
Employing C++ Templates in the Design of a
Computer Algebra Library

Alexander Brandt, Robert H. C. Moir, Marc Moreno Maza

Ontario Research Center for Computer Algebra
Department of Computer Science

University of Western Ontario, Canada

ICMS 2020

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 1 / 21

The BPAS Library
Basic Polynomial Algebra Subprograms (BPAS) [2] provides
high-performance polynomial algebra.
→ High performance: core implementation in C considers data locality,

cache complexity, and parallelism for modern multi-core architectures

→ Easy to use: “Dynamic” Object-Oriented interface in C++ is a
light-weight wrapper of the underlying, optimized C code.

Notable highly-optimized operations include:
→ FFTs, parallel integer polynomial multiplication, modular polynomial

arithmetic, parallel Taylor shift, real root isolation (ICMS 2014 [5])

→ Big prime field FFTs, arithmetic in Z⇑𝑝Z for large characteristic [6]

→ Sparse polynomial arithmetic, pseudo-division, normal form [4]

→ Polynomial system solving: parallel triangular decomposition via
regular chains [3]

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 2 / 21

Outline

1 Motivation in Design

2 Background

3 Algebraic Hierarchy as a Templated Class Hierarchy

4 Polynomials in a Templated Class Hierarchy

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 3 / 21

Motivation: Usability

BPAS is concerned with accessibility, interoperability, and usability.
→ Open-source and written in C/C++ provides the former two.

To achieve usability, we consider best practices for its interface.
1 Natural: a symmetric encoding of the algebraic hierarchy

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring

2 Easy to use: an object-oriented design with well-defined interfaces.
A so-called algebraic class hierarchy: rings are classes and elements
of a ring are objects

3 Encapsulation: hide complexity of low-level code; class interfaces

4 Extensible: adaptable to new (user-created) types, type composition

5 Type safe: compile-time type safety and mathematical type safety

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 4 / 21

Motivation: Type Safety
A naive implementation of the algebraic hierarchy as a class hierarchy
creates mathematically unsafe operations via polymorphism.

Ring

IntegralDomain

GCDDomain

EuclidDomain

remainder(divisor): EuclidDomain

Field

Z mod 17

Q[x]

1 class EuclidDomain {
2 EuclidDomain remainder (EuclidDomain & divisor);
3 }
4
5 Zmod17 a;
6 RationalPoly b;
7 EuclidDomain r = a. remainder (b);

→ Z⇑17Z and Q(︀𝑥⌋︀ are Euclidean domains

→ the code is valid via polymorphism

→ could compile, but then issues at runtime.

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 5 / 21

Existing Solutions

In other compiled libraries, mathematical type safety is only a runtime
property maintained through runtime value checks.

→ In Singular’s libpolys [7], all algebraic types are a single class.
Instance variables (Booleans, enums) store properties of rings

→ In CoCoA [1] rings and elements of a ring are separate classes.
Elements hold references to their “owning” ring which are compared
at runtime and errors thrown if not identical.

→ In LinBox [8] rings and elements are again distinct, with references to
abstract ring elements being downcasted for operations.

Our Goal: provide both compile-time mathematical type safety and a
natural, extensible object-oriented hierarchy for the algebraic hierarchy

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 6 / 21

Outline

1 Motivation in Design

2 Background

3 Algebraic Hierarchy as a Templated Class Hierarchy

4 Polynomials in a Templated Class Hierarchy

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 7 / 21

Templates in C++

A class template in C++ is a parameterized class definition
→ template instantiation: providing a particular value for a template

parameter
→ compile-time code generation and overload resolution occurs
→ synonymous definitions for function templates

Template metaprogramming uses templates to control and modify a
program’s code or compilation
→ facilitates compile-time code generation
→ facilitates compile-time code evaluation

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 8 / 21

Compile-Time Introspection
Templates allow for compile-time introspection
→ compile-time evaluation of code to determine properties of a type

1 struct Foo {
2 typedef int X;
3 };
4
5 template <typename T> char test(typename T::X const *);
6
7 template <typename T> int test(...);
8
9 # define type_has_X (T) (sizeof (test <T>(NULL)) == 1);

10
11 std :: cout << "Foo has X: " << type_has_X (Foo);
12 std :: cout << "int has X: " << type_has_X (int);

→ if T has type X, then compile-time overload resolution chooses first
definition with return type char (size == 1)

→ else, second definition is chosen with return type int (size >= 2)

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 9 / 21

Outline

1 Motivation in Design

2 Background

3 Algebraic Hierarchy as a Templated Class Hierarchy

4 Polynomials in a Templated Class Hierarchy

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 10 / 21

Algebraic Class Hierarchy
The algebraic hierarchy as a class hierarchy with mathematical type safety

Solution: an abstract class template hierarchy.
→ abstract classes: well-defined interfaces, default behaviour
→ inheritance incrementally extends/builds interface
→ template parameter modifies interface to restrict method parameters

1 template <class Derived >
2 class Ring {...};
3
4 template <class Derived >
5 class IntegralDomain : Ring <Derived > {...};
6
7 template <class Derived >
8 class GCDDomain : IntegralDomain <Derived > {...};
9

10 template <class Derived >
11 class EuclidDomain : GCDDomain <Derived > {
12 Derived remainder (Derived & divisor);
13 }

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 11 / 21

Algebraic Class Hierarchy: Static Polymorphism
Static polymorphism via Curiously Recurring Template Pattern: concrete
class is used as template parameter of super class.
→ function resolution occurs at compile-time
→ method declaration restricts params to be compile-time compatible

1 template <class Derived >
2 class EuclidDomain : GCDDomain <Derived > {
3 Derived remainder (const Derived & divisor);
4 };
5
6 class Integer : EuclidDomain <Integer > {...}; // CRTP
7 // Integer remainder (const Integer & divisor);
8
9 class RationalPoly : EuclidDomain <RatonalPoly > {...}; // CRTP

10 // RationalPoly remainder (const RationalPoly & divisor);
11
12 Integer x; RationalPoly p;
13
14 // compiler error : EuclidDomain <RationalPoly >:: remainder
15 // takes RationalPoly as parameter
16 RationalPoly r = p. remainder (x);

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 12 / 21

Algebraic Class Hierarchy: Adding Flexibility
Disjoint class hierarchies is too restrictive. Allow implicit conversion by
defining constructors, e.g. for natural ring embeddings Z↪ Q↪ Q(︀𝑥⌋︀

1 class Integer : EuclidDomain <Integer > {};
2
3 class RationalPoly : EuclidDomain <RatonalPoly > {
4 RationalPoly (Integer x) {...};
5 };
6
7 Integer x;
8 RationalPoly p;
9

10 // no error : implicit conversion , Integer to RationalPoly
11 RationalPoly r = p. remainder (x);

→ Explicitly defining constructors gives permission for compatibility
between types at compile-time

→ cf. working in a restrictive manner: allow everything at compile-time
and catch incompatibility at runtime

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 13 / 21

Outline

1 Motivation in Design

2 Background

3 Algebraic Hierarchy as a Templated Class Hierarchy

4 Polynomials in a Templated Class Hierarchy

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 14 / 21

Algebraic Class Hierarchy with Polynomials

Extend abstract class template hierarchy to include polynomials
→ parameterize polynomial abstract classes by coefficient ring

1 template <class Derived >
2 class Ring {...};
3
4 template <class CoefRing , class Derived >
5 class Poly : Ring <Derived > {...};
6
7 class RationalPoly : Poly <RationalNumber , RationalPoly > {...};

Problem: What if CoefRing is not actually a ring?
→ e.g. Poly<std::string> or Poly::<Apple>

Problem: polynomial rings form different algebraic types depending on
the ground ring
→ e.g. Q(︀𝑥⌋︀ is a Euclidean domain, Z(︀𝑥⌋︀ is an integral domain

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 15 / 21

Constraining the Ground Ring

At compile-time ensure that a polynomial’s coefficient ring is an actual
ring with template metaprogramming.

Derived_from<T, Base>: statically determines if T is a subclass of Base,
creating a compiler-error if not
→ inheriting from Derived_from forces evaluation at compile-time

during template instantiation
→ Coefficient ring must be a subclass of Ring

→ Poly can assume CoefRing has a certain interface at minimum

1 template <class T, class Base >
2 class Derived_from {...};
3
4 template <class CoefRing , class Derived >
5 class Poly : Ring <Derived >,
6 Derived_from <CoefRing , Ring <CoefRing >> {...};

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 16 / 21

Adapting to Different Coefficient Rings (1/2)
Determine type of coefficient ring using compile-time introspection
→ Conditional inheritance then determines correct algebraic type and

interface for polynomials over that ring
→ “Dynamic” type creation via introspection, template instantiation

is_base_of<T, Base>::value
→ compile-time Boolean value determines if T is a subclass of Base

conditional<Bool, T1, T2>::value
→ A compile-time tertiary conditional operator for choosing types
→ Bool ? T1 : T2

1 template <class CRing , class Derived >
2 class Poly : conditional < is_base_of <CRing , Field <CRing >>:: value ,
3 EuclidDomain <Derived >,
4 Ring <Derived >
5 >:: value {...};

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 17 / 21

Adapting to Different Coefficient Rings (2/2)
A chain of conditional’s create a case-discussion at compile-time
→ Tester hierarchy separates introspection from actual interface
→ Concrete classes inherit from Polynomial to automatically determine

their type and interface

Ring is a GCD domain

Ring is an integral domain

Ring is not an integral domain
BasePolynomial

Ring,Derived

IntegralDomainPoly

Ring,Derived

GCDDomainPoly

Ring,Derived

IntegralPolyTester

Ring,Derived

GCDPolyTester

Ring,Derived

Polynomial

Ring,Derived

Ring is not a GCD domain

Ring

IntegralDomain

GCDDomain

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 18 / 21

Conclusions and Future Work

Algebraic Class Hierarchy as an abstract class template hierarchy
→ Direct object-oriented encoding of algebraic types for strict interfaces

→ Compile-time type safety, implicit conversion allows compatibility

→ Properties of rings (classes) can be exploited with introspection
→ Adaptive polynomial class hierarchy through conditional inheritance

ë More generally, conditionally exposes/adds methods to an interface

In future:
→ The hierarchy will be extended to include power series, polynomials

over prime fields
→ A Python interface will be added on top of the C++ interface

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 19 / 21

Thank You!

I look forward to your questions:
→ during the live Q/A session, or
→ via email, Alex Brandt <abrandt5@uwo.ca>

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 20 / 21

References
[1] J. Abbott and A. M. Bigatti. CoCoALib: a C++ library for doing Computations in

Commutative Algebra. Available at http://cocoa.dima.unige.it/cocoalib.

[2] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mohajerani,
R. H. C. Moir, M. Moreno Maza, D. Talaashrafi, L. Wang, N. Xie, and Y. Xie. Basic
Polynomial Algebra Subprograms (BPAS). http://www.bpaslib.org. 2020.

[3] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. X. “On the Parallelization
of Triangular Decomposition of Polynomial Systems”. In: ISSAC 2020, Proceedings. (to
appear). 2020.

[4] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Algorithms and Data
Structures for Sparse Polynomial Arithmetic”. In: Mathematics 7.5 (2019), p. 441.

[5] C. Chen, S. Covanov, F. Mansouri, M. Moreno Maza, N. Xie, and Y. Xie. “The Basic
Polynomial Algebra Subprograms”. In: ICMS 2014, Proceedings. 2014, pp. 669–676.

[6] S. Covanov, D. Mohajerani, M. Moreno Maza, and L. Wang. “Big Prime Field FFT on
Multi-core Processors”. In: ISSAC 2019, Proceedings. 2019, pp. 106–113.

[7] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-1-1 — A computer
algebra system for polynomial computations. http://www.singular.uni-kl.de. 2018.

[8] The LinBox group. LinBox. v1.6.3. 2019. url:
http://github.com/linbox-team/linbox.

Alexander Brandt Employing C++ Templates in the Design of a Computer Algebra Library ICMS 2020 21 / 21

http://www.bpaslib.org
http://www.singular.uni-kl.de
http://github.com/linbox-team/linbox

