The Design and Implementation of a High-Performance Polynomial System Solver

Alexander Brandt

Supervisor: Marc Moreno Maza

PhD Public Lecture

Department of Computer Science University of Western Ontario

August 2, 2022

Solving Systems of Equations

Find values of x, y, z which satisfy $F = \begin{cases} a(x, y, z) = 0\\ b(x, y, z) = 0\\ c(x, y, z) = 0 \end{cases}$

- Solving systems of equations is a fundamental problem in scientific computing
- Numerical methods are very efficient and useful in practice, but only find approximate solutions as floating point numbers
- **Symbolic methods** to find exact solutions are required in robotics, celestial mechanics, cryptography, signal processing [13]

Solving a Linear System of Equations

Step 1: triangularization

(a) by elimination of variables:

$$\begin{cases} x + 3y - 2z = 6 \\ 3x + 5y + 6z = 7 & \xrightarrow{\text{solve for } x} \\ 2x + 4y + 3z = 8 & \xrightarrow{\text{substitute } x} \end{cases} \begin{cases} x = 5 - 3y + 2z \\ -4y + 12z = -8 & \xrightarrow{\text{solve for } y} \\ -2y + 7z = -2 & \xrightarrow{\text{substitute } y} \end{cases} \begin{cases} x = 5 + 2z - 3y \\ y = 2 + 3z \\ z = 2 \end{cases}$$

(b) by Gaussian elimination:

$$\begin{bmatrix} 1 & 3 & -2 & | & 5 \\ 3 & 5 & 6 & | & 7 \\ 2 & 4 & 3 & | & 8 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 3 & -2 & | & 5 \\ 0 & 1 & -3 & | & 2 \\ 0 & -2 & 7 & | & -2 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 3 & -2 & | & 5 \\ 0 & 1 & -3 & | & 2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

Step 2: back-substitution to find particular values for x, y, z

 $\begin{cases} x + 3y - 2z = 6\\ 3x + 5y + 6z = 7\\ 2x + 4y + 3z = 8 \end{cases}$

Solving a Non-Linear System of Equations

Via Gröbner Basis we can "solve" a non-linear system

$$\begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y + z^{2} = 1 \end{cases} \implies \begin{cases} x + y + z^{2} = 1 \\ (y + z - 1)(y - z) = 0 \\ z^{2}(z^{2} + 2y - 1) = 0 \\ z^{2}(z^{2} + 2z - 1)(z - 1)^{2} = 0 \end{cases}$$

"Solving" a system is not just about finding particular values, rather:

"find a description of the solutions from which we can easily extract relevant data"

Why?

- A positive-dimensional system has infinitely many solutions
- Underdetermined linear systems, and most non-linear systems
- Univariate polynomials of degree > 4, it may not be possible to have their solutions described in radicals

Alex Brandt

Decomposing a Non-Linear System

Many ways to "solve" a system

Triangular Decomposition

$$\begin{cases} x - z = 0 \\ y - z = 0 \\ z^2 + 2z - 1 = 0 \end{cases}, \begin{cases} x = 0 \\ y = 0 \\ z - 1 = 0 \end{cases}, \begin{cases} x = 0 \\ y - 1 = 0 \\ z = 0 \end{cases}, \begin{cases} x - 1 = 0 \\ y = 0 \\ z = 0 \end{cases}$$

Both solutions are equivalent (via a union)

 by using triangular decomposition, multiple components are found, suggesting possible component-level parallelism

Research Themes

Solving equations is a fundamental computational problem. Triangular decomposition is a core operation in general computer algebra routines (solve in *Maple*).

- Provide algorithmic schemes and implementation techniques for high-performance polynomial system solvers
 - ↓ Implementations of triangular decomposition are not as sophisticated as those based on Gröbner bases
- Explore high-level, irregular parallelism in symbolic computation
 Typically limited to low-level, regular parallelism (e.g. arithmetic)
- 3 Examine software design for accessibility and maintainability of high-performance mathematical software

Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities & Parallel Patterns
- Experimentation
- Avoiding Redundant Computations
- 4 Parallel and Lazy Hensel Factorization
 - Limits Points & Extended Hensel Construction
 - Lazy Multivariate Power Series
 - Hensel Factorization
- 5 Conclusions and Future Work

Incremental Decomposition of a Non-Linear System

Intersect one equation at a time with the current solution set

 z^{2} .

Motivations and Challenges

Motivations:

- Symbolic solving is difficult but still desirable in many fields
- Algorithmic development has come a long way [7]; must now focus on implementation techniques, making the most of modern hardware
 - $\, \, \downarrow \, \,$ Multicore processors, cache hierarchy
 - → Must apply parallel computing and data locality

Challenges:

- The application of high-performance techniques to high-level geometric algorithms
- Different problem instances have different "hot spots": pseudo-division, subresultants, factorization, GCDs, etc.
- Potential parallelism is problem-dependent and not algorithmic

 - $\, {\scriptstyle \, \smile \,}$ Finding splittings is as difficulty as solving the problem

Alex Brandt

Unbalanced and Irregular Parallelism

- More parallelism exposed as more components found,
- Work unbalanced between branches; this is irregular parallelism
- Mechanism needed for adaptive, dynamic parallelism

Previous Works

- Long history of theoretical and algorithmic development in triangular decomposition [3, 5, 7–9, 19, 22, 23]
- Parallelization of high-level algebraic and geometric algorithms was more common roughly 30 years ago
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ Such as in Gröbner Bases [2, 6, 11] and CAD [21]
- Recent parallelism of *low-level* routines with *regular parallelism*:
 - → Polynomial arithmetic [12, 16]
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ Modular methods for GCDs and Factorization [14, 18]
- High-level computer algebra algorithms, often with *irregular* parallelism, have seen little progress in research or implementation
 - → The normalization algorithm of [4] finds components serially, then processes each component with a simple parallel map
 - ⇒ Early work on parallel triangular decomposition was limited by symmetric multi-processing and inter-process communication [20]

Outline

1 Introduction

2 Contributions

- 3 Concurrency in Triangular Decomposition
 - Regular Chains
 - Concurrency Opportunities & Parallel Patterns
 - Experimentation
 - Avoiding Redundant Computations
- 4 Parallel and Lazy Hensel Factorization
 - Limits Points & Extended Hensel Construction
 - Lazy Multivariate Power Series
 - Hensel Factorization
- 5 Conclusions and Future Work

Contributions in this Thesis

- 1 Algebraic Class Hierarchy
- 2 Object-Oriented Parallel Support
- **3** High-Performance Triangular Decomposition
- 4 Designing the Next Generation of Triangular Decomposition
- 5 Lazy & Parallel Hensel Factorization

BPAS Library

- An open-source C/C++ library for polynomial algebra

 - $_{
 m a}$ GCDs, Factorization, (multi-dimensional) FFTs, Symbolic integration
- High-performance implementations for modern architectures: data locality, parallelism
- Over 600,000 lines of code.
- Encapsulate complexity for ease-of-use, maintainability, extensibility

Algebraic Class Hierarchy

Compile-time introspection, Template Metaprogramming,

- Ring-like algebraic structures naturally form a hierarchy, but elements of different Rings may not be mathematically compatible
- Static polymorphism, implicit conversion ensures compile-time mathematical type safety
- Other libraries like *Singular, CoCoA, LinBox* use run-time values to check compatibility

"Dynamic" type creation

- Creation of new types from composition of others
- Given R, is R[x] a ring? integral domain? Euclidean domain?
- Conditional Export: modify interface of Type<T> based on T

Object-Oriented and Cooperative Parallelism

- Motivated by dynamic multithreading concurrency platforms
 - \vdash Cilk, OpenMP, TBB

 - → Runtime decides *what* and *how* to execute in parallel
- Framework entirely encapsulates parallel computing constructs:
 - ${} {\scriptstyle {\scriptstyle {} \rightarrow }}$ Clean user-code
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ Allows for dynamic multithreading
- Support for parallel patterns: meta-algorithms for efficient parallel computing
- Composition and Cooperation of parallel regions:
 - L→ Layers of parallelism allow for dynamic load-balancing via dynamic resource distribution supports **irregular parallelism**
 - → Priority tasks
 →

High-Performance Triangular Decomposition

- 1 High-performance triangular decomp., core operations in C/C++
- 2 Cooperative component-level parallelism and low-level parallelism
- 3 Large-scale and systematic experimentation of triangular decomposition
- Next-Generation Triangular Decomposition
 - 1 Modular algorithms to avoid expression swell
 - 2 Advances in parallel multivariate polynomial multiplication
 - 3 Algorithms and data structures to avoid redundant computations
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ Speculative subresultants avoids unnecessary computation
 - → Regular chain universe

Lazy & Parallel Hensel Factorization

Towards computing limit points, an efficient implementation of EHC, multivariate power series, Laurent series, Puiseux series.

1 Hensel factorization via Weierstrass Preparation Theorem

- 2 High-performance, lazy, multivariate power series

 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ A basis toward Laurent series and Puiseux series
- 3 Complexity analyses for Hensel factorization, WPT
- **4 Parallel pipeline** implementation of Hensel factorization to compute all roots simultaneously

Hensel's Lemma: A Brief Overview

An approximate factorization can be "lifted" to the true factorization

1 The Polynomial Case

- $\, \, \downarrow \, \,$ Given upper bounds on the degs. of f_i : evaluation-interpolation
- $\, { \, \hookrightarrow \, } \, \operatorname{Over} \, \mathbb{Z}_p[X,Y], \, \operatorname{\mathsf{Hensel}} \, \operatorname{lifting} \, \operatorname{\mathsf{can}} \, \operatorname{\mathsf{be}} \, \operatorname{\mathsf{done}} \, \operatorname{\mathsf{in}} \, \, \mathcal{O}({d_X}^2 {d_Y} + {d_X} {d_Y}^2) \, \, [\operatorname{\mathsf{17}}]$

Assume F is squarefree;

Hensel's Lemma: A Brief Overview

An approximate factorization can be "lifted" to the true factorization

1 The Polynomial Case

- $\, { \, \hookrightarrow \, } \, \operatorname{Over} \, \mathbb{Z}_p[X,Y], \, \operatorname{\mathsf{Hensel}} \, \operatorname{lifting} \, \operatorname{\mathsf{can}} \, \operatorname{\mathsf{be}} \, \operatorname{\mathsf{done}} \, \operatorname{\mathsf{in}} \, \, \mathcal{O}({d_X}^2 {d_Y} + {d_X} {d_Y}^2) \, \, [\operatorname{\mathsf{17}}]$

2 Polynomials with Puiseux series roots, k is num. terms in series

- $→ Newton-Puiseux Theorem: for F \in \mathbb{C}[X,Y], \mathcal{O}(d^2M(k))$ [15] $F(X,Y) = (Y - f_1) \cdots (Y - f_r), f_i \text{ are Puiseux series in } X$
- $\vdash \text{ Extended Hensel Construction: for } F \in \mathbb{K}[X,Y], \ \mathcal{O}(k^2 dM(d)) \ [1] \\ F(\underline{X},Y) = (Y f_1) \cdots (Y f_r), \ f_i \text{ are Puiseux series in } \underline{X}$

Assume F is squarefree; M(n) is the time required to multiply two polynomials of degree n; \mathbb{K} is algebraically closed

Hensel's Lemma: A Brief Overview

An approximate factorization can be "lifted" to the true factorization

1 The Polynomial Case

- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ Given upper bounds on the degs. of $f_i:$ evaluation-interpolation
- $\, { \, \hookrightarrow \, } \, \operatorname{Over} \, \mathbb{Z}_p[X,Y], \, \operatorname{\mathsf{Hensel}} \, \operatorname{lifting} \, \operatorname{\mathsf{can}} \, \operatorname{\mathsf{be}} \, \operatorname{\mathsf{done}} \, \operatorname{\mathsf{in}} \, \, \mathcal{O}({d_X}^2 {d_Y} + {d_X} {d_Y}^2) \, \, [\operatorname{\mathsf{17}}]$

2 Polynomials with Puiseux series roots, k is num. terms in series

- $→ Newton-Puiseux Theorem: for F \in \mathbb{C}[X,Y], \mathcal{O}(d^2M(k))$ [15] $F(X,Y) = (Y - f_1) \cdots (Y - f_r), f_i$ are Puiseux series in X

3 Polynomials with Power Series Coefficients

 \vdash *EHC*: in theory (not implemented) factors polys with power series coefs

→ **Our solution**:
$$F = (Y - f_1) \cdots (Y - f_r)$$
, f_i are power series in X
Over $\mathbb{K}[[X]][Y]$: $\mathcal{O}(d_Y^2 k^2)$

Assume F is squarefree; M(n) is the time required to multiply two polynomials of degree n; \mathbb{K} is algebraically closed

Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities & Parallel Patterns
- Experimentation
- Avoiding Redundant Computations
- 4 Parallel and Lazy Hensel Factorization
 - Limits Points & Extended Hensel Construction
 - Lazy Multivariate Power Series
 - Hensel Factorization

5 Conclusions and Future Work

Polynomial Notations

- Let $\mathbb K$ be a perfect field (e.g. $\mathbb Q$ or $\mathbb C)$ and $\overline{\mathbb K}$ its algebraic closure
- Let $\mathbb{K}[\underline{X}]$ be the set of multivariate polynomials (a *polynomial ring*) with n ordered variables, $\underline{X} = X_1 < \cdots < X_n$.
- For $p \in \mathbb{K}[\underline{X}]$:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}$ the main variable of p is the maximum variable with positive degree

 $(2y+ba)x^2 + (by)x + a^2 \quad \in \mathbb{Q}[b < a < y < x]$

 The zero set of F ⊂ K[X] is an algebraic variety—the geometric representation of its solutions

$$\cup V(F) = \left\{ (a_1, \dots, a_n) \in \overline{\mathbb{K}}^n \mid f(a_1, \dots, a_n) = 0, \ \forall f \in F \right\}$$

For any subset S ⊂ Kⁿ, its Zariski closure S is the smallest algebraic variety containing S.

Triangular Sets and Regular Chains

A triangular set $T \subset \mathbb{K}[\underline{X}]$ is a collection of polynomials with pairwise different main variables

A triangular set is a regular chain if:

 $(i) \ T_v^-$ is a regular chain, and

(*ii*) h (i.e. $init(T_v)$) is regular (neither 0 nor a zero-divisor) w.r.t. T_v^-

The *dimension* of a regular chain T is n - |T|.

The foundation of splitting: regularity testing

To intersect a polynomial with an existing regular chain, it must have a regular initial, regularizing finds splittings via a **case discussion**

either the initial is regular, or it is not regular

$$f = (y+1)x^{2} - x$$

$$T_{1} = \begin{cases} y+1=0 & \xrightarrow{f=x} \\ z-1=0 & \end{cases}$$

$$T_{3} = \begin{cases} x=0 \\ y+1=0 \\ z-1=0 & \end{cases}$$

$$T_{2} = \begin{cases} y^{2} - 1=0 \\ z-1=0 & \end{array}$$

$$T_{4} = \begin{cases} 2x^{2} - x = 0 \\ y-1=0 \\ z-1=0 & \end{cases}$$

This actually forms a direct product isomorphism:

 $\mathbb{K}[x, y, z]/\mathrm{sat}(T) \cong \mathbb{K}[x, y, z]/\mathrm{sat}(T_1) \otimes \mathbb{K}[x, y, z]/\mathrm{sat}(T_2)$

Quasi-Components and Triangular Decomposition

Quasi-component of a regular chain: Let $h_T = \prod_{p \in T} init(p)$

• $W(T) := V(T) \setminus V(h_T)$ • $\overline{W(T)} = \overline{V(T)} \setminus V(h_T)$ • $W(\emptyset) = \overline{\mathbb{K}}^n$

A triangular decomposition of an input system $F \subseteq \mathbb{K}[\underline{X}]$ is a set of regular chains T_1, \ldots, T_e such that:

(Lazard-Wu decomposition) $V(F) = \bigcup_{i=1}^{e} W(T_i)$, or

(Kalkbrener decomposition) $V(F) = \bigcup_{i=1}^{e} \overline{W(T_i)}$

Some T_i may be **redundant**; $\exists j \ W(T_i) \subseteq W(T_j)$

- Should not return excessive solutions to client code/users
- Suggests some branches of computation are wasteful and unnecessary

All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of mutually recursive functions do the heavy-lifting.

 \Box In all cases, polynomials are forced to be regular and splittings are (possibly) found via **Regularize**

25 / 57

Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities & Parallel Patterns
- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization

- Limits Points & Extended Hensel Construction
- Lazy Multivariate Power Series
- Hensel Factorization

5 Conclusions and Future Work

Concurrency Opportunities

Component-level parallelism

- Concurrency in incremental decomposition: "triangularize tasks"
 - → Map (parallel for-loop), Workpile (queue with parallel while-loop)
- Concurrency between the many subroutines which call **Regularize**
 - → Asynchronous Generators (Producer-Consumer), Pipeline
- Removing redundant components

Low-level parallelism

- Subresultant chains
 - → Applies **Map** to computing modular images for interpolation and Chinese Remainder Theorem.
- Factorization, polynomial arithmetic (work in progress)

Triangularize: a task-based approach

Algorithm 1 TriangularizeByTasks(F)

Input: a finite set $F \subseteq \mathbb{K}[\underline{X}]$ **Output:** regular chains $T_1, \ldots, T_e \subseteq \mathbb{K}[\underline{X}]$ such that $V(F) = W(T_1) \cup \cdots \cup W(T_e)$ 1: Tasks := { (F, \emptyset) }; $\mathcal{T} := \emptyset$ 2: while |Tasks| > 0 do 3: |(P,T) := pop a task from Tasks4: Choose a polynomial $p \in P$; $P' := P \setminus \{p\}$ 5: for T' in Intersect(p,T) do 6: $|\mathbf{if}|P'| = 0$ then $\mathcal{T} := \mathcal{T} \cup \{T'\}$ 7: || else Tasks := Tasks $\cup \{(P',T')\}$

8: return RemoveRedundantComponents(\mathcal{T})

- Performs a *depth-first search*
- Tasks is essentially a data structure for a task scheduler
- A task can create more tasks, workers pop Tasks until none remain.
- Adaptive to load-balancing, no inter-task synchronization

Alex Brandt

Triangularize Subroutine Pipeline

- Function call stack creates a **dynamic parallel pipeline** as several generators (producers) invoked and consumers process the data.
- Data streams between subroutines; all soubroutines are effectively non-blocking
- Pipeline creates **fine-grained parallelism** since work diminishes with each recursive call

Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities & Parallel Patterns
- Experimentation
- Avoiding Redundant Computations
- 4 Parallel and Lazy Hensel Factorization
 - Limits Points & Extended Hensel Construction
 - Lazy Multivariate Power Series
 - Hensel Factorization

5 Conclusions and Future Work

Experimental Setup

- A suite of >3000 polynomial systems has been compiled from systems in the literature, user-data, and bug reports provided by *Maplesoft*
- Only 1076 of these systems result in more than one component in their triangular decomposition
- In all other cases:

 - $\, \, \downarrow \, \,$ Some slow-down is expected, due to parallel overheads
- Four separate **parallel schemes** can be active or inactive
 - $\, {\scriptstyle {\scriptstyle L}_{\scriptstyle \rightarrow}}\,$ Triangualrize tasks, generators, removing redundancies, subresultants
- Experiments run on a node with two 6-core Intel Xeon X5650 CPUs
 - $\, \, \downarrow \, \,$ 24 physical threads with hyperthreading
 - $\, {\scriptstyle \hookrightarrow}\,$ 12x4GB DDR3 RAM at 1.33 GHz

Serial Performance

Serial triangular decomposition, BPAS vs RegularChains library of Maple

32 / 57

Performance of Individual Parallel Schemes

Performance of Combined Parallel Schemes

Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities & Parallel Patterns
- Experimentation

Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization

- Limits Points & Extended Hensel Construction
- Lazy Multivariate Power Series
- Hensel Factorization

5 Conclusions and Future Work

Avoiding Redundant Computations: Dynamic Evaluation

Two branches are likely to share geometric and algebraic features

$$T_1 = \begin{cases} a(x,y) \\ c(y)d(y) \end{cases} \qquad T_2 = \begin{cases} b(x,y) \\ c(y)d(y) \end{cases}$$

- Computations may split T_1 into $\{a(x,y), c(y)\}$ and $\{a(y,z), d(y)\}$
- T_2 hould automatically split into $\{b(x,y), c(y)\}$ and $\{d(y,z), d(y)\}$

Inspired by cylindrical trees in Cylindrical Algebraic Decomposition [10]

- 1 Each regular chain should exist only once in the universe
- 2 A split found in one regular chain should automatically be applied to other chains sharing that constraint
- 3 A unique and shared data structure \implies thread safety required

Regular Chains as Paths, Latent Splits

Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities & Parallel Patterns
- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization

- Limits Points & Extended Hensel Construction
- Lazy Multivariate Power Series
- Hensel Factorization

5 Conclusions and Future Work

Triangular Decomposition, Limit Points

Triangular decomposition for an input set $F \subset \mathbb{K}[\underline{X}]$, find regular chains T_1, \ldots, T_e such that:

•
$$V(F) = \overline{W(T_1)} \cup \overline{W(T_2)} \cup \dots \cup \overline{W(T_e)}$$
 (Kalkbrener)

• $V(F) = W(T_1) \cup W(T_2) \cup \cdots \cup W(T_e)$ (Lazard-Wu)

In Kalkbrener decomp. T_1, \ldots, T_e represent only generic zeros of V(F)

- Computing a Kalkbrener decomposition is much easier
- The non-trivial limit points of a regular chain are $\overline{W(T)} \smallsetminus W(T)$.

Example:

$$T_1 = \begin{cases} bx + y \\ ay - b^2 \end{cases} \implies \begin{cases} x = \frac{-y}{b} \\ y = \frac{b^2}{a} \end{cases} \text{ where } b \neq 0, \ a \neq 0$$
$$\overline{W(T_1)} = W(T_1) \cup \begin{cases} x = 0 \\ y = 0 \\ b = 0 \end{cases} \cup \begin{cases} y = 0 \\ a = 0 \\ b = 0 \end{cases}$$

Computing Limit Points: Extended Hensel Construction

- Given a one-dimensional regular chain T, $\overline{W(T)}$ is an algebraic curve
- The limit points of W(T) can be computed as *limits* of sequences of points along "branches" of an algebraic curve [1]
- Computing branches of an algebraic curve F(X,Y) involves computing the roots of F in Y as Puiseux series in X

Newton-Puiseux Theorem:

$$F(X,Y) = (Y - f_1) \cdots (Y - f_d), f_i$$
 are Puiseux series in X

Extended Hensel Construction (Hensel-Sasaki Construction):

 $F(X_1,\ldots,X_n,Y) = (Y - f_1)\cdots(Y - f_d), f_i$ are Puiseux series in X_1,\ldots,X_n

Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities & Parallel Patterns
- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization

- Limits Points & Extended Hensel Construction
- Lazy Multivariate Power Series
- Hensel Factorization

5 Conclusions and Future Work

Power Series: Definition

 $\mathbb{A} = \mathbb{K}[[X_1, \dots, X_n]]$ is the ring of multivariate formal power series

- Let ${\mathbb K}$ be algebraically closed.
- $f = \sum_e a_e X^e \in \mathbb{K}[[X_1, \dots, X_n]]$
- $X^e = X_1^{e_1} \cdots X_n^{e_n}$, $|e| = e_1 + \cdots + e_n$
- homogeneous part of degree k: $f_{(k)} = \sum_{|e|=k} a_e X^e$
- $\mathcal{M} = \langle X_1, \dots, X_n \rangle$ is the maximal ideal of $\mathbb{A} \Rightarrow f_{(k)} \in \mathcal{M}^k \smallsetminus \mathcal{M}^{k+1}$

Example:

 $f = 1 + X_1 + X_1X_2 + X_2^2 + X_1X_2^2 + X_1^3 + \cdots$ is known to precision 3

$$f_{(1)} = X_1$$
 $f_{(2)} = X_1 X_2 + X_2^2$ $f_{(3)} = X_1 X_2^2 + X_1^3$

A[Y] is the ring of Univariate Polynomials over Power Series (UPoPS) • $f = \sum_{i=0}^{d} a_i Y^i$, $a_i \in A$, $a_d \neq 0$, is a UPoPS of degree d

Lazy Power Series: Design

Motivation: allow for terms to be computed on demand

- **1** Only compute terms explicitly needed:
- 2 Ability to resume and increase precision of an existing power series

Our lazy power series:

- 1 store previously computed homogeneous parts;
- 2 return previously computed homogeneous parts and, otherwise,
- **3** use an **update function** to compute homogeneous parts as needed;
- 4 capture parameters required for the update function.
 - $\, \, \downarrow \,$ (3) and (4) effectively create a closure

Where update parameters are power series, they are called ancestors.

Addition,
$$f = g + h$$
Multiplication $f = gh$ • $f_{(k)} = g_{(k)} + h_{(k)}$ • $f_{(k)} = \sum_{i=0}^{k} g_{(i)}h_{(k-i)}$

Ancestry Example

$$p = fg + ab$$

Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities & Parallel Patterns
- Experimentation
- Avoiding Redundant Computations

4 Parallel and Lazy Hensel Factorization

- Limits Points & Extended Hensel Construction
- Lazy Multivariate Power Series
- Hensel Factorization

5 Conclusions and Future Work

Weierstrass Preparation: Informally

Weierstrass Preparation is a factorization of a UPoPS into two: a *distinguished polynomial* and a unit

Let
$$f = a_{d+m}Y^{d+m} + a_dY^d + \dots + a_2Y^2 + a_1Y + a_0$$
 be a UPoPS where:
• $a_{d+m}, \dots, a_1, a_0 \in \mathbb{K}[[X_1, \dots, X_n]]$
• $a_{d-1(0)} = \dots = a_{0(0)} = 0$

• $m \in \mathbb{Z}_{\geq 0}$

Weierstrass Preparation Theorem tells us:

•
$$f = p \alpha$$

• $p = Y^d + b_{d-1}Y^{d-1} + \dots + b_1Y + b_0, \ b_{d-1(0)} = \dots = b_{0(0)} = 0$

• α is an invertible element of $\mathbb{K}[[X_1, \dots, X_n]][[Y]]$

A constructive proof of this theorem tells us that p and α can be computed lazily from power series arithmetic in $\mathcal{O}(dmk^2)$ operations in \mathbb{K}

Hensel Factorization

Algorithm 2 HENSELFACTORIZATION(*f*)

Input: $f = Y^d + \sum_{i=0}^{d-1} a_i Y^i, a_i \in \mathbb{K}[[X_1, \dots, X_n]].$ **Output:** f_1, \ldots, f_r s.t. $\prod_{i=1}^r f_i = f_i, f_i(0, \ldots, 0, Y) = (Y - c_i)_i^d$ 1: $f = f(0, \dots, 0, Y)$ 2: $(c_1, \ldots, c_r), (d_1, \ldots, d_r) \coloneqq$ roots and their multiplicities of \overline{f} 3: $f_1 := f$ 4. for i := 1 to r - 1 do 5: $q_i \coloneqq \hat{f}_i(Y + c_i)$ 6: $p_i, \alpha_i := \text{WEIERSTRASSPREPARATION}(q_i)$ 7: $f_i := p_i(Y - c_i)$ 8: $\hat{f}_{i+1} \coloneqq \alpha_i (Y - c_i)$ 9: $f_r := \hat{f}_r$ 10: return $f_1, ..., f_r$

Parallel Opportunities in Hensel

- The output of one Weierstrass becomes input to another
- $f_{i+i(k)}$ relies on $f_{i(k)}$
- Can compute $f_{i(k+1)}$ and $f_{i+i(k)}$ concurrently in a pipeline

	Stage 1 (f_1)	Stage 2 (f_2)	Stage 3 (f_3)	Stage 4 (f_4)
Time 1	$f_{1(1)}$			
Time 2	$f_{1(2)}$	$f_{2(1)}$		
Time 3	$f_{1(3)}$	$f_{2(2)}$	$f_{3(1)}$	
Time 4	$f_{1(4)}$	$f_{2(3)}$	$f_{3(2)}$	$f_{4(1)}$
Time 5	$f_{1(5)}$	$f_{2(4)}$	$f_{3(3)}$	$f_{4(2)}$
Time 6	$f_{1(6)}$	$f_{2(5)}$	$f_{3(4)}$	$f_{4(3)}$

Parallel Challenges and Composition

$$p_1 \xrightarrow{-c_1} f_1 \qquad p_2 \xrightarrow{-c_2} f_2 \qquad p_3 \xrightarrow{-c_3} f_3$$

$$f \xrightarrow{+c_1} g_1 \xrightarrow{-c_1} \hat{f_2} \xrightarrow{+c_2} g_2 \xrightarrow{-c_2} \hat{f_3} \xrightarrow{+c_3} g_3 \xrightarrow{-c_3} f_4$$

- Degrees and computational work diminish with each stage $\mapsto \deg(q_1) = d, \ \deg(q_2) = d - \deg(f_1), \ldots$
- Dominant cost to update f_i is WPT: $\mathcal{O}(\deg(p_i) \deg(\alpha_i)k^2)$
- To load-balance, execute WPT within each stage in parallel
- Assign t_i threads to stage i so that $deg(p_i) deg(\alpha_i) / t_i$ is equal for each stage.
- Better still, update a group of successive factors per stage.
 - $\, {\scriptstyle \, \smile}\,$ To each stage s assign factors f_{s_1},\ldots,f_{s_2} and t_s threads so that $\sum_{i=s_1}^{s_2} \deg(p_i) \deg(\alpha_i)/t_s$ is roughly equal for each stage.

Parallel Speed-up Hensel Factorization

Outline

1 Introduction

2 Contributions

3 Concurrency in Triangular Decomposition

- Regular Chains
- Concurrency Opportunities & Parallel Patterns
- Experimentation
- Avoiding Redundant Computations
- 4 Parallel and Lazy Hensel Factorization
 - Limits Points & Extended Hensel Construction
 - Lazy Multivariate Power Series
 - Hensel Factorization

5 Conclusions and Future Work

Conclusion

Our Contributions:

- 1 Algebraic class hierarchy
- 2 Object-oriented, composable parallel framework
- 3 High-performance triangular decomposition
 - $\, \, \downarrow \, \,$ Speculative computation
- 4 Algorithms and data structures to avoid redundant computation
- 5 Lazy & Parallel Hensel Factorization

Future Work (1/2)

Parallel Computing & Software Design

- Further support for irregular parallelism
- New and hybrid parallel patterns, composition of patterns
- Cooperation of parallel regions

 - $\, \downarrow \, Min/Max$ number of threads per region
- Quantitative profiling of irregular parallelism
 - ${} \mapsto$ How much concurrency was found?
 - → How much parallelism was exploited?
 - → *Tuning* of run-time parameters

Future Work (2/2)

Computer Algebra & Symbolic Computation

- Avoiding redundant computation in triangular decomposition
- Regular chain universe
- Extend lazy-evaluation to Laurent series, Puiseux series
- Parallel pipeline for Extended Hensel Construction
- Improved thread distribution in Hensel pipeline: consider multivariate case and practical issues (coefficient sizes, locality)

References

- P. Alvandi, M. Ataei, M. Kazemi, and M. Moreno Maza. "On the Extended Hensel Construction and its application to the computation of real limit points". In: *Journal of Symbolic Computation* 98 (2020), pp. 120–162.
- G. Attardi and C. Traverso. "Strategy-Accurate Parallel Buchberger Algorithms". In: Journal of Symbolic Computation 22 (1996), pp. 1–15.
- [3] P. Aubry, D. Lazard, and M. Moreno Maza. "On the Theories of Triangular Sets". In: Journal of Symbolic Computation 28.1-2 (1999), pp. 105–124.
- [4] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S. Steidel. "Parallel algorithms for normalization". In: Journal of Symbolic Computation 51 (2013), pp. 99–114.
- [5] F. Boulier, F. Lemaire, and M. Moreno Maza. "Well known theorems on triangular systems and the D5 principle". In: *Transgressive Computing 2006, Proceedings.* Granada, Spain, 2006.
- [6] B. Buchberger. "The parallelization of critical-pair/completion procedures on the L-Machine". In: Japanese Symposium on Functional Pogramming, Proceedings. 1987, pp. 54–61.
- [7] C. Chen and M. Moreno Maza. "Algorithms for computing triangular decomposition of polynomial systems". In: Journal of Symbolic Computation 47.6 (2012), pp. 610–642.
- [8] C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. "Triangular decomposition of semi-algebraic systems". In: *Journal of Symbolic Computation* 49 (2013), pp. 3–26.
- [9] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. "Comprehensive Triangular Decomposition". In: Proc. of CASC 2007. 2007, pp. 73–101.
- [10] C. Chen and M. Moreno Maza. "An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions". In: Proc. of Asian Symposium on Computer Mathematics ASCM 2012. Springer, 2012, pp. 199–221.

- [11] J. C. Faugere. "Parallelization of Gröbner Basis". In: Proc. of PASCO 1994. Vol. 5. World Scientific. 1994, p. 124.
- [12] M. Gastineau and J. Laskar. "Parallel sparse multivariate polynomial division". In: Proc. of PASCO 2015. ACM, 2015, pp. 25–33.
- J. Grabmeier, E. Kaltofen, and V. Weispfenning, eds. Computer algebra handbook. Springer-Verlag, 2003.
- [14] J. Hu and M. B. Monagan. "A Fast Parallel Sparse Polynomial GCD Algorithm". In: Proc. of ISSAC 2016. 2016, pp. 271–278.
- [15] H. T. Kung and J. F. Traub. "All Algebraic Functions Can Be Computed Fast". In: Journal of the ACM 25.2 (1978), pp. 245–260.
- [16] M. B. Monagan and R. Pearce. "Parallel sparse polynomial multiplication using heaps". In: Proc. of ISSAC 2009. ACM, 2009, pp. 263–270.
- [17] M. B. Monagan and G. Paluck. "Linear Hensel Lifting for Zp[x, y] for n Factors with Cubic Cost". In: ISSAC '22: International Symposium on Symbolic and Algebraic Computation, Villeneuve-d'Ascq, France, July 4 - 7, 2022. Ed. by M. M. Maza and L. Zhi. ACM, 2022, pp. 159–166. DOI: 10.1145/3476446.3536178. URL: https://doi.org/10.1145/3476446.3536178.
- [18] M. B. Monagan and B. Tuncer. "Sparse Multivariate Hensel Lifting: A High-Performance Design and Implementation". In: Proc. of ICMS 2018. 2018, pp. 359–368.
- M. Moreno Maza. On Triangular Decompositions of Algebraic Varieties. Tech. rep. TR 4/99. Presented at the MEGA-2000 Conference, Bath, England. Oxford, UK: NAG Ltd, 1999.
- [20] M. Moreno Maza and Y. Xie. "Component-level parallelization of triangular decompositions". In: Proc. of PASCO 2007. ACM. 2007, pp. 69–77.
- [21] B. D. Saunders, H. R. Lee, and S. K. Abdali. "A parallel implementation of the cylindrical algebraic decomposition algorithm". In: Proc. of ISSAC 1989. Vol. 89. 1989, pp. 298–307.

- [22] W. Wu. "A zero structure theorem for polynomial equations solving". In: MM Research Preprints 1 (1987), pp. 2–12.
- [23] W. Wu. "On zeros of algebra equations—an application of Ritt principle". In: Kexeu Tongbao 31.1 (1986), pp. 1–5.

57 / 57