑖 ∶= 𝑓𝑖(𝑌 + 𝑐𝑖)
6: 𝑝𝑖, 𝛼𝑖 ∶= WeierstrassPreparation(𝑔𝑖)
7: 𝑓𝑖 ∶= 𝑝𝑖(𝑌 − 𝑐𝑖)
8: 𝑓𝑖+1 ∶= 𝛼𝑖(𝑌 − 𝑐𝑖)
9: 𝑓𝑟 ∶= 𝑓𝑟

10: return 𝑓1, . . . , 𝑓𝑟
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Parallel Opportunities in Hensel

𝑓 𝑔1 𝛼1

𝑝1 𝑓1

𝑓2 𝑔2 𝛼2

𝑝2 𝑓2

𝑓3 𝑔3 𝛼3

𝑝3 𝑓3

𝑓4
+𝑐1

−𝑐1

−𝑐1 +𝑐2

−𝑐2

−𝑐2 +𝑐3

−𝑐3

−𝑐3

• The output of one Weierstrass becomes input to another
• 𝑓𝑖+𝑖(𝑘) relies on 𝑓𝑖(𝑘)

• Can compute 𝑓𝑖(𝑘+1) and 𝑓𝑖+𝑖(𝑘) concurrently in a pipeline

Stage 1 (𝑓1) Stage 2 (𝑓2) Stage 3 (𝑓3) Stage 4 (𝑓4)
Time 1 𝑓1(1)
Time 2 𝑓1(2) 𝑓2(1)
Time 3 𝑓1(3) 𝑓2(2) 𝑓3(1)
Time 4 𝑓1(4) 𝑓2(3) 𝑓3(2) 𝑓4(1)
Time 5 𝑓1(5) 𝑓2(4) 𝑓3(3) 𝑓4(2)
Time 6 𝑓1(6) 𝑓2(5) 𝑓3(4) 𝑓4(3)
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Parallel Challenges and Composition

𝑓 𝑔1 𝛼1

𝑝1 𝑓1

𝑓2 𝑔2 𝛼2

𝑝2 𝑓2

𝑓3 𝑔3 𝛼3

𝑝3 𝑓3

𝑓4
+𝑐1

−𝑐1

−𝑐1 +𝑐2

−𝑐2

−𝑐2 +𝑐3

−𝑐3

−𝑐3

• Degrees and computational work diminish with each stage
ë deg(𝑔1) = 𝑑, deg(𝑔2) = 𝑑 − deg(𝑓1), . . .

• Dominant cost to update 𝑓𝑖 is WPT: 𝒪(deg(𝑝𝑖)deg(𝛼𝑖)𝑘2)

• To load-balance, execute WPT within each stage in parallel

• Assign 𝑡𝑖 threads to stage 𝑖 so that deg(𝑝𝑖)deg(𝛼𝑖) ⇑ 𝑡𝑖 is equal for
each stage.

• Better still, update a group of successive factors per stage.
ë To each stage 𝑠 assign factors 𝑓𝑠1 , . . . , 𝑓𝑠2 and 𝑡𝑠 threads so that
∑𝑠2

𝑖=𝑠1
deg(𝑝𝑖)deg(𝛼𝑖)⇑𝑡𝑠 is roughly equal for each stage.
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Parallel Speed-up Hensel Factorization

𝑥𝑟 =
𝑟

∏
𝑖=1

(𝑌 − 𝑖) +𝑋1(𝑌 3 + 𝑌 )
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Conclusion

Our Contributions:

1 Algebraic class hierarchy
ë Compile-time mathematical type safety
ë “Make it hard to do the wrong thing”: ease-of-use, extensibility

2 Object-oriented, composable parallel framework

3 High-performance triangular decomposition
ë Speculative computation
ë Component-level parallelism

4 Algorithms and data structures to avoid redundant computation

5 Lazy & Parallel Hensel Factorization
ë Complexity estimates guide dynamic load-balancing
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Future Work (1/2)

Parallel Computing & Software Design

• Further support for irregular parallelism

• New and hybrid parallel patterns, composition of patterns

• Cooperation of parallel regions
ë Gang scheduling, Cooperative multitasking
ë Dynamic resource re-distribution
ë Min/Max number of threads per region

• Quantitative profiling of irregular parallelism
ë How much concurrency was found?
ë How much parallelism was exploited?
ë Tuning of run-time parameters
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Future Work (2/2)

Computer Algebra & Symbolic Computation

• Avoiding redundant computation in triangular decomposition

• Regular chain universe
ë Dynamic evaluation, latent splits, splitting trees
ë Adding parallelism requires efficient shared data structures

• Extend lazy-evaluation to Laurent series, Puiseux series

• Parallel pipeline for Extended Hensel Construction

• Improved thread distribution in Hensel pipeline: consider multivariate
case and practical issues (coefficient sizes, locality)
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