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Past, Present, Future

The Basic Polynomial Algebra Subprograms (BPAS) library [3]
provides support for high-performance polynomial algebra.
→ At CASC 2018 we presented sparse polynomial arithmetic [4, 6]
→ These polynomials were employed in a polynomial system solving

framework based on regular chains [5]

In this talk we present our high-performance implementation of
multivariate power series written in C.

We are motivated by: (see [1])
→ Computation of limits of multivariate rational functions
→ New applications of Hensel lifting: Extended Hensel Construction,

Jung-Abhyankar Theorem
→ Computation of topological closures, resolution of singularities
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Goals and Previous Work

Our goal is a high-performance power series implementation
→ a lazy implementation in a compiled language (for performance)
→ ability to exploit opportunities for concurrent programming

Lazy evaluation is not new:
→ univariate power series in Scratchpad II using Lisp [7]
→ univariate power series and relaxed algorithms [8]
→ polynomial arithmetic [10]

Yet, no general implementation of (compiled) multivariate power series
→ SageMath provides truncated multivariate power series
→ multivariate power series in PowerSeries library of Maple [2, 9]
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What is a power series?
Let k be a field (often algebraic closed) then k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ is the
ring of formal power series
→ indeterminates are 𝑋1, . . . , 𝑋𝑛, coefficients in k

Let 𝑓 = ∑𝑒 𝑎𝑒𝑋𝑒 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀
→ 𝑎𝑒 ∈ k
→ 𝑒 = (𝑒1, . . . , 𝑒𝑛) is a multi-index with 𝑛 coordinates
→ ⋃︀𝑒⋃︀ = 𝑒1 + . . . + 𝑒𝑛

→ homogeneous part: 𝑓(𝑑) = ∑
⋃︀𝑒⋃︀=𝑑

𝑎𝑒𝑋𝑒

→ polynomial part: 𝑓 (𝑑) = ∑
𝑘≤𝑑

𝑓
(𝑘)

Example: 𝑓 = 1 + 𝑋1 + 𝑋1𝑋2 + 𝑋2
2 + 𝑋1𝑋2

2 + 𝑋3
1 + ⋯

𝑓(2) = 𝑋1𝑋2 +𝑋2
2 𝑓 (2) = 1 +𝑋1 +𝑋1𝑋2 +𝑋2

2

We say 𝑓 is known to precision 3
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Design Motivations

1 Only compute terms explicitly needed: requested by user, needed for
subsequent operations

2 Ability to resume and increase precision of an existing power series

This suggests the need for:
→ power series ancestry, a history of operands and operators leading

to a particular “child” power series

→ generator functions, a function to produce new terms of a power
series on demand
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Ancestry Example

𝑓 = 𝑔 = 𝑎 = 𝑏 =
1 + 𝑥 + 𝑦𝑧 + . . . 1 + 𝑧 + 𝑦 + . . . 1 + 𝑦 + 𝑥2 + . . . 1 + 𝑦𝑧 + 𝑥𝑧 + . . .

× ×

ℎ = 𝑐 =
1 + 𝑧 + 𝑦 + 𝑥 + 𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦 + . . . 1 + 𝑦 + 𝑦𝑧 + 𝑥𝑧 + 𝑥2 + . . .

+

ℎ + 𝑐 =
2 + 𝑧 + 2𝑦 + 𝑥 + 2𝑦𝑧 + 2𝑥𝑧 + 𝑥𝑦 + 𝑥2 + . . .
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Generator Functions

Generators could be co-routines or iterators, continually yield-ing terms
of a power series in increasing order.

→ Power series operations/arithmetic also necessitates dynamic
combinations of generator functions

→ Easy in a scripting language, Harder in a compiled language

In a more “closed-form” solution, our generators:

→ generate a homogeneous part of a power series,
for a particular (total) degree, where

→ the degree is a parameter of the function

Top-level homogeneous_part and polynomial_part functions call the
generators generically, as needed for particular degrees
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Encoding a Power Series
Our power series struct:
→ dense array of homogeneous polynomials

𝑓
(0) 𝑓

(1) 𝑓
(2) 𝑓

(3) 𝑓
(4) 𝑓

(5) ⋯

→ int’s for current allocation, precision
→ a function pointer to a generator
→ the arguments to pass to the generator function.

The struct emulates a function closure for the generator:
→ captures and stores all necessary variables by reference (pointer)

to pass as arguments to the generator
→ uses void* parameters for generality
→ The ancestry is implied by storing power series pointers as parameters

ë use reference counting on the power series
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The PowerSeries struct
1 typedef Poly_ptr (* homog_part_gen )(int);
2 typedef Poly_ptr (* homog_part_gen_unary )(int , void *);
3 typedef Poly_ptr (* homog_part_gen_binary )(int , void*, void *);
4 typedef Poly_ptr (* homog_part_gen_tert )(int ,void*,void*,void *);
5
6 typedef union HomogPartGenerator {
7 homog_part_gen nullaryGen ;
8 homog_part_gen_unary unaryGen ;
9 homog_part_gen_binary binaryGen ;

10 homog_part_gen_tert tertiaryGen ;
11 } HomogPartGenerator_u ;
12
13 typedef struct PowerSeries {
14 int deg , alloc ;
15 Poly_ptr * homog_polys ;
16
17 HomogPartGenerator_u gen;
18 int genOrder ;
19 void * genParam 1, * genParam 2, * genParam 3;
20
21 int refCount ;
22 } PowerSeries_t ;
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Power Series Arithmetic: Multiplication
1 A top-level lazy function sets up a PowerSeries with generator and

generator parameters and immediately returns

2 A void generator (wrapper function) is called generically with the
void* params, casting them to the correct type, and then calls...

3 The true generator creates and returns 𝑓(𝑑) for input 𝑑 :
1 Poly_ptr homogPart_prod (int d, PowerSeries_t * f, PowerSeries_t * g){
2 Poly_ptr sum = zeroPolynomial ();
3 for (int i = 0; i <= d; i++) {
4 Poly_ptr p = multPolys ( homogPart (d-i,f), homogPart (i,g));
5 sum = addPolynomials (sum , p);
6 }
7 return sum;
8 }

→ “Top-level” homogPart immediately returns already computed terms,
or calls the generator through the function pointer as needed

→ Other supported operations: addition, subtraction, negation, inversion
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The Ancestry and Generators

The power series ancestry is implied by a generator’s parameters
→ For a power series f, f.genParam1, f.genParam2, ... are its parents
→ Relationship is one-sided; parents don’t know about their children

For a generator to make use of its parents, they must be kept “alive”
→ reference counting

→ a parent’s reference count is incremented when a child is created

→ “destroying” only decrements reference count...

→ when count ≤ 0, then data is actually free’d

→ when a child is free’d, its parents get “destroyed”
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Experimentation: Integer coefs, 2 vars

→ PowerSeries library in Maple [2, 9]
→ mtaylor in Maple 2020

→ Truncated multivariate
power series in Sage
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Experimentation: Integer coefs, 3 vars

→ PowerSeries library in Maple [2, 9]
→ mtaylor in Maple 2020

→ Truncated multivariate
power series in Sage
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Experimentation: Rat. Num coefs, 2 vars

→ PowerSeries library in Maple [2, 9]
→ mtaylor in Maple 2020

→ Truncated multivariate
power series in Sage
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Weierstrass Preparation Theorem

Let A = k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ and ℳ = ∐︀𝑋1, . . . , 𝑋𝑛̃︀ be its maximal ideal

Let 𝑓 = ∑𝑖 𝑎𝑖𝑌
𝑖 ∈ A(︀(︀𝑌 ⌋︀⌋︀, 𝑑 ≥ 0 be the smallest integer s.t. 𝑎𝑑 ⇑∈ℳ

→ at the origin (𝑋1 = ⋯ = 𝑋𝑛 = 0), 𝑓 ≠ 0 and 𝑎𝑑 ≠ 0

WPT yields a polynomial approximation of a power series around the
origin through factorization

Weierstrass Preparation Theorem: there exists unique 𝛼, 𝑝 s.t.
(𝑖) 𝛼 ∈ A(︀(︀𝑌 ⌋︀⌋︀ is invertible,
(𝑖𝑖) 𝑝 = 𝑌 𝑑 +∑𝑑−1

𝑖=0 𝑏𝑖𝑌
𝑖 ∈ A(︀𝑌 ⌋︀ with 𝑏0, . . . , 𝑏𝑑−1 ∈ℳ

(𝑖𝑖𝑖) 𝑓 = 𝛼𝑝

ë 𝑝 ∈ A(︀𝑌 ⌋︀ is a monic Univariate Polynomial over Power Series, UPoPS

ë if 𝑓 is a UPoPS then so is 𝛼
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Computability of WPT: A Lemma
Let 𝑓, 𝑔, ℎ ∈ A with 𝑓 = 𝑔ℎ. With 𝑓 and ℎ known, compute 𝑔.

Assume 𝑓
(0) = 0 and ℎ

(0) ≠ 0, then:
𝑓(0) = 𝑔(0)ℎ(0) = 0 Ô⇒ 𝑔(0) = 0

By induction, 𝑔
(𝑟) is uniquely determined by 𝑓

(1), . . . , 𝑓
(𝑟), ℎ

(0), . . . , ℎ
(𝑟−1)

𝑓
(1) + 𝑓

(2) +⋯ + 𝑓
(𝑟) = (𝑔

(1) + 𝑔
(2) +⋯ + 𝑔

(𝑟))(ℎ(0) + ℎ
(1) +⋯ + ℎ

(𝑟))
𝑓(1) = 𝑔(1)ℎ(0)
𝑓(2) = 𝑔(2)ℎ(0) + 𝑔(1)ℎ(1)

⋮
𝑓(𝑟) = 𝑔(𝑟)ℎ(0) + 𝑔(𝑟−1)ℎ(1) +⋯ + 𝑔(1)ℎ(𝑟−1)

We can compute 𝑔
(𝑟) for 𝑟 = 1, 2, . . . using only polynomial arithmetic:

1
ℎ
(0)
(𝑓(𝑟) − 𝑔(𝑟−1)ℎ(1) −⋯ − 𝑔(1)ℎ(𝑟−1)) = 𝑔(𝑟)
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Lazy Weierstrass Preparation

Let 𝑓 = ∑𝑑+𝑚
ℓ 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑 +∑𝑑−1
𝑗 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑𝑚

𝑖 𝑐𝑖𝑌
𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑓 = 𝛼𝑝 Ô⇒ 𝑎0 = 𝑏0𝑐0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0

⋮
𝑎𝑑−1 = 𝑏0𝑐𝑑−1 + 𝑏1𝑐𝑑−2 +⋯ + 𝑏𝑑−2𝑐1 + 𝑏𝑑−1𝑐0

𝑎𝑑 = 𝑏0𝑐𝑑 + 𝑏1𝑐𝑑−1 +⋯ + 𝑏𝑑−1𝑐1 + 𝑐0
⋮

𝑎𝑑+𝑚−1 = 𝑏𝑑−1𝑐𝑚 + 𝑐𝑚−1
𝑎𝑑+𝑚 = 𝑐𝑚

We update 𝑝 and 𝛼 by solving these equations modulo ℳ𝑟, 𝑟 = 1, 2, . . .

ë “ping-pong” updates: 𝑝 to modℳ2, 𝛼 to modℳ2, 𝑝 to modℳ3 . . .

(1) 𝑏𝑗 ≡ 0 modℳ, 𝑗 = 0, . . . , 𝑑 − 1 (2) 𝑐𝑖 ≡ 𝑎𝑖 modℳ for 𝑖 = 0, . . . , 𝑚
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Lazy Weierstrass Phase 1: Updating 𝑝

Let 𝑓 = ∑𝑑+𝑚
ℓ 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑 +∑𝑑−1
𝑗 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑𝑚

𝑖 𝑐𝑖𝑌
𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑎0 = 𝑏0𝑐0
𝑎1 − 𝑏0𝑐1 = 𝑏1𝑐0

𝑎2 − 𝑏0𝑐2 − 𝑏1𝑐1 = 𝑏2𝑐0
⋮

𝑎𝑑−1 − 𝑏0𝑐𝑑−1 − 𝑏1𝑐𝑑−2 +⋯ − 𝑏𝑑−2𝑐1 = 𝑏𝑑−1𝑐0

𝑏𝑗 ≡ 0 modℳ, 𝑗 = 0, . . . , 𝑑 − 1. Then, for ℳ𝑟, 𝑟 > 1:
→ let 𝐹𝑗 = 𝑎𝑗 −∑𝑗−1

𝑘=0 𝑏𝑘𝑐𝑖−𝑘

→ the previous lemma applies to each equation 𝐹𝑗 = 𝑏𝑗𝑐0 to update each
𝑏𝑗 in succession, from 𝑗 = 0 to 𝑑 − 1

→ Each 𝐹𝑗 automatically updated through updated 𝑏𝑘 and lazy power
series arithmetic
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Lazy Weierstrass Phase 2: Updating 𝛼

Let 𝑓 = ∑𝑑+𝑚
ℓ 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑 +∑𝑑−1
𝑗 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑𝑚

𝑖 𝑐𝑖𝑌
𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑐𝑚 = 𝑎𝑑+𝑚

𝑐𝑚−1 = 𝑎𝑑+𝑚−1 − 𝑏𝑑−1𝑐𝑚

𝑐𝑚−2 = 𝑎𝑑+𝑚−2 − 𝑏𝑑−2𝑐𝑚 − 𝑏𝑑−1𝑐𝑚−1
⋮

𝑐0 = 𝑎𝑑 − 𝑏0𝑐𝑑 − 𝑏1𝑐𝑑−1 −⋯ − 𝑏𝑑−1𝑐1

𝑐𝑖 ≡ 𝑎𝑖 modℳ for 𝑖 = 0, . . . , 𝑚. Then, for ℳ𝑟, 𝑟 > 1:
→ In Phase 1, 𝑏𝑗 , 𝑗 = 0, . . . , 𝑑 − 1 updated to modulo ℳ𝑟

→ 𝑐𝑖 then automatically updated (by lazy arithmetic) to modulo ℳ𝑟

→ Note: updating each 𝑐𝑖 is independent since 𝑏𝑗 ∈ℳ.
e.g. 𝑏𝑗 known ℳ𝑟, 𝑐𝑖 known ℳ𝑟−1 Ô⇒ 𝑏𝑗𝑐𝑖 known modulo ℳ𝑟
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Experimentation
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Hensel’s Lemma

Let 𝑓 = ∑𝑘
𝑖 𝑎𝑖𝑌

𝑖 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ be a monic polynomial of degree 𝑘.

Let 𝑓 = 𝑓(0, . . . , 0, 𝑌 ) ∈ k(︀𝑌 ⌋︀. Assuming k is algebraically closed, 𝑓
factorizes into linear factors 𝑓 = (𝑌 − 𝑐1)𝑘1 ⋯ (𝑌 − 𝑐𝑟)𝑘𝑟 .

Hensel’s Lemma: there exists monic 𝑓1, . . . , 𝑓𝑟 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ s.t.
(𝑖) 𝑓 = 𝑓1⋯𝑓𝑟,
(𝑖𝑖) deg(𝑓𝑖, 𝑌 ) = 𝑘𝑖, for 𝑖 = 0, . . . , 𝑟

(𝑖𝑖𝑖) 𝑓𝑖 = (𝑌 − 𝑐𝑖)𝑘𝑖 , for 𝑖 = 0, . . . , 𝑟

A factorization routine:
1 Translate 𝑓 by 𝑐𝑖, it now has order 𝑘𝑖

2 Weierstrass preparation can then be applied to obtain 𝑝 with degree
𝑘𝑖 and 𝛼 with degree 𝑘 − 𝑘𝑖

3 After the reverse translation, 𝑝 is 𝑓𝑖, and 𝛼 is the “new” 𝑓
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Factorization via Hensel’s Lemma

Algorithm 1 HenselFactorization(𝑓)

Input: 𝑓 = ∑𝑘
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀.
Output: 𝑓1, . . . , 𝑓𝑟 satisfying Hensel’s Lemma

1: 𝑓 = 𝑓(0, . . . , 0, 𝑌 )
2: 𝑐1, . . . , 𝑐𝑟 ← obtain roots of 𝑓 in k ▷ factor 𝑓
3: 𝑓∗ = 𝑓
4: for 𝑖 = 1 to 𝑟 do
5: 𝑔 ← 𝑓∗(𝑌 + 𝑐𝑖)
6: 𝑝, 𝛼 ← WeierstrassPreparation(𝑔)
7: 𝑓𝑖 ← 𝑝(𝑌 − 𝑐𝑖)
8: 𝑓∗ ← 𝛼(𝑌 − 𝑐𝑖)
9: return 𝑓1, . . . , 𝑓𝑟

→ The Taylor shifts 𝑓∗(𝑌 + 𝑐𝑖), 𝑝(𝑌 − 𝑐𝑖), 𝛼(𝑌 − 𝑐𝑖) are implemented
lazily. Combined with lazy WPT, this entire factorization is lazy.
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A Factorization Pipeline (w.i.p.)

Viewing factorization via Hensel’s lemma as a pipelined computation
provides opportunities for parallelism.
→ Updating 𝑓𝑖 automatically updates its corresponding 𝛼, thus allowing

𝑓𝑖+1 to be updated
→ Perform each Weierstrass update (and reverse shift) as stages in a

parallel pipeline

Stage 1 (𝑓1) Stage 2 (𝑓2) Stage 3 (𝑓3) Stage 4 (𝑓4)
Time 1 𝑓1 to prec. 1
Time 2 𝑓1 to prec. 2 𝑓2 to prec. 1
Time 3 𝑓1 to prec. 3 𝑓2 to prec. 2 𝑓3 to prec. 1
Time 4 𝑓1 to prec. 4 𝑓2 to prec. 3 𝑓3 to prec. 2 𝑓4 to prec. 1
Time 5 𝑓1 to prec. 5 𝑓2 to prec. 4 𝑓3 to prec. 3 𝑓4 to prec. 2
Time 6 𝑓1 to prec. 6 𝑓2 to prec. 5 𝑓3 to prec. 4 𝑓4 to prec. 3
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Experimentation

From PowerSeries library:
→ FVHL: Factorization via Hensel’s Lemma
→ EHC: Extended Hensel Construction (Puiseux series)
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Conclusions and Future Work

We have implemented high-performing lazy implementations of
Power Series and UPoPS, including:
→ Power series arithmetic: ±, ×, ÷
→ Weierstrass preparation
→ Taylor shift by elements of k
→ Factorization via Hensel’s lemma

Further performance to be obtained through:
→ Parallelization internal to a Weierstrass Update
→ Pipelined computation in factorization via Hensel’s lemma
→ Relaxed algorithms [8]
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Thank You!

Questions?
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