The Design and Implementation of a High-Performance Polynomial System Solver

Alexander Brandt
Supervisor: Marc Moreno Maza
PhD Public Lecture
Department of Computer Science
University of Western Ontario

August 2, 2022

Solving Systems of Equations

Find values of x, y, z which satisfy $\quad F=\left\{\begin{array}{l}a(x, y, z)=0 \\ b(x, y, z)=0 \\ c(x, y, z)=0\end{array}\right.$

- Solving systems of equations is a fundamental problem in scientific computing
- Numerical methods are very efficient and useful in practice, but only find approximate solutions as floating point numbers
\hookrightarrow Newton's method, Homotopy methods, Gradient descent
- Symbolic methods to find exact solutions are required in robotics, celestial mechanics, cryptography, signal processing [13]
\hookrightarrow Particularly used to find a complete description of all solutions

Solving a Linear System of Equations

Step 1: triangularization

$$
\left\{\begin{array}{r}
x+3 y-2 z=6 \\
3 x+5 y+6 z=7 \\
2 x+4 y+3 z=8
\end{array}\right.
$$

(a) by elimination of variables:
$\left\{\begin{array}{r}x+3 y-2 z=6 \\ 3 x+5 y+6 z=7 \\ 2 x+4 y+3 z=8\end{array} \quad\right.$ solve for x substitute x ($\left\{\begin{array}{r}x=5-3 y+2 z \\ -4 y+12 z=-8 \\ -2 y+7 z=-2\end{array}\right.$ substitute y solve for y ($\left\{\begin{array}{l}x=5+2 z-3 y \\ y=2+3 z \\ z=2\end{array}\right.$
(b) by Gaussian elimination:

$$
\left[\begin{array}{rrr|r}
1 & 3 & -2 & 5 \\
3 & 5 & 6 & 7 \\
2 & 4 & 3 & 8
\end{array}\right] \Longrightarrow\left[\begin{array}{rrr|r}
1 & 3 & -2 & 5 \\
0 & 1 & -3 & 2 \\
0 & -2 & 7 & -2
\end{array}\right] \Longrightarrow\left[\begin{array}{rrr|r}
1 & 3 & -2 & 5 \\
0 & 1 & -3 & 2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Step 2: back-substitution to find particular values for x, y, z

Solving a Non-Linear System of Equations

Via Gröbner Basis we can "solve" a non-linear system

$$
\left\{\begin{array} { l }
{ x ^ { 2 } + y + z = 1 } \\
{ x + y ^ { 2 } + z = 1 } \\
{ x + y + z ^ { 2 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{r}
x+y+z^{2}=1 \\
(y+z-1)(y-z)=0 \\
z^{2}\left(z^{2}+2 y-1\right)=0 \\
z^{2}\left(z^{2}+2 z-1\right)(z-1)^{2}=0
\end{array}\right.\right.
$$

"Solving" a system is not just about finding particular values, rather:

> "find a description of the solutions from which we can easily extract relevant data"

Why?

- A positive-dimensional system has infinitely many solutions
- Underdetermined linear systems, and most non-linear systems
- Univariate polynomials of degree >4, it may not be possible to have their solutions described in radicals

Decomposing a Non-Linear System

Many ways to "solve" a system

$$
\left\{\begin{array} { l }
{ x ^ { 2 } + y + z = 1 } \\
{ x + y ^ { 2 } + z = 1 } \\
{ x + y + z ^ { 2 } = 1 }
\end{array} \quad \stackrel { \text { Gröbner Basis } } { \Longrightarrow } \quad \left\{\begin{array}{r}
x+y+z^{2}=1 \\
(y+z-1)(y-z)=0 \\
z^{2}\left(z^{2}+2 y-1\right)=0 \\
z^{2}\left(z^{2}+2 z-1\right)(z-1)^{2}=0
\end{array}\right.\right.
$$

\downarrow Triangular Decomposition

$$
\left\{\begin{array}{r}
x-z=0 \\
y-z=0 \\
z^{2}+2 z-1=0
\end{array},\left\{\begin{array}{r}
x=0 \\
y=0 \\
z-1=0
\end{array}, \quad\left\{\begin{array}{r}
x=0 \\
y-1=0 \\
z=0
\end{array}, \quad\left\{\begin{array}{r}
x-1=0 \\
y=0 \\
z=0
\end{array}\right.\right.\right.\right.
$$

Both solutions are equivalent (via a union)

- by using triangular decomposition, multiple components are found, suggesting possible component-level parallelism

Research Themes

Solving equations is a fundamental computational problem.
Triangular decomposition is a core operation in general computer algebra routines (solve in Maple).

1 Provide algorithmic schemes and implementation techniques for high-performance polynomial system solvers
\hookrightarrow Implementations of triangular decomposition are not as sophisticated as those based on Gröbner bases

2 Explore high-level, irregular parallelism in symbolic computation \hookrightarrow Typically limited to low-level, regular parallelism (e.g. arithmetic)

3 Examine software design for accessibility and maintainability of high-performance mathematical software
\hookrightarrow Re-use, maintainability, and adaptability often missing

Outline

1 Introduction
2 Contributions
3 Concurrency in Triangular Decomposition

- Regular Chains

■ Concurrency Opportunities \& Parallel Patterns

- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
■ Limits Points \& Extended Hensel Construction
■ Lazy Multivariate Power Series
■ Hensel Factorization
5 Conclusions and Future Work

Incremental Decomposition of a Non-Linear System

Intersect one equation at a time with the current solution set

$$
\begin{aligned}
& F=\left\{\begin{array}{l}
x^{2}+y+z=1 \\
x+y^{2}+z=1 \\
x+y+z^{2}=1
\end{array}\right. \\
& F[1] \quad \begin{array}{l}
\varnothing \\
\downarrow
\end{array} \\
& \left\{x^{2}+y+z=1\right\} \\
& F[2] \quad \downarrow \\
& \left\{\begin{array}{r}
x+y^{2}+z=1 \\
y^{4}+(2 z-2) y^{2}+y+\left(z^{2}-z\right)=0
\end{array}\right\} \\
& F[3] \\
& \left\{\begin{array}{rl}
x-z & =0 \\
y-z & =0 \\
z^{2}+2 z-1 & =0
\end{array},\left\{\begin{array}{r}
x \\
y
\end{array}=00, ~\left(\begin{array}{rl}
x & =0 \\
z-1 & =0
\end{array},\left\{\begin{array}{rl}
x-1 & =0 \\
y & =0 \\
z & =0
\end{array},\left\{\begin{array}{r}
x
\end{array}\right.\right.\right.\right.\right.
\end{aligned}
$$

Motivations and Challenges

Motivations:

- Symbolic solving is difficult but still desirable in many fields
- Algorithmic development has come a long way [7]; must now focus on implementation techniques, making the most of modern hardware
\hookrightarrow Multicore processors, cache hierarchy
\hookrightarrow Must apply parallel computing and data locality
Challenges:
- The application of high-performance techniques to high-level geometric algorithms
- Different problem instances have different "hot spots": pseudo-division, subresultants, factorization, GCDs, etc.
- Potential parallelism is problem-dependent and not algorithmic
\hookrightarrow Geometry may or may not split into different components
\hookrightarrow Finding splittings is as difficulty as solving the problem

Unbalanced and Irregular Parallelism

Sys2913 Component Tree

- More parallelism exposed as more components found,
- Work unbalanced between branches; this is irregular parallelism
- Mechanism needed for adaptive, dynamic parallelism

Previous Works

- Long history of theoretical and algorithmic development in triangular decomposition [3, 5, 7-9, 19, 22, 23]
- Parallelization of high-level algebraic and geometric algorithms was more common roughly 30 years ago
\hookrightarrow Such as in Gröbner Bases [2, 6, 11] and CAD [21]
- Recent parallelism of low-level routines with regular parallelism:
\hookrightarrow Polynomial arithmetic [12, 16]
\hookrightarrow Modular methods for GCDs and Factorization [14, 18]
- High-level computer algebra algorithms, often with irregular parallelism, have seen little progress in research or implementation
\hookrightarrow The normalization algorithm of [4] finds components serially, then processes each component with a simple parallel map
\hookrightarrow Early work on parallel triangular decomposition was limited by symmetric multi-processing and inter-process communication [20]

Outline

1 Introduction

2 Contributions
3 Concurrency in Triangular Decomposition

- Regular Chains

■ Concurrency Opportunities \& Parallel Patterns

- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
■ Limits Points \& Extended Hensel Construction
■ Lazy Multivariate Power Series
■ Hensel Factorization
5 Conclusions and Future Work

Contributions in this Thesis

1 Algebraic Class Hierarchy

2 Object-Oriented Parallel Support

3 High-Performance Triangular Decomposition

4 Designing the Next Generation of Triangular Decomposition

5 Lazy \& Parallel Hensel Factorization

BPAS Library

- An open-source C/C++ library for polynomial algebra
\hookrightarrow Univariate, bivariate, multivariate polynomials over $\mathbb{Z}, \mathbb{Q}, \mathbb{Z} / p \mathbb{Z}, \mathbb{C}$
\hookrightarrow GCDs, Factorization, (multi-dimensional) FFTs, Symbolic integration
\hookrightarrow Triangular decomposition, Hensel factorization
- High-performance implementations for modern architectures: data locality, parallelism
- Over 600,000 lines of code.
- Encapsulate complexity for ease-of-use, maintainability, extensibility

Algebraic Class Hierarchy

Compile-time introspection, Template Metaprogramming,

- Ring-like algebraic structures naturally form a hierarchy, but elements of different Rings may not be mathematically compatible
- Static polymorphism, implicit conversion ensures compile-time mathematical type safety
- Other libraries like Singular, CoCoA, LinBox use run-time values to check compatibility
"Dynamic" type creation
- Creation of new types from composition of others
- Given R, is $R[x]$ a ring? integral domain? Euclidean domain?
- Conditional Export: modify interface of Type<T> based on T

Object-Oriented and Cooperative Parallelism

- Motivated by dynamic multithreading concurrency platforms
\hookrightarrow Cilk, OpenMP, TBB
\hookrightarrow User specifies where concurrency is possible
\hookrightarrow Runtime decides what and how to execute in parallel
- Framework entirely encapsulates parallel computing constructs:
\hookrightarrow Clean user-code
\hookrightarrow Allows for dynamic multithreading
- Support for parallel patterns: meta-algorithms for efficient parallel computing
- Composition and Cooperation of parallel regions:
\hookrightarrow Layers of parallelism allow for dynamic load-balancing via dynamic resource distribution supports irregular parallelism
\hookrightarrow Priority tasks

High-Performance Triangular Decomposition

1 High-performance triangular decomp., core operations in $\mathrm{C} / \mathrm{C}++$
2 Cooperative component-level parallelism and low-level parallelism

3 Large-scale and systematic experimentation of triangular decomposition

Next-Generation Triangular Decomposition
1 Modular algorithms to avoid expression swell
2 Advances in parallel multivariate polynomial multiplication
3 Algorithms and data structures to avoid redundant computations
\hookrightarrow Speculative subresultants avoids unnecessary computation
\hookrightarrow Regular chain universe

Lazy \& Parallel Hensel Factorization

Towards computing limit points, an efficient implementation of EHC, multivariate power series, Laurent series, Puiseux series.

1 Hensel factorization via Weierstrass Preparation Theorem
\hookrightarrow Computes roots of $F\left(X_{1}, \ldots, X_{n}, Y\right)$ as power series in X_{1}, \ldots, X_{n}
2 High-performance, lazy, multivariate power series
\hookrightarrow First known implementation in a compiled code
\hookrightarrow A basis toward Laurent series and Puiseux series

3 Complexity analyses for Hensel factorization, WPT
4 Parallel pipeline implementation of Hensel factorization to compute all roots simultaneously
\hookrightarrow First known pipeline implementation in symbolic computation

Hensel's Lemma: A Brief Overview

An approximate factorization can be "lifted" to the true factorization
1 The Polynomial Case
$\hookrightarrow F\left(X_{1}, \ldots, X_{n}, Y\right)=F(\underline{X}, Y)=f_{1} f_{2} \cdots f_{r}, f_{i}$ are polynomials
\hookrightarrow Given upper bounds on the degs. of f_{i} : evaluation-interpolation
\hookrightarrow Over $\mathbb{Z}_{p}[X, Y]$, Hensel lifting can be done in $\mathcal{O}\left(d_{X}{ }^{2} d_{Y}+d_{X} d_{Y}{ }^{2}\right)$ [17]

Hensel's Lemma: A Brief Overview

An approximate factorization can be "lifted" to the true factorization
1 The Polynomial Case
$\hookrightarrow F\left(X_{1}, \ldots, X_{n}, Y\right)=F(\underline{X}, Y)=f_{1} f_{2} \cdots f_{r}, f_{i}$ are polynomials
\hookrightarrow Given upper bounds on the degs. of f_{i} : evaluation-interpolation
\hookrightarrow Over $\mathbb{Z}_{p}[X, Y]$, Hensel lifting can be done in $\mathcal{O}\left(d_{X}{ }^{2} d_{Y}+d_{X} d_{Y}{ }^{2}\right)$ [17]
2 Polynomials with Puiseux series roots, k is num. terms in series
\hookrightarrow Newton-Puiseux Theorem: for $F \in \mathbb{C}[X, Y], \mathcal{O}\left(d^{2} M(k)\right)$ [15] $F(X, Y)=\left(Y-f_{1}\right) \cdots\left(Y-f_{r}\right), f_{i}$ are Puiseux series in X
\hookrightarrow Extended Hensel Construction: for $F \in \mathbb{K}[X, Y], \mathcal{O}\left(k^{2} d M(d)\right)$ [1] $F(\underline{X}, Y)=\left(Y-f_{1}\right) \cdots\left(Y-f_{r}\right), f_{i}$ are Puiseux series in \underline{X}

Assume F is squarefree; $M(n)$ is the time required to multiply two polynomials of degree $n ; \mathbb{K}$ is algebraically closed

Hensel's Lemma: A Brief Overview

An approximate factorization can be "lifted" to the true factorization
1 The Polynomial Case
$\hookrightarrow F\left(X_{1}, \ldots, X_{n}, Y\right)=F(\underline{X}, Y)=f_{1} f_{2} \cdots f_{r}, f_{i}$ are polynomials
\hookrightarrow Given upper bounds on the degs. of f_{i} : evaluation-interpolation
\hookrightarrow Over $\mathbb{Z}_{p}[X, Y]$, Hensel lifting can be done in $\mathcal{O}\left(d_{X}{ }^{2} d_{Y}+d_{X} d_{Y}{ }^{2}\right)$ [17]
2 Polynomials with Puiseux series roots, k is num. terms in series
\hookrightarrow Newton-Puiseux Theorem: for $F \in \mathbb{C}[X, Y], \mathcal{O}\left(d^{2} M(k)\right)$ [15] $F(X, Y)=\left(Y-f_{1}\right) \cdots\left(Y-f_{r}\right), f_{i}$ are Puiseux series in X
\hookrightarrow Extended Hensel Construction: for $F \in \mathbb{K}[X, Y], \mathcal{O}\left(k^{2} d M(d)\right)$ [1] $F(\underline{X}, Y)=\left(Y-f_{1}\right) \cdots\left(Y-f_{r}\right), f_{i}$ are Puiseux series in \underline{X}

3 Polynomials with Power Series Coefficients
$\hookrightarrow E H C$: in theory (not implemented) factors polys with power series coefs
\hookrightarrow Our solution: $F=\left(Y-f_{1}\right) \cdots\left(Y-f_{r}\right), f_{i}$ are power series in \underline{X} Over $\mathbb{K}[[X]][Y]: \mathcal{O}\left(d_{Y}^{2} k^{2}\right)$

Assume F is squarefree; $M(n)$ is the time required to multiply two polynomials of degree $n ; \mathbb{K}$ is algebraically closed

Outline

1 Introduction

2 Contributions
3 Concurrency in Triangular Decomposition
■ Regular Chains
■ Concurrency Opportunities \& Parallel Patterns
■ Experimentation

- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
■ Limits Points \& Extended Hensel Construction
■ Lazy Multivariate Power Series

- Hensel Factorization

5 Conclusions and Future Work

Polynomial Notations

- Let \mathbb{K} be a perfect field (e.g. \mathbb{Q} or \mathbb{C}) and $\overline{\mathbb{K}}$ its algebraic closure
- Let $\mathbb{K}[\underline{X}]$ be the set of multivariate polynomials (a polynomial ring) with n ordered variables, $\underline{X}=X_{1}<\cdots<X_{n}$.
- For $p \in \mathbb{K}[\underline{X}]$:
\hookrightarrow the main variable of p is the maximum variable with positive degree
\hookrightarrow the initial of p is the leading coeff. of p with respect to its main variable
\hookrightarrow the tail of p is the terms leftover after setting its initial to 0

$$
(2 y+b a) x^{2}+(b y) x+a^{2} \quad \in \mathbb{Q}[b<a<y<x]
$$

- The zero set of $F \subset \mathbb{K}[\underline{X}]$ is an algebraic variety-the geometric representation of its solutions

$$
\hookrightarrow V(F)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \overline{\mathbb{K}}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0, \forall f \in F\right\}
$$

- For any subset $S \subset \overline{\mathbb{K}}^{n}$, its Zariski closure \bar{S} is the smallest algebraic variety containing S.

Triangular Sets and Regular Chains

A triangular set $T \subset \mathbb{K}[\underline{X}]$ is a collection of polynomials with pairwise different main variables

Example:

$$
\begin{aligned}
T & =\left\{\begin{array}{r}
(2 y+b a) x-b y+a^{2} \\
2 y^{2}-b y-a^{2} \\
a+b
\end{array}\right\} \\
& \subset \mathbb{Q}[b<a<y<x]
\end{aligned}
$$

A triangular set is a regular chain if:
(i) T_{v}^{-}is a regular chain, and
(ii) h (i.e. $\operatorname{init}\left(T_{v}\right)$) is regular (neither 0 nor a zero-divisor) w.r.t. T_{v}^{-}

The dimension of a regular chain T is $n-|T|$.

The foundation of splitting: regularity testing

To intersect a polynomial with an existing regular chain, it must have a regular initial, regularizing finds splittings via a case discussion

- either the initial is regular, or it is not regular

$$
\begin{aligned}
& f=(y+1) x^{2}-x \\
& T=\left\{\begin{aligned}
y^{2}-1=0 \\
z-1=0
\end{aligned}\right. \\
& y+1=0
\end{aligned} \quad \xrightarrow{y+1} T_{3}=\left\{\begin{array}{r}
x=0 \\
y+1=0 \\
z-1=0
\end{array}\right]
$$

$$
\mathbb{K}[x, y, z] / \operatorname{sat}(T) \cong \mathbb{K}[x, y, z] / \operatorname{sat}\left(T_{1}\right) \otimes \mathbb{K}[x, y, z] / \operatorname{sat}\left(T_{2}\right)
$$

Quasi-Components and Triangular Decomposition

Quasi-component of a regular chain: Let $h_{T}=\prod_{p \in T} \operatorname{init}(p)$

- $W(T):=V(T) \backslash V\left(h_{T}\right) \quad$ - $\overline{W(T)}=\overline{V(T) \backslash V\left(h_{T}\right)} \quad$ • $W(\varnothing)=\overline{\mathbb{K}}^{n}$

A triangular decomposition of an input system $F \subseteq \mathbb{K}[\underline{X}]$ is a set of regular chains T_{1}, \ldots, T_{e} such that:
(Lazard-Wu decomposition) $\quad V(F)=\mathrm{U}_{i=1}^{e} W\left(T_{i}\right)$, or
(Kalkbrener decomposition) $\quad V(F)=\bigcup_{i=1}^{e} \overline{W\left(T_{i}\right)}$

Some T_{i} may be redundant; $\exists j W\left(T_{i}\right) \subseteq W\left(T_{j}\right)$

- Should not return excessive solutions to client code/users
- Suggests some branches of computation are wasteful and unnecessary

All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of mutually recursive functions do the heavy-lifting.
\hookrightarrow In all cases, polynomials are forced to be regular and splittings are (possibly) found via Regularize

Outline

1 Introduction

2 Contributions
3 Concurrency in Triangular Decomposition

- Regular Chains

■ Concurrency Opportunities \& Parallel Patterns

- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
■ Limits Points \& Extended Hensel Construction
■ Lazy Multivariate Power Series
■ Hensel Factorization
5 Conclusions and Future Work

Concurrency Opportunities

Component-level parallelism

- Concurrency in incremental decomposition: "triangularize tasks"
\hookrightarrow Map (parallel for-loop), Workpile (queue with parallel while-loop)
- Concurrency between the many subroutines which call Regularize
\hookrightarrow Asynchronous Generators (Producer-Consumer), Pipeline
- Removing redundant components
\hookrightarrow Divide-and-Conquer like mergesort \Longrightarrow Fork-Join

Low-level parallelism

- Subresultant chains
\hookrightarrow Applies Map to computing modular images for interpolation and Chinese Remainder Theorem.
\hookrightarrow Limited to univariate and bivariate subresultants
- Factorization, polynomial arithmetic (work in progress)

Triangularize: a task-based approach

Algorithm 1 TriangularizeByTasks (F)
Input: a finite set $F \subseteq \mathbb{K}[\underline{X}]$
Output: regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbb{K}[\underline{X}]$ such that $V(F)=W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right)$
1: Tasks := $\{(F, \varnothing)\} ; \mathcal{T}:=\varnothing$
2: while \mid Tasks $\mid>0$ do
3: $\quad(P, T):=$ pop a task from Tasks
4: Choose a polynomial $p \in P ; P^{\prime}:=P \backslash\{p\}$
5: \quad for T^{\prime} in $\operatorname{Intersect}(p, T)$ do
if $\left|P^{\prime}\right|=0$ then $\mathcal{T}:=\mathcal{T} \cup\left\{T^{\prime}\right\}$ else Tasks:= Tasks $\cup\left\{\left(P^{\prime}, T^{\prime}\right)\right\}$
8: return RemoveRedundantComponents (\mathcal{T})

- Performs a depth-first search
- Tasks is essentially a data structure for a task scheduler
- A task can create more tasks, workers pop Tasks until none remain.
- Adaptive to load-balancing, no inter-task synchronization

Triangularize Subroutine Pipeline

- Function call stack creates a dynamic parallel pipeline as several generators (producers) invoked and consumers process the data.
- Data streams between subroutines; all soubroutines are effectively non-blocking
- Pipeline creates fine-grained parallelism since work diminishes with each recursive call

Outline

1 Introduction

2 Contributions
3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities \& Parallel Patterns
- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
■ Limits Points \& Extended Hensel Construction

- Lazy Multivariate Power Series

■ Hensel Factorization
5 Conclusions and Future Work

Experimental Setup

- A suite of >3000 polynomial systems has been compiled from systems in the literature, user-data, and bug reports provided by Maplesoft
- Only 1076 of these systems result in more than one component in their triangular decomposition
- In all other cases:
\hookrightarrow No speed-up expected from component-level parallelism
\hookrightarrow Some slow-down is expected, due to parallel overheads
- Four separate parallel schemes can be active or inactive
\hookrightarrow Triangualrize tasks, generators, removing redundancies, subresultants
- Experiments run on a node with two 6-core Intel Xeon X5650 CPUs
$\hookrightarrow 24$ physical threads with hyperthreading
$\hookrightarrow 12 \times 4$ GB DDR3 RAM at 1.33 GHz

Serial Performance

Serial triangular decomposition, BPAS vs RegularChains library of Maple

Performance of Individual Parallel Schemes

Performance of Combined Parallel Schemes

Outline

1 Introduction

2 Contributions
3 Concurrency in Triangular Decomposition

- Regular Chains

■ Concurrency Opportunities \& Parallel Patterns
■ Experimentation

- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
■ Limits Points \& Extended Hensel Construction
■ Lazy Multivariate Power Series

- Hensel Factorization

5 Conclusions and Future Work

Avoiding Redundant Computations: Dynamic Evaluation

Two branches are likely to share geometric and algebraic features

$$
T_{1}=\left\{\begin{array}{l}
a(x, y) \\
c(y) d(y)
\end{array} \quad T_{2}=\left\{\begin{array}{l}
b(x, y) \\
c(y) d(y)
\end{array}\right.\right.
$$

- Computations may split T_{1} into $\{a(x, y), c(y)\}$ and $\{a(y, z), d(y)\}$
- T_{2} hould automatically split into $\{b(x, y), c(y)\}$ and $\{d(y, z), d(y)\}$

Inspired by cylindrical trees in Cylindrical Algebraic Decomposition [10]
1 Each regular chain should exist only once in the universe
2 A split found in one regular chain should automatically be applied to other chains sharing that constraint
3 A unique and shared data structure \Longrightarrow thread safety required

Regular Chains as Paths, Latent Splits

$$
T_{1}:[1,1,1] \quad T_{2}:[2,1,1]
$$

$$
\begin{array}{ll}
T_{1}:[1,1,1] & T_{3}:[2,1,2] \\
& T_{4}:[2,1,3]
\end{array}
$$

Outline

1 Introduction

2 Contributions
3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities \& Parallel Patterns
- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization

- Limits Points \& Extended Hensel Construction

■ Lazy Multivariate Power Series
■ Hensel Factorization
3 Conclusions and Future Work

Triangular Decomposition, Limit Points

Triangular decomposition for an input set $F \subset \mathbb{K}[\underline{X}]$, find regular chains T_{1}, \ldots, T_{e} such that:

- $\quad V(F)=\overline{W\left(T_{1}\right)} \cup \overline{W\left(T_{2}\right)} \cup \cdots \cup \overline{W\left(T_{e}\right)} \quad$ (Kalkbrener)
- $V(F)=W\left(T_{1}\right) \cup W\left(T_{2}\right) \cup \cdots \cup W\left(T_{e}\right) \quad($ Lazard-Wu)

In Kalkbrener decomp. T_{1}, \ldots, T_{e} represent only generic zeros of $V(F)$

- Computing a Kalkbrener decomposition is much easier
- The non-trivial limit points of a regular chain are $\overline{W(T)} \backslash W(T)$.

Example:

$$
\begin{aligned}
& T_{1}=\left\{\begin{array} { l }
{ b x + y } \\
{ a y - b ^ { 2 } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x=\frac{-y}{b} \\
y=\frac{b^{2}}{a}
\end{array} \text { where } b \neq 0, a \neq 0\right.\right. \\
& \overline{W\left(T_{1}\right)}=W\left(T_{1}\right) \cup\left\{\begin{array} { l }
{ x = 0 } \\
{ y = 0 } \\
{ b = 0 }
\end{array} \cup \left\{\begin{array}{l}
y=0 \\
a=0 \\
b=0
\end{array}\right.\right.
\end{aligned}
$$

Computing Limit Points: Extended Hensel Construction

- Given a one-dimensional regular chain $T, \overline{W(T)}$ is an algebraic curve
- The limit points of $W(T)$ can be computed as limits of sequences of points along "branches" of an algebraic curve [1]
- Computing branches of an algebraic curve $F(X, Y)$ involves computing the roots of F in Y as Puiseux series in X

Newton-Puiseux Theorem:

$$
F(X, Y)=\left(Y-f_{1}\right) \cdots\left(Y-f_{d}\right), f_{i} \text { are Puiseux series in } X
$$

Extended Hensel Construction (Hensel-Sasaki Construction):

$$
F\left(X_{1}, \ldots, X_{n}, Y\right)=\left(Y-f_{1}\right) \cdots\left(Y-f_{d}\right), f_{i} \text { are Puiseux series in } X_{1}, \ldots, X_{n}
$$

\hookrightarrow If F is monic, the f_{i} are power series in X_{1}, \ldots, X_{n}

Outline

1 Introduction

2 Contributions
3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities \& Parallel Patterns
- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization

- Limits Points \& Extended Hensel Construction

■ Lazy Multivariate Power Series

- Hensel Factorization

5 Conclusions and Future Work

Power Series: Definition

$\mathbb{A}=\mathbb{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ is the ring of multivariate formal power series

- Let \mathbb{K} be algebraically closed.
- $f=\sum_{e} a_{e} X^{e} \in \mathbb{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$
- $X^{e}=X_{1}^{e_{1}} \cdots X_{n}^{e_{n}},|e|=e_{1}+\cdots+e_{n}$
- homogeneous part of degree $k: f_{(k)}=\sum_{|e|=k} a_{e} X^{e}$
- $\mathcal{M}=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is the maximal ideal of $\mathbb{A} \Rightarrow f_{(k)} \in \mathcal{M}^{k} \backslash \mathcal{M}^{k+1}$

Example:

$f=1+X_{1}+X_{1} X_{2}+X_{2}^{2}+X_{1} X_{2}^{2}+X_{1}^{3}+\cdots \quad$ is known to precision 3

$$
f_{(1)}=X_{1} \quad f_{(2)}=X_{1} X_{2}+X_{2}^{2} \quad f_{(3)}=X_{1} X_{2}^{2}+X_{1}^{3}
$$

$\mathbb{A}[Y]$ is the ring of Univariate Polynomials over Power Series (UPoPS)

- $f=\sum_{i=0}^{d} a_{i} Y^{i}, a_{i} \in \mathbb{A}, a_{d} \neq 0$, is a UPoPS of degree d

Lazy Power Series: Design

Motivation: allow for terms to be computed on demand
1 Only compute terms explicitly needed:
\hookrightarrow requested by user; needed for subsequent operations
2 Ability to resume and increase precision of an existing power series
Our lazy power series:
1 store previously computed homogeneous parts;
2 return previously computed homogeneous parts and, otherwise,
3 use an update function to compute homogeneous parts as needed;
4 capture parameters required for the update function.
\bigsqcup (3) and (4) effectively create a closure
Where update parameters are power series, they are called ancestors.

Addition, $f=g+h$

- $f_{(k)}=g_{(k)}+h_{(k)}$

Multiplication $f=g h$

- $f_{(k)}=\sum_{i=0}^{k} g_{(i)} h_{(k-i)}$

Ancestry Example

$$
p=f g+a b
$$

$$
\begin{aligned}
& f=\quad g=\quad a=\quad b= \\
& 1+x+y z+\ldots \quad 1+z+y+\ldots \\
& \times \swarrow \\
& \downarrow \\
& 1+y+x^{2}+\ldots \quad 1+y z+x z+\ldots \\
& \begin{array}{ll}
\searrow & \times \\
& \downarrow
\end{array} \\
& h= \\
& c= \\
& 1+z+y+x+y z+x z+x y+\ldots \\
& 1+y+y z+x z+x^{2}+\ldots \\
& + \\
& \downarrow \\
& p= \\
& 2+z+2 y+x+2 y z+2 x z+x y+x^{2}+\ldots
\end{aligned}
$$

Outline

1 Introduction

2 Contributions
3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities \& Parallel Patterns
- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
■ Limits Points \& Extended Hensel Construction

- Lazy Multivariate Power Series

■ Hensel Factorization
5 Conclusions and Future Work

Weierstrass Preparation: Informally

Weierstrass Preparation is a factorization of a UPoPS into two: a distinguished polynomial and a unit

Let $f=a_{d+m} Y^{d+m}+a_{d} Y^{d}+\cdots+a_{2} Y^{2}+a_{1} Y+a_{0}$ be a UPoPS where:

- $a_{d+m}, \ldots, a_{1}, a_{0} \in \mathbb{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$
- $a_{d-1(0)}=\cdots=a_{0(0)}=0$
- $m \in \mathbb{Z}_{\geq 0}$

Weierstrass Preparation Theorem tells us:

- $f=p \alpha$
- $p=Y^{d}+b_{d-1} Y^{d-1}+\cdots+b_{1} Y+b_{0}, b_{d-1(0)}=\cdots=b_{0(0)}=0$
- α is an invertible element of $\mathbb{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right][[Y]]$

A constructive proof of this theorem tells us that p and α can be computed lazily from power series arithmetic in $\mathcal{O}\left(d m k^{2}\right)$ operations in \mathbb{K}

Hensel Factorization

Algorithm 2 HenselFactorization (f)

Input: $f=Y^{d}+\sum_{i=0}^{d-1} a_{i} Y^{i}, a_{i} \in \mathbb{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$.
Output: f_{1}, \ldots, f_{r} s.t. $\prod_{i=1}^{r} f_{i}=f, f_{i}(0, \ldots, 0, Y)=\left(Y-c_{i}\right)_{i}^{d}$
1: $\bar{f}=f(0, \ldots, 0, Y)$
2: $\left(c_{1}, \ldots, c_{r}\right),\left(d_{1}, \ldots, d_{r}\right):=$ roots and their multiplicities of \bar{f}
3: $\hat{f}_{1}:=f$
4: for $i:=1$ to $r-1$ do
5: $\quad g_{i}:=\hat{f}_{i}\left(Y+c_{i}\right)$
6: $\quad p_{i}, \alpha_{i}:=$ WeierstrassPreparation $\left(g_{i}\right)$
7: $\quad f_{i}:=p_{i}\left(Y-c_{i}\right)$
8: $\quad \hat{f}_{i+1}:=\alpha_{i}\left(Y-c_{i}\right)$
9: $f_{r}:=\hat{f}_{r}$
10: return f_{1}, \ldots, f_{r}

Parallel Opportunities in Hensel

- The output of one Weierstrass becomes input to another
- $f_{i+i(k)}$ relies on $f_{i(k)}$
- Can compute $f_{i(k+1)}$ and $f_{i+i(k)}$ concurrently in a pipeline

	Stage 1 $\left(f_{1}\right)$	Stage 2 $\left(f_{2}\right)$	Stage 3 $\left(f_{3}\right)$	Stage 4 $\left(f_{4}\right)$
Time 1	$f_{1(1)}$			
Time 2	$f_{1(2)}$	$f_{2(1)}$		
Time 3	$f_{1(3)}$	$f_{2(2)}$	$f_{3(1)}$	
Time 4	$f_{1(4)}$	$f_{2(3)}$	$f_{3(2)}$	$f_{4(1)}$
Time 5	$f_{1(5)}$	$f_{2(4)}$	$f_{3(3)}$	$f_{4(2)}$
Time 6	$f_{1(6)}$	$f_{2(5)}$	$f_{3(4)}$	$f_{4(3)}$

Parallel Challenges and Composition

- Degrees and computational work diminish with each stage
$\hookrightarrow \operatorname{deg}\left(g_{1}\right)=d, \operatorname{deg}\left(g_{2}\right)=d-\operatorname{deg}\left(f_{1}\right), \ldots$
- Dominant cost to update f_{i} is WPT: $\mathcal{O}\left(\operatorname{deg}\left(p_{i}\right) \operatorname{deg}\left(\alpha_{i}\right) k^{2}\right)$
- To load-balance, execute WPT within each stage in parallel
- Assign t_{i} threads to stage i so that $\operatorname{deg}\left(p_{i}\right) \operatorname{deg}\left(\alpha_{i}\right) / t_{i}$ is equal for each stage.
- Better still, update a group of successive factors per stage.
\hookrightarrow To each stage s assign factors $f_{s_{1}}, \ldots, f_{s_{2}}$ and t_{s} threads so that $\sum_{i=s_{1}}^{s_{2}} \operatorname{deg}\left(p_{i}\right) \operatorname{deg}\left(\alpha_{i}\right) / t_{s}$ is roughly equal for each stage.

Parallel Speed-up Hensel Factorization

Outline

1 Introduction

2 Contributions
3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities \& Parallel Patterns
- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization
■ Limits Points \& Extended Hensel Construction
■ Lazy Multivariate Power Series

- Hensel Factorization

5 Conclusions and Future Work

Conclusion

Our Contributions:

1 Algebraic class hierarchy
\hookrightarrow Compile-time mathematical type safety
\hookrightarrow "Make it hard to do the wrong thing": ease-of-use, extensibility
2 Object-oriented, composable parallel framework
3 High-performance triangular decomposition
\hookrightarrow Speculative computation
\hookrightarrow Component-level parallelism
4 Algorithms and data structures to avoid redundant computation
5 Lazy \& Parallel Hensel Factorization
\hookrightarrow Complexity estimates guide dynamic load-balancing

Future Work (1/2)

Parallel Computing \& Software Design

- Further support for irregular parallelism
- New and hybrid parallel patterns, composition of patterns
- Cooperation of parallel regions
\hookrightarrow Gang scheduling, Cooperative multitasking
\hookrightarrow Dynamic resource re-distribution
\hookrightarrow Min/Max number of threads per region
- Quantitative profiling of irregular parallelism
\hookrightarrow How much concurrency was found?
\hookrightarrow How much parallelism was exploited?
\hookrightarrow Tuning of run-time parameters

Future Work (2/2)

Computer Algebra \& Symbolic Computation

- Avoiding redundant computation in triangular decomposition
- Regular chain universe
\hookrightarrow Dynamic evaluation, latent splits, splitting trees
\hookrightarrow Adding parallelism requires efficient shared data structures
- Extend lazy-evaluation to Laurent series, Puiseux series
- Parallel pipeline for Extended Hensel Construction
- Improved thread distribution in Hensel pipeline: consider multivariate case and practical issues (coefficient sizes, locality)

References

[1]	P. Alvandi, M. Ataei, M. Kazemi, and M. Moreno Maza. "On the Extended Hensel Construction and its application to the computation of real limit points". In: Journal of Symbolic Computation 98 (2020), pp. 120-162.
[2]	G. Attardi and C. Traverso. "Strategy-Accurate Parallel Buchberger Algorithms". In: Journal of Symbolic Computation 22 (1996), pp. 1-15.
[3]	P. Aubry, D. Lazard, and M. Moreno Maza. "On the Theories of Triangular Sets". In: Journal of Symbolic Computation 28.1-2 (1999), pp. 105-124.
[4]	J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. SteenpaB, and S. Steidel. "Parallel algorithms for normalization". In: Journal of Symbolic Computation 51 (2013), pp. 99-114.
[5]	F. Boulier, F. Lemaire, and M. Moreno Maza. "Well known theorems on triangular systems and the D5 principle". In: Transgressive Computing 2006, Proceedings. Granada, Spain, 2006.
[6]	B. Buchberger. "The parallelization of critical-pair/completion procedures on the L-Machine". In Japanese Symposium on Functional Pogramming, Proceedings. 1987, pp. 54-61.
[7]	C. Chen and M. Moreno Maza. "Algorithms for computing triangular decomposition of polynomial systems". In: Journal of Symbolic Computation 47.6 (2012), pp. 610-642.
[8]	C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. "Triangular decomposition of semi-algebraic systems". In: Journal of Symbolic Computation 49 (2013), pp. 3-26.
[9]	C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. "Comprehensive Triangular Decomposition". In: Proc. of CASC 2007. 2007, pp. 73-101.
[10]	C. Chen and M. Moreno Maza. "An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions". In: Proc. of Asian Symposium on Computer Mathematics ASCM 2012. Springer, 2012, pp. 199-221.

[11] J. C. Faugere. "Parallelization of Gröbner Basis". In: Proc. of PASCO 1994. Vol. 5. World Scientific. 1994, p. 124.
[12] M. Gastineau and J. Laskar. "Parallel sparse multivariate polynomial division". In: Proc. of PASCO 2015. ACM, 2015, pp. 25-33.
[13] J. Grabmeier, E. Kaltofen, and V. Weispfenning, eds. Computer algebra handbook. Springer-Verlag, 2003.
[14] J. Hu and M. B. Monagan. "A Fast Parallel Sparse Polynomial GCD Algorithm". In: Proc. of ISSAC 2016. 2016, pp. 271-278.
[15] H. T. Kung and J. F. Traub. "All Algebraic Functions Can Be Computed Fast". In: Journal of the ACM 25.2 (1978), pp. 245-260.
[16] M. B. Monagan and R. Pearce. "Parallel sparse polynomial multiplication using heaps". In: Proc. of ISSAC 2009. ACM, 2009, pp. 263-270.
[17] M. B. Monagan and G. Paluck. "Linear Hensel Lifting for $\mathrm{Zp}[\mathrm{x}, \mathrm{y}]$ for n Factors with Cubic Cost". In: ISSAC '22: International Symposium on Symbolic and Algebraic Computation, Villeneuve-d'Ascq, France, July 4-7, 2022. Ed. by M. M. Maza and L. Zhi. ACM, 2022, pp. 159-166. Dor: 10.1145/3476446.3536178. URL: https://doi.org/10.1145/3476446.3536178.
[18] M. B. Monagan and B. Tuncer. "Sparse Multivariate Hensel Lifting: A High-Performance Design and Implementation". In: Proc. of ICMS 2018. 2018, pp. 359-368.
[19] M. Moreno Maza. On Triangular Decompositions of Algebraic Varieties. Tech. rep. TR 4/99.
Presented at the MEGA-2000 Conference, Bath, England. Oxford, UK: NAG Ltd, 1999.
[20] M. Moreno Maza and Y. Xie. "Component-level parallelization of triangular decompositions". In: Proc. of PASCO 2007. ACM. 2007, pp. 69-77.
[21] B. D. Saunders, H. R. Lee, and S. K. Abdali. "A parallel implementation of the cylindrical algebraic decomposition algorithm". In: Proc. of ISSAC 1989. Vol. 89. 1989, pp. 298-307.
[22] W. Wu. "A zero structure theorem for polynomial equations solving". In: MM Research Preprints 1 (1987), pp. 2-12.
[23] W. Wu. "On zeros of algebra equations—an application of Ritt principle". In: Kexeu Tongbao 31.1 (1986), pp. 1-5.

