Power Series Arithmetic with the BPAS Library

s

Basic Polynomial Algebra Subprograms

Alexander Brandt, Mahsa Kazemi, Marc Moreno Maza

Ontario Research Center for Computer Algebra
Department of Computer Science
University of Western Ontario, Canada

CASC 2020, September 14, 2020

Alexander Brandt (UWO) CASC 2020

Past, Present, Future

The Basic Polynomial Algebra Subprograms (BPAS) library [3]
provides support for high-performance polynomial algebra.

— At CASC 2018 we presented sparse polynomial arithmetic [4, 6]

— These polynomials were employed in a polynomial system solving
framework based on regular chains [5]

In this talk we present our high-performance implementation of
multivariate power series written in C.

We are motivated by: (see [1])
— Computation of limits of multivariate rational functions

— New applications of Hensel lifting: Extended Hensel Construction,
Jung-Abhyankar Theorem

— Computation of topological closures, resolution of singularities

Alexander Brandt (UWO) CASC 2020

Outline

Preliminaries

Power Series: Data Structure and Arithmetic

Weierstrass Preparation

Factorization via Hensel's Lemma

Alexander Brandt (U

Goals and Previous Work

Our goal is a high-performance power series implementation
— a lazy implementation in a compiled language (for performance)

— ability to exploit opportunities for concurrent programming

Lazy evaluation is not new:
— univariate power series in Scratchpad Il using Lisp [7]
— univariate power series and relaxed algorithms [8]

— polynomial arithmetic [10]

Yet, no general implementation of (compiled) multivariate power series
— SAGEMATH provides truncated multivariate power series

— multivariate power series in PowerSeries library of MAPLE [2, 9]

Alexander Brandt (UWO) CASC 2020

What is a power series?

Let k be a field (often algebraic closed) then k[[X7,..., X,]] is the
ring of formal power series

— indeterminates are X1,...,X,, coefficients in k

Let f =Y, acX®ek[[X1,...,X,]]
- ae €k
— e=(e1,...,e,) is a multi-index with n coordinates
- lel=e1+...+ep

— homogeneous part: f5) = ¥ a.X*
le|=d

- polynomial part: f(9) = ¥ T
k<d

Example: f=1+ X; + X; X + X22 + X1X22 + X:f o
fi2y = X1 X2+ X3 FO =1+ X0+ X1 Xa + X5

We say f is known to precision 3

Alexander Brandt (UWO) CASC 2020

Outline

Power Series: Data Structure and Arithmetic

Alexander Brandt (U

Design Motivations

Only compute terms explicitly needed: requested by user, needed for
subsequent operations

Ability to resume and increase precision of an existing power series

This suggests the need for:

— power series ancestry, a history of operands and operators leading
to a particular “child” power series

— generator functions, a function to produce new terms of a power
series on demand

Alexander Brandt (UWO) CASC 2020

Ancestry Example

f: g: a = b:
l+z+yz+... l+z+y+... T+y+a?+... l+yz+zz+...
N N

h: C=
l+z+y+ax+yz+az+zy+... 1+y+yz+mz+x2+“.

N
l
h+c=

2+ 2+ 2y +x +2yz + 22z + xy + 2

+ ...

Alexander Brandt (UWO) CASC 2020

Generator Functions

Generators could be co-routines or iterators, continually yield-ing terms
of a power series in increasing order.

— Power series operations/arithmetic also necessitates dynamic
combinations of generator functions

— Easy in a scripting language, Harder in a compiled language

In a more “closed-form” solution, our generators:

— generate a homogeneous part of a power series,
for a particular (total) degree, where

— the degree is a parameter of the function

Top-level homogeneous_part and polynomial_part functions call the
generators generically, as needed for particular degrees

Alexander Brandt (UWO) CASC 2020

Encoding a Power Series

Our power series struct:

— dense array of homogeneous polynomials

foyl fay [ey [o) | fay | fo)

— int's for current allocation, precision
— a function pointer to a generator

— the arguments to pass to the generator function.

The struct emulates a function closure for the generator:

— captures and stores all necessary variables by reference (pointer)
to pass as arguments to the generator

— uses void* parameters for generality
— The ancestry is implied by storing power series pointers as parameters
L, use reference counting on the power series

Alexander Brandt (UWO) CASC 2020

The PowerSeries struct

1 typedef Poly_ptr (*homog_part_gen) (int);

2 typedef Poly_ptr (*homog_part_gen_unary) (int, voidx);
3 typedef Poly_ptr (*xhomog_part_gen_binary) (int, void*, voidx);
4 typedef Poly_ptr (*homog_part_gen_tert) (int,void*,void*,void*);
5

6 typedef union HomogPartGenerator {

7 homog_part_gen nullaryGen;

8 homog_part_gen_unary unaryGen;

9 homog_part_gen_binary binaryGen;

10 homog_part_gen_tert tertiaryGen;

11} HomogPartGenerator_u;

12

13 typedef struct PowerSeries {

14 int deg, alloc;

15 Poly_ptr* homog_polys;

16

17 HomogPartGenerator_u gen;

18 int genOrder;

19 void *genParaml, *genParam2, *genParam3;

20

21 int refCount;

N
N

} PowerSeries_t;

Alexander Brandt (UWO) CASC 2020

® N oA W N

Power Series Arithmetic: Multiplication

A top-level lazy function sets up a PowerSeries with generator and
generator parameters and immediately returns

A void generator (wrapper function) is called generically with the
void* params, casting them to the correct type, and then calls...

The true generator creates and returns f(4) for input d :

Poly_ptr homogPart_prod(int d, PowerSeries_t* f, PowerSeries_t* g){
Poly_ptr sum = zeroPolynomial();
for (int i = 0; i <= d; i++) {
Poly_ptr p = multPolys(homogPart(d-i,f), homogPart(i,g));
sum = addPolynomials(sum, p);
}

return sum;

— "“Top-level” homogPart immediately returns already computed terms,
or calls the generator through the function pointer as needed

— Other supported operations: addition, subtraction, negation, inversion

Alexander Brandt (UWO) CASC 2020

The Ancestry and Generators

The power series ancestry is implied by a generator’s parameters
— For a power series f, f.genParaml, f.genParam?2, ... are its parents

— Relationship is one-sided; parents don't know about their children

For a generator to make use of its parents, they must be kept “alive”

— reference counting

— a parent’s reference count is incremented when a child is created
— “destroying” only decrements reference count...

— when count <0, then data is actually free'd

— when a child is free'd, its parents get “destroyed”

Alexander Brandt (UWO) CASC 2020

Experimentation: Integer coefs, 2 vars

Power Series Arithmetic for f=1+ X1 + X3

103 .
102 4
1
E 10
)
£
= 1004
10—1 .
== PowerSeries, 1-f == mtaylor, ;- f =El= Sage,'f =O= BPAS,i-f
1072 4 =~ PowerSeries, 1 =#- mtaylor, 1 =@~ Sage,1 —@= BPAS, 1
T T T T T T T T T T T
100 200 400 600 800 1000 1200 1400 1600 1800 2000

Precision

— PowerSeries library in MAPLE [2, 9] — Truncated multivariate
— mtaylor in MAPLE 2020 power series in SAGE

nder Brandt (UWO) CASC 2020

Experimentation: Integer coefs, 3 vars

Power Series Arithmetic for f=1+ X, + X5 + X3

103_
102_
0}
g 10! 4
£
100_
=/\= PowerSeries, > -f =£3= mtaylor, . , 2 f
10-1 4 =#— PowerSeries, =4- mtaylor,
— T T T T T T T
25 75 125 200 400 600 800 1000 1200
Precision

— PowerSeries library in MAPLE [2, 9] — Truncated multivariate
— mtaylor in MAPLE 2020 power series in SAGE

Alexander Brandt (UWO)

Experimentation: Rat. Num coefs, 2 vars

Power Series Arithmetic for f=2 + %(Xl + X3)

103 .
102 .
E 101 .
o
£
=
100 .
10—1 .
P ~/\= PowerSeries, 1-f =€3= mtaylor,1-f =f}= Sage,1-f =O= BPAS,1-f
10-2 ~A— PowerSeries, 1 =8 mtaylor, 1 =~ Sage, ! =8~ BPAS, 1
— T T T T T T T T T
100 200 400 600 800 1000 1200 1400 1600 1800 2000
Precision

— PowerSeries library in MAPLE [2, 9] — Truncated multivariate
— mtaylor in MAPLE 2020 power series in SAGE

Alexander Brandt (UWO) CASC 2020

Outline

Weierstrass Preparation

Alexander Brandt (U

Weierstrass Preparation Theorem

Let A =k[[X1,...,X,]] and M =(X},...,X,,) be its maximal ideal
Let f=3,a;Y" € A[[Y]], d >0 be the smallest integer s.t. ag ¢ M
— at the origin (X;=--=X,,=0), f+#0and ag+#0

WPT vyields a polynomial approximation of a power series around the
origin through factorization

Weierstrass Preparation Theorem: there exists unique «, p s.t.
(1) aeA[[Y]] is invertible,
(i) p=Y+ Y58 b Y € A[Y] with by, ..., bg_1 € M
(iii) f=ap
L, pe A[Y] is a monic Univariate Polynomial over Power Series, UPoPS

L, if f is a UPoPS then so is «

Alexander Brandt (UWO) CASC 2020

Computability of WPT: A Lemma

Let f,g,h € A with f=gh. With f and h known, compute g.

Assume f5) =0 and h(g) # 0, then:
f)y=90)h0)=0 = 90)=0

By induction, g, is uniquely determined by f(1),..., f(); R(o)s- -5 P(ro1)

fay+foy+-+fo
fay
fe)

fey

(901) + 92y + -+ 90)) (hoy + hay + -+ +)

91yl (o)
92h) +90)h1)

9oy + 9e-1)hy + -+ gy hir-y

We can compute g(,) for r=1,2,... using only polynomial arithmetic:

1

Alexander Brandt (UWO)

— (f) = 90-vha) = = 9whe-1) = 9
©

CASC 2020

Lazy Weierstrass Preparation

Let f= X8 aY!, p=Yit 3 0¥, =3 ¢;Y be UPOPS.

L ag,bj,c; are power series

f=ap = ao
ai

aq-1
aq

Gd+m-1
Ad+m

L bjeMfor j=0,...,d-1

boco
b()Cl + b100

bocg-1 +bicg_g + -+ bg_ac1 +bg_1¢o
b()cd + blcd_l + -+ bd_161 + Cop

ba-1Cm + Cm-1

Cm

We update p and « by solving these equations modulo M", r=1,2,...

L, “ping-pong” updates: p to mod M?, a to mod M2, p to mod M3 ...

(1)bj=0 mod M, j=0,...,d-1 (2) ¢;=a; mod M fori=0,...,m

Alexander Brandt (UWO)

CASC 2020

Lazy Weierstrass Phase 1: Updating p

Let f =3¢ aY!, p=Y?+ 34 h Y7, a=3"¢Y" be UPoPS.

Ls ay,bj, c; are power series L bjeMforj=0,...,d-1
ap = boco
a1 —bocr = bico
ag — bng - b101 = bgCo
ag-1 —bocg-1 —bicgg +--=bgac1 = bg_1co

bj=0 mod M, j=0,...,d-1. Then, for M", r > 1:
-1
— let Fj =a;— Z?c=0 brci_k
— the previous lemma applies to each equation F}; = bjco to update each
b; in succession, from j=0tod-1

— Each F} automatically updated through updated b, and lazy power
series arithmetic

Alexander Brandt (UWO) CASC 2020

Lazy Weierstrass Phase 2: Updating «

Let f =8 aY!, p=Y4+ T b YI, a=¥ ;Y be UPoPS.

Ls ayg,bj,c; are power series L bjeMforj=0,...,d-1
Cm = GQd+m
Cm-1 = Qad+m-1— bd—lcm
Cm-2 = Qdim-2 —bg_2cm —ba_1Cm-1
co = aq—bocg—bicgq—-—bg1c1

¢;=a; mod M fori=0,...,m. Then, for M", r>1:
— In Phase 1, b;, j=0,...,d -1 updated to modulo M"
— ¢; then automatically updated (by lazy arithmetic) to modulo M"

— Note: updating each ¢; is independent since b; € M.
e.g. b; known M", ¢; known Ml — b;c; known modulo M"

Alexander Brandt (UWO) CASC 2020

Experimentation

Weierstrass Prep. of — 2 YK+ YKk=1 4 ... 4 YIK21 4 o yTk21-1 4o 4 XoY + X

T+X+X
103 B
102 .
10 4
0
[
£ 1005
'—
10—1 B
—&— Maple, k=9 —@— BPAS, k=9
10-2 4 == Maple, k=7 =& BPAS, k=7
—&— Maple, k=5 =@ BPAS, k=5
—a&— Maple, k=3 =@ BPAS, k=3
10_3 A T T T T T T T T T
10 50 90 130 170 210 250 290 330
Precision

Alexa E () CASC 2020

Outline

Factorization via Hensel's Lemma

Hensel's Lemma

Let f=>%a;Y? ek[[X1,...,X,]][Y] be a monic polynomial of degree k.

Let f=£(0,...,0,Y) ¢ k[Y]. Assuming k is algebraically closed, f
factorizes into linear factors f = (Y —¢y)" - (Y — ¢,)Fr.

Hensel's Lemma: there exists monic fi,..., f, e k[[X1,..., X,]][Y] s.t.
(1) f=frfr,

(i1) deg(fi,Y)=k;, fori=0,...,r

(ii1) fi=(Y —¢)k, fori=0,...,r

A factorization routine:
Translate f by ¢;, it now has order k;

Weierstrass preparation can then be applied to obtain p with degree
k; and a with degree k — k;

After the reverse translation, p is f;, and « is the “new” f

Alexander Brandt (UWO) CASC 2020

Factorization via Hensel's Lemma

Algorithm 1 HenselFactorization(f)

Input: f = Zi'f:O aiYi, a; € k[[Xl, R Xn]]

Output: f1,..., f, satisfying Hensel's Lemma
1. f=f(0,...,0,Y) - -
. ¢1,...,Cr < obtain roots of f in k > factor f

2

3 fr=f

4: fori=1tor do
5: g <« f* (Y + Ci)
6 p, & < WeierstrassPreparation(g)
7 fiep(Y —c)

8 frealY —¢)

9

: return fi,..., f;

— The Taylor shifts f*(Y +¢;), p(Y —¢;), a(Y —¢;) are implemented
lazily. Combined with lazy WPT, this entire factorization is lazy.

Alexander Brandt (UWO) CASC 2020

A Factorization Pipeline (w.i.p.)

Viewing factorization via Hensel’'s lemma as a pipelined computation
provides opportunities for parallelism.

— Updating f; automatically updates its corresponding «, thus allowing
fi+1 to be updated

— Perform each Weierstrass update (and reverse shift) as stages in a
parallel pipeline

Stage 1 (f1) | Stage 2 (f2) | Stage 3 (f3) | Stage 4 (f4)
Time 1 | f; to prec. 1
Time 2 | f] to prec. 2 | fo to prec. 1
Time 3 | fi to prec. 3 | fo to prec. 2 | f3 to prec. 1
Time 4 | f; to prec. 4 | fo to prec. 3 | f3 to prec. 2 | f4 to prec. 1
Time 5 | fi to prec. 5| fo to prec. 4 | f3 to prec. 3 | f4 to prec. 2
Time 6 | fi to prec. 6 | fo to prec. 5 | f3 to prec. 4 | f4 to prec. 3

Alexander Brandt (UWO) CASC 2020

Experimentation

Factorization via Hensel's Lemma in Q[[X1]11[Y]

103 4
102 4
R
o 10%3
£
=
10° 4
fi=(Y=1)(Y=2)(Y=3)+X1(Y?+Y)
f=(Y=1)(Y=2)(Y=3)(Y = 4) + Xy (Y3 +Y)
10—1 .
~A= FVHL,f, =E} EHC,f, =O= BPAS,f,
~h~ FVHL,fi == EHC,f =@= BPAS,f;

— T T T T T T T T T
25 100 200 400 600 800 1000 1200 1400 1600 1800
Precision

From PowerSeries library:
— FVHL: Factorization via Hensel's Lemma

— EHC: Extended Hensel Construction (Puiseux series)

T
2000

Alexander Brandt (UWO) CASC 2020

Conclusions and Future Work

We have implemented high-performing lazy implementations of
Power Series and UPoPS, including:

— Power series arithmetic: +, x, +
— Weierstrass preparation
— Taylor shift by elements of k

— Factorization via Hensel’s lemma

Further performance to be obtained through:
— Parallelization internal to a Weierstrass Update
— Pipelined computation in factorization via Hensel's lemma

— Relaxed algorithms [8]

Alexander Brandt (UWO) CASC 2020

Thank You!

Questions?

Alexander Brandt (UWO) CASC 2020

References

[1] P. Alvandi, M. Ataei, M. Kazemi, and M. Moreno Maza. “On the Extended Hensel Construction and its application to
the computation of real limit points”. In: J. Symb. Comput. 98 (2020), pp. 120-162.

[2] P. Alvandi, M. Kazemi, and M. Moreno Maza. “Computing limits with the regularchains and powerseries libraries:
from rational functions to Zariski closure”. In: ACM Commun. Comput. Algebra 50.3 (2016), pp. 93-96

[3] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mohajerani, R. H. C. Moir, M. Moreno
Maza, D. Talaashrafi, L. Wang, N. Xie, and Y. Xie. Basic Polynomial Algebra Subprograms (BPAS).
www.bpaslib.org. 2020.

[4] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Sparse Polynomial Arithmetic with the BPAS Library”.
In: Computer Algebra in Scientific Computing, CASC 2018, Lille, France, Proceedings. 2018, pp. 32-50.

[5] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. Xie. “On the Parallelization of Triangular
Decomposition of Polynomial Systems”. In: International Symposium on Symbolic and Algebraic Computation, ISSAC
2020, Proceedings. ACM, 2020, pp. 22-29.

[6] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Algorithms and Data Structures for Sparse Polynomial
Arithmetic”. In: Mathematics 7.5 (2019), p. 441.

[7] W. H. Burge and S. M. Watt. “Infinite structures in Scratchpad II". In: European Conference on Computer Algebra
Springer. 1987, pp. 138-148.

[8] J. van der Hoeven. “Relax, but Don't be Too Lazy". In: J. Symb. Comput. 34.6 (2002), pp. 479-542.

[9] M. Kazemi and M. Moreno Maza. “Detecting Singularities Using the PowerSeries Library”. In: Maple in Mathematics

Education and Research - Third Maple Conference, MC 2019, Proceedings. Springer, 2019, pp. 145-155.

[10] M. B. Monagan and P. Vrbik. “Lazy and Forgetful Polynomial Arithmetic and Applications”. In: Computer Algebra in
Scientific Computing, 11th International Workshop, CASC 2009, Proceedings. 2009, pp. 226-239.

nder Brandt

www.bpaslib.org

