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The BPAS Library
Basic Polynomial Algebra Subprograms (BPAS) [2] provides
high-performance polynomial algebra.
→ High performance: core implementation in C considers data locality,

cache complexity, and parallelism for modern multi-core architectures

→ Easy to use: “Dynamic” Object-Oriented interface in C++ is a
light-weight wrapper of the underlying, optimized C code.

Notable highly-optimized operations include:
→ FFTs, parallel integer polynomial multiplication, modular polynomial

arithmetic, parallel Taylor shift, real root isolation (ICMS 2014 [5])

→ Big prime field FFTs, arithmetic in Z⇑𝑝Z for large characteristic [6]

→ Sparse polynomial arithmetic, pseudo-division, normal form [4]

→ Polynomial system solving: parallel triangular decomposition via
regular chains [3]
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Motivation: Usability

BPAS is concerned with accessibility, interoperability, and usability.
→ Open-source and written in C/C++ provides the former two.

To achieve usability, we consider best practices for its interface.
1 Natural: a symmetric encoding of the algebraic hierarchy

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring

2 Easy to use: an object-oriented design with well-defined interfaces.
A so-called algebraic class hierarchy: rings are classes and elements
of a ring are objects

3 Encapsulation: hide complexity of low-level code; class interfaces

4 Extensible: adaptable to new (user-created) types, type composition

5 Type safe: compile-time type safety and mathematical type safety
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Motivation: Type Safety
A naive implementation of the algebraic hierarchy as a class hierarchy
creates mathematically unsafe operations via polymorphism.

Ring

IntegralDomain

GCDDomain

EuclidDomain

remainder(divisor): EuclidDomain

Field

Z mod 17

Q[x]

1 class EuclidDomain {
2 EuclidDomain remainder ( EuclidDomain & divisor );
3 }
4
5 Zmod17 a;
6 RationalPoly b;
7 EuclidDomain r = a. remainder (b);

→ Z⇑17Z and Q(︀𝑥⌋︀ are Euclidean domains

→ the code is valid via polymorphism

→ could compile, but then issues at runtime.
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Existing Solutions

In other compiled libraries, mathematical type safety is only a runtime
property maintained through runtime value checks.

→ In Singular’s libpolys [7], all algebraic types are a single class.
Instance variables (Booleans, enums) store properties of rings

→ In CoCoA [1] rings and elements of a ring are separate classes.
Elements hold references to their “owning” ring which are compared
at runtime and errors thrown if not identical.

→ In LinBox [8] rings and elements are again distinct, with references to
abstract ring elements being downcasted for operations.

Our Goal: provide both compile-time mathematical type safety and a
natural, extensible object-oriented hierarchy for the algebraic hierarchy
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Templates in C++

A class template in C++ is a parameterized class definition
→ template instantiation: providing a particular value for a template

parameter
→ compile-time code generation and overload resolution occurs
→ synonymous definitions for function templates

Template metaprogramming uses templates to control and modify a
program’s code or compilation
→ facilitates compile-time code generation
→ facilitates compile-time code evaluation
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Compile-Time Introspection
Templates allow for compile-time introspection
→ compile-time evaluation of code to determine properties of a type

1 struct Foo {
2 typedef int X;
3 };
4
5 template <typename T> char test( typename T::X const *);
6
7 template <typename T> int test(...);
8
9 # define type_has_X (T) ( sizeof (test <T>(NULL)) == 1);

10
11 std :: cout << "Foo has X: " << type_has_X (Foo);
12 std :: cout << "int has X: " << type_has_X (int);

→ if T has type X, then compile-time overload resolution chooses first
definition with return type char (size == 1)

→ else, second definition is chosen with return type int (size >= 2)
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Algebraic Class Hierarchy
The algebraic hierarchy as a class hierarchy with mathematical type safety

Solution: an abstract class template hierarchy.
→ abstract classes: well-defined interfaces, default behaviour
→ inheritance incrementally extends/builds interface
→ template parameter modifies interface to restrict method parameters

1 template <class Derived >
2 class Ring {...};
3
4 template <class Derived >
5 class IntegralDomain : Ring <Derived > {...};
6
7 template <class Derived >
8 class GCDDomain : IntegralDomain <Derived > {...};
9

10 template <class Derived >
11 class EuclidDomain : GCDDomain <Derived > {
12 Derived remainder ( Derived & divisor );
13 }
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Algebraic Class Hierarchy: Static Polymorphism
Static polymorphism via Curiously Recurring Template Pattern: concrete
class is used as template parameter of super class.
→ function resolution occurs at compile-time
→ method declaration restricts params to be compile-time compatible

1 template <class Derived >
2 class EuclidDomain : GCDDomain <Derived > {
3 Derived remainder ( const Derived & divisor );
4 };
5
6 class Integer : EuclidDomain <Integer > {...}; // CRTP
7 // Integer remainder ( const Integer & divisor );
8
9 class RationalPoly : EuclidDomain <RatonalPoly > {...}; // CRTP

10 // RationalPoly remainder ( const RationalPoly & divisor );
11
12 Integer x; RationalPoly p;
13
14 // compiler error : EuclidDomain <RationalPoly >:: remainder
15 // takes RationalPoly as parameter
16 RationalPoly r = p. remainder (x);
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Algebraic Class Hierarchy: Adding Flexibility
Disjoint class hierarchies is too restrictive. Allow implicit conversion by
defining constructors, e.g. for natural ring embeddings Z↪ Q↪ Q(︀𝑥⌋︀

1 class Integer : EuclidDomain <Integer > {};
2
3 class RationalPoly : EuclidDomain <RatonalPoly > {
4 RationalPoly ( Integer x) {...};
5 };
6
7 Integer x;
8 RationalPoly p;
9

10 // no error : implicit conversion , Integer to RationalPoly
11 RationalPoly r = p. remainder (x);

→ Explicitly defining constructors gives permission for compatibility
between types at compile-time

→ cf. working in a restrictive manner: allow everything at compile-time
and catch incompatibility at runtime
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Algebraic Class Hierarchy with Polynomials

Extend abstract class template hierarchy to include polynomials
→ parameterize polynomial abstract classes by coefficient ring

1 template <class Derived >
2 class Ring {...};
3
4 template <class CoefRing , class Derived >
5 class Poly : Ring <Derived > {...};
6
7 class RationalPoly : Poly <RationalNumber , RationalPoly > {...};

Problem: What if CoefRing is not actually a ring?
→ e.g. Poly<std::string> or Poly::<Apple>

Problem: polynomial rings form different algebraic types depending on
the ground ring
→ e.g. Q(︀𝑥⌋︀ is a Euclidean domain, Z(︀𝑥⌋︀ is an integral domain
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Constraining the Ground Ring

At compile-time ensure that a polynomial’s coefficient ring is an actual
ring with template metaprogramming.

Derived_from<T, Base>: statically determines if T is a subclass of Base,
creating a compiler-error if not
→ inheriting from Derived_from forces evaluation at compile-time

during template instantiation
→ Coefficient ring must be a subclass of Ring

→ Poly can assume CoefRing has a certain interface at minimum

1 template <class T, class Base >
2 class Derived_from {...};
3
4 template <class CoefRing , class Derived >
5 class Poly : Ring <Derived >,
6 Derived_from <CoefRing , Ring <CoefRing >> {...};
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Adapting to Different Coefficient Rings (1/2)
Determine type of coefficient ring using compile-time introspection
→ Conditional inheritance then determines correct algebraic type and

interface for polynomials over that ring
→ “Dynamic” type creation via introspection, template instantiation

is_base_of<T, Base>::value
→ compile-time Boolean value determines if T is a subclass of Base

conditional<Bool, T1, T2>::value
→ A compile-time tertiary conditional operator for choosing types
→ Bool ? T1 : T2

1 template <class CRing , class Derived >
2 class Poly : conditional < is_base_of <CRing , Field <CRing >>:: value ,
3 EuclidDomain <Derived >,
4 Ring <Derived >
5 >:: value {...};
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Adapting to Different Coefficient Rings (2/2)
A chain of conditional’s create a case-discussion at compile-time
→ Tester hierarchy separates introspection from actual interface
→ Concrete classes inherit from Polynomial to automatically determine

their type and interface

Ring is a GCD domain

Ring is an integral domain

Ring is not an integral domain
BasePolynomial

Ring,Derived

IntegralDomainPoly

Ring,Derived

GCDDomainPoly

Ring,Derived

IntegralPolyTester

Ring,Derived

GCDPolyTester

Ring,Derived

Polynomial

Ring,Derived

Ring is not a GCD domain

Ring

IntegralDomain

GCDDomain
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Conclusions and Future Work

Algebraic Class Hierarchy as an abstract class template hierarchy
→ Direct object-oriented encoding of algebraic types for strict interfaces

→ Compile-time type safety, implicit conversion allows compatibility

→ Properties of rings (classes) can be exploited with introspection
→ Adaptive polynomial class hierarchy through conditional inheritance

ë More generally, conditionally exposes/adds methods to an interface

In future:
→ The hierarchy will be extended to include power series, polynomials

over prime fields
→ A Python interface will be added on top of the C++ interface
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Thank You!

I look forward to your questions:
→ during the live Q/A session, or
→ via email, Alex Brandt <abrandt5@uwo.ca>
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