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Solving Systems of Equations

a(z,y,2) = 0
Find values of z,y, z which satisfy F=1 b(z,y,2) =0
c(z,y,2) = 0

= Solving systems of equations is a fundamental problem in scientific
computing

= Numerical methods are very efficient and useful in practice, but only
find approximate solutions as floating point numbers

L, Newton's method, Homotopy methods, Gradient descent

= Symbolic methods to find exact solutions are required in robotics,
celestial mechanics, cryptography, signal processing [13]

L, Particularly used to find a complete description of all solutions
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Solving a Linear System of Equations v+ 3y —2:26
3x + 05y +62=7

Step 1: triangularization 2z + 4y + 32=38

(a) by elimination of variables:

z+3y—-22=6 e £ r=5-3y + 2z e for r=5+ 2z -3y
3w +5y+62=7 TSN dy+122=-8 TEIY L y-2432
20 4+ 4y +32=8 substitute x _2y I S substitute y 2=9
(b) by Gaussian elimination:
1 3 -2|5 1 3 -2 5 1 3 -2|5
35 6|7|]=[0 1 -3| 2|=1]01 -3|2
2 4 3|8 0 -2 7|-2 00 12

Step 2: back-substitution to find particular values for x,y, z
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Solving a Non-Linear System of Equations

Via Grobner Basis we can “solve” a non-linear system
r+y+22=1
(y+z2-1)(y-2)=0
22(z2+2y—1) =0
22(,z2+2z—1)(z—1)2 =0

x2+y+z:1
r+yltz=1 =

r+y+22=1

“Solving” a system is not just about finding particular values, rather:

“find a description of the solutions from which we can easily
extract relevant data”

Why?
= A positive-dimensional system has infinitely many solutions
s Underdetermined linear systems, and most non-linear systems

= Univariate polynomials of degree > 4, it may not be possible to have
their solutions described in radicals



Decomposing a Non-Linear System

Many ways to “solve” a system
) rry+22=1
Tr+y+z=1
Grobner Basis (y +z - 1) (y - Z) =0

2
S ()0
Y zz(z2+22—1)(z—1)2=0
“Triangular Decomposition
r—-2=0 z=0 z=0 r—-1=0
y—2z=0, y=0, y—-1=0 , y=0
22+22-1=0 z-1=0 z=0 2=0

Both solutions are equivalent (via a union)
= by using triangular decomposition, multiple components are found,

suggesting possible component-level parallelism
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Research Themes

Solving equations is a fundamental computational problem.
Triangular decomposition is a core operation in general
computer algebra routines (solve in Maple).

Provide algorithmic schemes and implementation techniques for
high-performance polynomial system solvers

L, Implementations of triangular decomposition are not as
sophisticated as those based on Grébner bases

Explore high-level, irregular parallelism in symbolic computation
L, Typically limited to low-level, regular parallelism (e.g. arithmetic)

Examine software design for accessibility and maintainability of
high-performance mathematical software

L, Re-use, maintainability, and adaptability often missing
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Incremental Decomposition of a Non-Linear System
Intersect one equation at a time with the current solution set

x2+y+z:1
F=3z+y’+z=1

rt+y+z2=1

(%]
Flay
{a?+y+2=1}
Fl21
r+yi+z=1
vt (22-2)y? +y+(22-2)=0
F[3] v v N N
r—2=0 =0 =0 r—-1=0
y—2207 y:07 y_1:07 y:O
22422-1=0 z2-1=0 2=0 2=0
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Motivations and Challenges

Motivations:

= Symbolic solving is difficult but still desirable in many fields

= Algorithmic development has come a long way [7]; must now focus on
implementation techniques, making the most of modern hardware
L, Multicore processors, cache hierarchy
L, Must apply parallel computing and data locality

Challenges:

= The application of high-performance techniques to high-level
geometric algorithms

= Different problem instances have different “hot spots”:
pseudo-division, subresultants, factorization, GCDs, etc.

= Potential parallelism is problem-dependent and not algorithmic

L, Geometry may or may not split into different components
L, Finding splittings is as difficulty as solving the problem
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Unbalanced and Irregular Parallelism

Sys2913 Component Tree

=

000 002 004 006 008 010 012 0.14
Time (s)

= More parallelism exposed as more components found,

= Work unbalanced between branches; this is irregular parallelism

= Mechanism needed for adaptive, dynamic parallelism
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Previous Works

= Long history of theoretical and algorithmic development in triangular
decomposition [3, 5, 7-9, 19, 22, 23]

= Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

L. Such as in Grobner Bases [2, 6, 11] and CAD [21]

= Recent parallelism of low-level routines with regular parallelism:

L, Polynomial arithmetic [12, 16]
L, Modular methods for GCDs and Factorization [14, 18]

= High-level computer algebra algorithms, often with irregular
parallelism, have seen little progress in research or implementation

L, The normalization algorithm of [4] finds components serially, then
processes each component with a simple parallel map

L, Early work on parallel triangular decomposition was limited by
symmetric multi-processing and inter-process communication [20]
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Contributions in this Thesis

Algebraic Class Hierarchy

Object-Oriented Parallel Support

High-Performance Triangular Decomposition

Designing the Next Generation of Triangular Decomposition

Lazy & Parallel Hensel Factorization
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BPAS Library

4

Basic Polynomial Algebra Subprograms -

Y

= An open-source C/C++ library for polynomial algebra

L, Univariate, bivariate, multivariate polynomials over Z, Q, Z/pZ,C
L. GCDs, Factorization, (multi-dimensional) FFTs, Symbolic integration
L, Triangular decomposition, Hensel factorization

= High-performance implementations for modern architectures: data
locality, parallelism

= Over 600,000 lines of code.

= Encapsulate complexity for ease-of-use, maintainability, extensibility
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Algebraic Class Hierarchy

Compile-time introspection, Template Metaprogramming,

IntegralDomain k—{ EuclideanDomain <

= Ring-like algebraic structures naturally form a hierarchy, but elements
of different Rings may not be mathematically compatible

= Static polymorphism, implicit conversion ensures compile-time
mathematical type safety

= Other libraries like Singular, CoCoA, LinBox use run-time values to
check compatibility

“Dynamic” type creation
= Creation of new types from composition of others
= Given R, is R[x] a ring? integral domain? Euclidean domain?

= Conditional Export: modify interface of Type<T> based on T
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Object-Oriented and Cooperative Parallelism

Motivated by dynamic multithreading concurrency platforms
L, Cilk, OpenMP, TBB
L, User specifies where concurrency is possible
L, Runtime decides what and how to execute in parallel

Framework entirely encapsulates parallel computing constructs:

L, Clean user-code
L, Allows for dynamic multithreading

Support for parallel patterns: meta-algorithms for efficient parallel
computing

= Composition and Cooperation of parallel regions:

L, Layers of parallelism allow for dynamic load-balancing via dynamic
resource distribution supports irregular parallelism
L, Priority tasks
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High-Performance Triangular Decomposition

High-performance triangular decomp., core operations in C/C++
Cooperative component-level parallelism and low-level parallelism

Large-scale and systematic experimentation of triangular
decomposition

Next-Generation Triangular Decomposition

Modular algorithms to avoid expression swell
Advances in parallel multivariate polynomial multiplication
Algorithms and data structures to avoid redundant computations

L, Speculative subresultants avoids unnecessary computation
L, Regular chain universe
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Lazy & Parallel Hensel Factorization

Towards computing limit points, an efficient implementation of EHC,
multivariate power series, Laurent series, Puiseux series.

Hensel factorization via Weierstrass Preparation Theorem

L. Computes roots of F'(X1,...,X,,Y) as power series in X1,..., X,

High-performance, lazy, multivariate power series

L, First known implementation in a compiled code
L, A basis toward Laurent series and Puiseux series

Complexity analyses for Hensel factorization, WPT
Parallel pipeline implementation of Hensel factorization to compute

all roots simultaneously
L, First known pipeline implementation in symbolic computation
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Hensel's Lemma: A Brief Overview

An approximate factorization can be “lifted” to the true factorization

The Polynomial Case
L F(Xy,...,X,,Y)=F(X,Y) = f1 fo- fr, fi are polynomials
L, Given upper bounds on the degs. of f;: evaluation-interpolation
L. Over Z,[X,Y], Hensel lifting can be done in O(dx’dy + dxdy?) [17]

Assume F' is squarefree;
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Hensel's Lemma: A Brief Overview

An approximate factorization can be “lifted” to the true factorization

The Polynomial Case
L F(Xy,...,X,,Y)=F(X,Y) = f1 fo- fr, fi are polynomials
L, Given upper bounds on the degs. of f;: evaluation-interpolation
L. Over Z,[X,Y], Hensel lifting can be done in O(dx’dy + dxdy?) [17]

Polynomials with Puiseux series roots, k£ is num. terms in series
L. Newton-Puiseux Theorem: for F e C[X,Y], O(d*M (k)) [15]
F(X,Y)=(Y - f1)-(Y - f), fi are Puiseux series in X

L, Extended Hensel Construction: for F e K[X,Y], O(k*dM (d)) [1]
F(X,)Y)=(Y - f1)-(Y = f.), fi are Puiseux series in X

Assume F' is squarefree; M (n) is the time required to multiply two polynomials of degree n; K is algebraically closed
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Hensel's Lemma: A Brief Overview

An approximate factorization can be “lifted” to the true factorization

The Polynomial Case
L F(Xy,...,X,,Y)=F(X,Y) = f1 fo- fr, fi are polynomials
L, Given upper bounds on the degs. of f;: evaluation-interpolation
L. Over Z,[X,Y], Hensel lifting can be done in O(dx’dy + dxdy?) [17]

Polynomials with Puiseux series roots, k£ is num. terms in series
L. Newton-Puiseux Theorem: for F e C[X,Y], O(d*M (k)) [15]
F(X,Y)=(Y - f1)-(Y - f), fi are Puiseux series in X

L, Extended Hensel Construction: for F e K[X,Y], O(k*dM (d)) [1]
F(X,)Y)=(Y - f1)-(Y = f.), fi are Puiseux series in X
Polynomials with Power Series Coefficients
L, EHC: in theory (not implemented) factors polys with power series coefs

L, Our solution: F = (Y - f1)--«(Y = f), fi are power series in X
Over K[[X]][Y]: O(d%k?)

Assume F' is squarefree; M (n) is the time required to multiply two polynomials of degree n; K is algebraically closed
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Polynomial Notations
= Let K be a perfect field (e.g. Q or C) and K its algebraic closure

= Let K[X] be the set of multivariate polynomials (a polynomial ring)
with n ordered variables, X = X <--- < X,.

= For pe K[X]:
L, the main variable of p is the maximum variable with positive degree

L, the initial of p is the leading coeff. of p with respect to its main variable

L, the tail of p is the terms leftover after setting its initial to O
(2y +ba)x?® + (by)x +a® € Qb<a<y<zx]

= The zero set of F c K[X] is an algebraic variety—the geometric
representation of its solutions

L V(F):{(al,...,an)eKn | fai,...,an) =0, erF}

= For any subset S c K", its Zariski closure S is the smallest algebraic
variety containing S.
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Triangular Sets and Regular Chains

A triangular set T c K[ X] is a collection of polynomials with pairwise
different main variables

Example:
T, = hv? + tail(T;)

(2y + ba)x — by + a®
T = T= 2y — by — a®

T - Y Y
a+b

cQb<a<y<zx]
c K[X]

A triangular set is a regular chain if:
(7) T is a regular chain, and

(77) h (i.e. init(7y)) is regular (neither 0 nor a zero-divisor) w.r.t. T,

The dimension of a regular chain T"is n —|T|.

Alex Brandt August 2, 2022



The foundation of splitting: regularity testing

To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion
= either the initial is regular, or it is not regular

z=0
_ f=w
f=(y+1)z* -z X/”Q le{erl—O T3={ y+1=0
y z-1=0 2-1=0
2
~1=0
T:{y 1 0\ 9222~z =0
=TT g/"\/ y—-1=0 f=22"-= rTors
xp Tz = o120 — Tu= y-1=0
z-=1=0

This actually forms a direct product isomorphism:
K[QS’, Y, Z]/Sat(T) = K[$a Y, Z]/Sat(Tl) ® K[l’, Y, Z]/Sat(TQ)
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Quasi-Components and Triangular Decomposition

Quasi-component of a regular chain: Let hz = [],e init(p)

« W(T):=V(T)\V(hy) = W(T)=V(T)\V(hy) = W(2)=K"

A triangular decomposition of an input system F' ¢ K[ X] is a set of
regular chains 717, ...,T, such that:

(Lazard-Wu decomposition) V(F) =U;, W(T;), or

(Kalkbrener decomposition) V (F') = U, W(T;)

Some T; may be redundant; 35 W (T;) ¢ W(T})
= Should not return excessive solutions to client code/users

= Suggests some branches of computation are wasteful and unnecessary
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All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

L, In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize —— RemoveReundancies

l

_— Intersect

IntersectFree

J CleanChain

-~ ™~

Extend «<— Regularize IntersectAlgebraic

U O \ RegularGCD ‘/ U
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Concurrency Opportunities

Component-level parallelism
= Concurrency in incremental decomposition: “triangularize tasks”
L. Map (parallel for-loop), Workpile (queue with parallel while-loop)
= Concurrency between the many subroutines which call Regularize
L, Asynchronous Generators (Producer-Consumer), Pipeline

= Removing redundant components
L, Divide-and-Conquer like mergesort == Fork-Join

Low-level parallelism
= Subresultant chains

L, Applies Map to computing modular images for interpolation and
Chinese Remainder Theorem.
L, Limited to univariate and bivariate subresultants

= Factorization, polynomial arithmetic (work in progress)
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Triangularize: a task-based approach

Algorithm 1 TriangularizeByTasks(F')

Input: a finite set F' ¢ K[X]
Output: regular chains 71, ..., T, € K[X] such that V(F) = W(T1)u--uW(T.)
1: Tasks ={(F,@)}; T:=0

2: while | Tasks| > 0 do

3: (P,T) := pop a task from Tasks

4 Choose a polynomial p e P; P':= P~ {p}

5 for 7" in Intersect(p,T') do
6: if |[P'|=0then 7 :=T u{T"}
7.
8:

else Tasks:= Tasks u{(P',T")}
return RemoveRedundantComponents(7)

= Performs a depth-first search
= Tasks is essentially a data structure for a task scheduler
= A task can create more tasks, workers pop Tasks until none remain.

= Adaptive to load-balancing, no inter-task synchronization
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Triangularize Subroutine Pipeline

Triangularize

\
Intersect

IntersectFree < i
l //CltvaanChain .

Extend <— Regularize IntersectAlgebraic

@) () ™ RegularGCD ¥ @)

= Function call stack creates a dynamic parallel pipeline as several
generators (producers) invoked and consumers process the data.

= Data streams between subroutines; all soubroutines are effectively
non-blocking

= Pipeline creates fine-grained parallelism since work diminishes with
each recursive call
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Experimental Setup

A suite of >3000 polynomial systems has been compiled from systems
in the literature, user-data, and bug reports provided by Maplesoft

= Only 1076 of these systems result in more than one component in
their triangular decomposition

= |n all other cases:

L, No speed-up expected from component-level parallelism
L, Some slow-down is expected, due to parallel overheads

= Four separate parallel schemes can be active or inactive
L, Triangualrize tasks, generators, removing redundancies, subresultants

= Experiments run on a node with two 6-core Intel Xeon X5650 CPUs

L, 24 physical threads with hyperthreading
L, 12x4GB DDR3 RAM at 1.33 GHz
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Serial Performance

Lazard, Maple 2020 vs BPAS Serial

Kalkbrener, Maple 2020 vs BPAS Serial
25 25 /T 30+
- -
- -
H - 27
L -
20 24
21
o
2
© 15 18
o
9]
15
E
=1
€ 10 12
=1
o
9

0
10° 10* 1072 1072 10! 10° 10! 102 10° 10*

Maple 2020 Runtime (s)

Serial triangular decomposition, BPAS vs RegularChains library of Maple
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Performance of Individual Parallel Schemes

Parallel Speed-Up Factor
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Performance of Combined Parallel Schemes

Lazard, Tasks & RRC
L]

Alex B
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Avoiding Redundant Computations: Dynamic Evaluation

Two branches are likely to share geometric and algebraic features

_J a(z,y) _ ) b(z,y)
Ti= { cw)d(y) 2T { e(y)d(y)

= Computations may split 77 into {a(z,y), ¢(y)} and {a(y, z), d(y)}
= T3 hould automatically split into {b(z,y), c(y)} and {d(y,z), d(y)}

Inspired by cylindrical trees in Cylindrical Algebraic Decomposition [10]

Each regular chain should exist only once in the universe

A split found in one regular chain should automatically be applied to
other chains sharing that constraint

A unique and shared data structure = thread safety required
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Regular Chains as Paths, Latent Splits
[0,0,0]
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Triangular Decomposition, Limit Points

Triangular decomposition for an input set F' c K[X], find regular chains
T1,...,T. such that:
» V(F)=W(Ty) u W(Ty) u--uW(T.) (Kalkbrener)

s V(F)=W(T)) u W(T) U U W(T,) (Lazard-Wu)

In Kalkbrener decomp. T, ..., T, represent only generic zeros of V(F’)

= Computing a Kalkbrener decomposition is much easier
= The non-trivial limit points of a regular chain are W (T') ~ W(T).

Example:
br +y

€T __y
Tl_{ay—b2 :{y % where b0, a#0
I z=0 y=0
W(Tl)ZW(Tl)U y=0 U< a=0
b=0 b=0

Alex Brandt

August 2, 2022



Computing Limit Points: Extended Hensel Construction

= Given a one-dimensional regular chain T', W (T') is an algebraic curve

= The limit points of W(T') can be computed as limits of sequences of
points along “branches” of an algebraic curve [1]

= Computing branches of an algebraic curve F'(X,Y") involves
computing the roots of F' in Y as Puiseux series in X
Newton-Puiseux Theorem:

F(X,Y)=( - f1)-- (Y - fa), fi are Puiseux series in X

Extended Hensel Construction (Hensel-Sasaki Construction):
F(Xy1,...,Xn,Y)=(Y - f1)--(Y = fa), fi are Puiseux series in X1,...,X,

L, If F'is monic, the f; are power series in X1,..., X,
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Power Series: Definition

A =K[[Xy,...,X,]] is the ring of multivariate formal power series

= Let K be algebraically closed.
s f=Y,a. X eK[[X,...,X,]]
- Xe =X161"'Xe"

n 1

el=e1++ep

= homogeneous part of degree k: f) = Y= @eX®

= M=(Xy,...,Xy) is the maximal ideal of A = f(; € MFE S M
Example:

f=1+X; + X1Xo + X7 + X1 X3 + X{ + - is known to precision 3

fay=X1 foy = X1 X2+ X3 fay = X1X3 + X7

A[Y] is the ring of Univariate Polynomials over Power Series (UPoPS)
= f= Zfzo a;Y?, a; € A, ag#0, is a UPoPS of degree d
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Lazy Power Series: Design

Motivation: allow for terms to be computed on demand

Only compute terms explicitly needed:
L, requested by user; needed for subsequent operations

Ability to resume and increase precision of an existing power series

Our lazy power series:

store previously computed homogeneous parts;
return previously computed homogeneous parts and, otherwise,
use an update function to compute homogeneous parts as needed;
capture parameters required for the update function.
L, (3) and (4) effectively create a closure
Where update parameters are power series, they are called ancestors.
Addition, f=g+h Multiplication f = gh
= Sy =90 + Py = Sy = Zio 9y
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Ancestry Example

p=fg+ab
f: g: a = b:
l+z+yz+... l+z+y+... lvy+a?+... l+yz+az+...
N N
h: C =
l+z+y+x+yz+xz+ay+... 1+y+yz+mz+x2+...
\ N /

1

2+ 242y +x+2yz+ 2wz +ay+a’+ ...
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Weierstrass Preparation: Informally

Weierstrass Preparation is a factorization of a UPoPS into two:
a distinguished polynomial and a unit

Let f = agem Y™ +agY? + -+ aY? + a1Y +ag be a UPoPS where:
u ad+m,...,a1,a0eK[[Xl,...,Xn]]
" Gd-1(0) = = do(o) = 0
L mEZzo

Weierstrass Preparation Theorem tells us:
= f=pa
= p= Y+ bd_lyd_l + -+ b1Y + by, bd—l(O) == bO(O) =0
= « is an invertible element of K[[X1,..., X,]][[Y]]

A constructive proof of this theorem tells us that p and « can be
computed lazily from power series arithmetic in O(dmk?) operations in K
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Hensel Factorization

Algorithm 2 HENSELFACTORIZATION( f)

Input: f=Y?+ Y% 0,V a; e K[ X1,..., Xn]]-
Output: fi,..., f; st. [T, fi=f, fi(0,...,0,Y) = (Y—ci)f

. f=£(0,...,0,Y) i
: (c1,..-,¢),(d1,. .., dy) := roots and their multiplicities of f
=S

fori:=1tor-1do

g9i=[i(Y + )

Pi, @ := WEIERSTRASSPREPARATION(g;)
fi=pi(Y - )

fir1 =i (Y —¢)

: fr = f’/‘

return fy,..., f,

_
e
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Parallel Opportunities in Hensel

p1if1 p2;82>f2 p3;63’f3

+C1 / —C1 A~ tC2 / —C2 A tC3 /

f—>g1—»Ql—»f2—>92—>a2—>f3—>g3—>a3—>f4

= The output of one Weierstrass becomes input to another

= fivi(k) relies on fi(py
= Can compute fj,1) and fi.i) concurrently in a pipeline

Stage 1 (f1) | Stage 2 (f2) | Stage 3 (f3) | Stage 4 (f4)
Time 1 fl(l)
Time 2 f1(2) f2(1)
Time 3 f13) f2(2) I301)
Time 4 fia f2(3) f3(2) faq)
Time 5 f1(5) f2(a I33) fa(2)
Time 6 f1(6) f2(5) I3(1) fa(3)
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Parallel Challenges and Composition

—C1 —C2 —C3

p1— fi D2 —> fo pP3 —> f3

+c1 / —Cc1 A +co / —co . +e3 /

f—>gl—>a1—>f2—>gz—>a2—>f3—>gg—>a3—>f4

= Degrees and computational work diminish with each stage
L deg(gl) = d7 deg(g2) =d- deg(f1)7 ce

= Dominant cost to update f; is WPT: O(deg(p;) deg(a;)k?)
= To load-balance, execute WPT within each stage in parallel

= Assign t; threads to stage i so that deg(p;) deg(«;) /t; is equal for
each stage.

= Better still, update a group of successive factors per stage.

L, To each stage s assign factors fs,,..., fs, and t, threads so that
YiZ,, deg(pi) deg(a;)/ts is roughly equal for each stage.
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Parallel Speed-up Hensel Factorization

Parallel Speedup vs Precision, Hensel Factorization x;
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Outline

Conclusions and Future Work
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Conclusion

Our Contributions:

Algebraic class hierarchy

L, Compile-time mathematical type safety
L, “Make it hard to do the wrong thing": ease-of-use, extensibility

Object-oriented, composable parallel framework

High-performance triangular decomposition

L, Speculative computation
L, Component-level parallelism

Algorithms and data structures to avoid redundant computation

Lazy & Parallel Hensel Factorization
L, Complexity estimates guide dynamic load-balancing
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Future Work (1/2)

Parallel Computing & Software Design

= Further support for irregular parallelism
= New and hybrid parallel patterns, composition of patterns

= Cooperation of parallel regions
L, Gang scheduling, Cooperative multitasking
L, Dynamic resource re-distribution
L, Min/Max number of threads per region

= Quantitative profiling of irregular parallelism
L, How much concurrency was found?
L, How much parallelism was exploited?
L, Tuning of run-time parameters
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Future Work (2/2)

Computer Algebra & Symbolic Computation

Avoiding redundant computation in triangular decomposition

Regular chain universe

L, Dynamic evaluation, latent splits, splitting trees
L, Adding parallelism requires efficient shared data structures

Extend lazy-evaluation to Laurent series, Puiseux series

Parallel pipeline for Extended Hensel Construction

Improved thread distribution in Hensel pipeline: consider multivariate
case and practical issues (coefficient sizes, locality)
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