
Power Series Arithmetic with the BPAS Library

Alexander Brandt, Mahsa Kazemi, Marc Moreno Maza

Ontario Research Center for Computer Algebra
Department of Computer Science

University of Western Ontario, Canada

CASC 2020, September 14, 2020

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 1 / 31

Past, Present, Future

The Basic Polynomial Algebra Subprograms (BPAS) library [3]
provides support for high-performance polynomial algebra.
→ At CASC 2018 we presented sparse polynomial arithmetic [4, 6]
→ These polynomials were employed in a polynomial system solving

framework based on regular chains [5]

In this talk we present our high-performance implementation of
multivariate power series written in C.

We are motivated by: (see [1])
→ Computation of limits of multivariate rational functions
→ New applications of Hensel lifting: Extended Hensel Construction,

Jung-Abhyankar Theorem
→ Computation of topological closures, resolution of singularities

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 2 / 31

Outline

1 Preliminaries

2 Power Series: Data Structure and Arithmetic

3 Weierstrass Preparation

4 Factorization via Hensel’s Lemma

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 3 / 31

Goals and Previous Work

Our goal is a high-performance power series implementation
→ a lazy implementation in a compiled language (for performance)
→ ability to exploit opportunities for concurrent programming

Lazy evaluation is not new:
→ univariate power series in Scratchpad II using Lisp [7]
→ univariate power series and relaxed algorithms [8]
→ polynomial arithmetic [10]

Yet, no general implementation of (compiled) multivariate power series
→ SageMath provides truncated multivariate power series
→ multivariate power series in PowerSeries library of Maple [2, 9]

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 4 / 31

What is a power series?
Let k be a field (often algebraic closed) then k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ is the
ring of formal power series
→ indeterminates are 𝑋1, . . . , 𝑋𝑛, coefficients in k

Let 𝑓 = ∑𝑒 𝑎𝑒𝑋𝑒 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀
→ 𝑎𝑒 ∈ k
→ 𝑒 = (𝑒1, . . . , 𝑒𝑛) is a multi-index with 𝑛 coordinates
→ ⋃︀𝑒⋃︀ = 𝑒1 + . . . + 𝑒𝑛

→ homogeneous part: 𝑓(𝑑) = ∑
⋃︀𝑒⋃︀=𝑑

𝑎𝑒𝑋𝑒

→ polynomial part: 𝑓 (𝑑) = ∑
𝑘≤𝑑

𝑓
(𝑘)

Example: 𝑓 = 1 + 𝑋1 + 𝑋1𝑋2 + 𝑋2
2 + 𝑋1𝑋2

2 + 𝑋3
1 + ⋯

𝑓(2) = 𝑋1𝑋2 +𝑋2
2 𝑓 (2) = 1 +𝑋1 +𝑋1𝑋2 +𝑋2

2

We say 𝑓 is known to precision 3
Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 5 / 31

Outline

1 Preliminaries

2 Power Series: Data Structure and Arithmetic

3 Weierstrass Preparation

4 Factorization via Hensel’s Lemma

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 6 / 31

Design Motivations

1 Only compute terms explicitly needed: requested by user, needed for
subsequent operations

2 Ability to resume and increase precision of an existing power series

This suggests the need for:
→ power series ancestry, a history of operands and operators leading

to a particular “child” power series

→ generator functions, a function to produce new terms of a power
series on demand

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 7 / 31

Ancestry Example

𝑓 = 𝑔 = 𝑎 = 𝑏 =
1 + 𝑥 + 𝑦𝑧 + . . . 1 + 𝑧 + 𝑦 + . . . 1 + 𝑦 + 𝑥2 + . . . 1 + 𝑦𝑧 + 𝑥𝑧 + . . .

× ×

ℎ = 𝑐 =
1 + 𝑧 + 𝑦 + 𝑥 + 𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦 + . . . 1 + 𝑦 + 𝑦𝑧 + 𝑥𝑧 + 𝑥2 + . . .

+

ℎ + 𝑐 =
2 + 𝑧 + 2𝑦 + 𝑥 + 2𝑦𝑧 + 2𝑥𝑧 + 𝑥𝑦 + 𝑥2 + . . .

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 8 / 31

Generator Functions

Generators could be co-routines or iterators, continually yield-ing terms
of a power series in increasing order.

→ Power series operations/arithmetic also necessitates dynamic
combinations of generator functions

→ Easy in a scripting language, Harder in a compiled language

In a more “closed-form” solution, our generators:

→ generate a homogeneous part of a power series,
for a particular (total) degree, where

→ the degree is a parameter of the function

Top-level homogeneous_part and polynomial_part functions call the
generators generically, as needed for particular degrees

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 9 / 31

Encoding a Power Series
Our power series struct:
→ dense array of homogeneous polynomials

𝑓
(0) 𝑓

(1) 𝑓
(2) 𝑓

(3) 𝑓
(4) 𝑓

(5) ⋯

→ int’s for current allocation, precision
→ a function pointer to a generator
→ the arguments to pass to the generator function.

The struct emulates a function closure for the generator:
→ captures and stores all necessary variables by reference (pointer)

to pass as arguments to the generator
→ uses void* parameters for generality
→ The ancestry is implied by storing power series pointers as parameters

ë use reference counting on the power series

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 10 / 31

The PowerSeries struct
1 typedef Poly_ptr (* homog_part_gen)(int);
2 typedef Poly_ptr (* homog_part_gen_unary)(int , void *);
3 typedef Poly_ptr (* homog_part_gen_binary)(int , void*, void *);
4 typedef Poly_ptr (* homog_part_gen_tert)(int ,void*,void*,void *);
5
6 typedef union HomogPartGenerator {
7 homog_part_gen nullaryGen ;
8 homog_part_gen_unary unaryGen ;
9 homog_part_gen_binary binaryGen ;

10 homog_part_gen_tert tertiaryGen ;
11 } HomogPartGenerator_u ;
12
13 typedef struct PowerSeries {
14 int deg , alloc ;
15 Poly_ptr * homog_polys ;
16
17 HomogPartGenerator_u gen;
18 int genOrder ;
19 void * genParam 1, * genParam 2, * genParam 3;
20
21 int refCount ;
22 } PowerSeries_t ;

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 11 / 31

Power Series Arithmetic: Multiplication
1 A top-level lazy function sets up a PowerSeries with generator and

generator parameters and immediately returns

2 A void generator (wrapper function) is called generically with the
void* params, casting them to the correct type, and then calls...

3 The true generator creates and returns 𝑓(𝑑) for input 𝑑 :
1 Poly_ptr homogPart_prod (int d, PowerSeries_t * f, PowerSeries_t * g){
2 Poly_ptr sum = zeroPolynomial ();
3 for (int i = 0; i <= d; i++) {
4 Poly_ptr p = multPolys (homogPart (d-i,f), homogPart (i,g));
5 sum = addPolynomials (sum , p);
6 }
7 return sum;
8 }

→ “Top-level” homogPart immediately returns already computed terms,
or calls the generator through the function pointer as needed

→ Other supported operations: addition, subtraction, negation, inversion
Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 12 / 31

The Ancestry and Generators

The power series ancestry is implied by a generator’s parameters
→ For a power series f, f.genParam1, f.genParam2, ... are its parents
→ Relationship is one-sided; parents don’t know about their children

For a generator to make use of its parents, they must be kept “alive”
→ reference counting

→ a parent’s reference count is incremented when a child is created

→ “destroying” only decrements reference count...

→ when count ≤ 0, then data is actually free’d

→ when a child is free’d, its parents get “destroyed”

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 13 / 31

Experimentation: Integer coefs, 2 vars

→ PowerSeries library in Maple [2, 9]
→ mtaylor in Maple 2020

→ Truncated multivariate
power series in Sage

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 14 / 31

Experimentation: Integer coefs, 3 vars

→ PowerSeries library in Maple [2, 9]
→ mtaylor in Maple 2020

→ Truncated multivariate
power series in Sage

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 15 / 31

Experimentation: Rat. Num coefs, 2 vars

→ PowerSeries library in Maple [2, 9]
→ mtaylor in Maple 2020

→ Truncated multivariate
power series in Sage

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 16 / 31

Outline

1 Preliminaries

2 Power Series: Data Structure and Arithmetic

3 Weierstrass Preparation

4 Factorization via Hensel’s Lemma

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 17 / 31

Weierstrass Preparation Theorem

Let A = k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ and ℳ = ∐︀𝑋1, . . . , 𝑋𝑛̃︀ be its maximal ideal

Let 𝑓 = ∑𝑖 𝑎𝑖𝑌
𝑖 ∈ A(︀(︀𝑌 ⌋︀⌋︀, 𝑑 ≥ 0 be the smallest integer s.t. 𝑎𝑑 ⇑∈ℳ

→ at the origin (𝑋1 = ⋯ = 𝑋𝑛 = 0), 𝑓 ≠ 0 and 𝑎𝑑 ≠ 0

WPT yields a polynomial approximation of a power series around the
origin through factorization

Weierstrass Preparation Theorem: there exists unique 𝛼, 𝑝 s.t.
(𝑖) 𝛼 ∈ A(︀(︀𝑌 ⌋︀⌋︀ is invertible,
(𝑖𝑖) 𝑝 = 𝑌 𝑑 +∑𝑑−1

𝑖=0 𝑏𝑖𝑌
𝑖 ∈ A(︀𝑌 ⌋︀ with 𝑏0, . . . , 𝑏𝑑−1 ∈ℳ

(𝑖𝑖𝑖) 𝑓 = 𝛼𝑝

ë 𝑝 ∈ A(︀𝑌 ⌋︀ is a monic Univariate Polynomial over Power Series, UPoPS

ë if 𝑓 is a UPoPS then so is 𝛼

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 18 / 31

Computability of WPT: A Lemma
Let 𝑓, 𝑔, ℎ ∈ A with 𝑓 = 𝑔ℎ. With 𝑓 and ℎ known, compute 𝑔.

Assume 𝑓
(0) = 0 and ℎ

(0) ≠ 0, then:
𝑓(0) = 𝑔(0)ℎ(0) = 0 Ô⇒ 𝑔(0) = 0

By induction, 𝑔
(𝑟) is uniquely determined by 𝑓

(1), . . . , 𝑓
(𝑟), ℎ

(0), . . . , ℎ
(𝑟−1)

𝑓
(1) + 𝑓

(2) +⋯ + 𝑓
(𝑟) = (𝑔

(1) + 𝑔
(2) +⋯ + 𝑔

(𝑟))(ℎ(0) + ℎ
(1) +⋯ + ℎ

(𝑟))
𝑓(1) = 𝑔(1)ℎ(0)
𝑓(2) = 𝑔(2)ℎ(0) + 𝑔(1)ℎ(1)

⋮
𝑓(𝑟) = 𝑔(𝑟)ℎ(0) + 𝑔(𝑟−1)ℎ(1) +⋯ + 𝑔(1)ℎ(𝑟−1)

We can compute 𝑔
(𝑟) for 𝑟 = 1, 2, . . . using only polynomial arithmetic:

1
ℎ
(0)
(𝑓(𝑟) − 𝑔(𝑟−1)ℎ(1) −⋯ − 𝑔(1)ℎ(𝑟−1)) = 𝑔(𝑟)

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 19 / 31

Lazy Weierstrass Preparation

Let 𝑓 = ∑𝑑+𝑚
ℓ 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑 +∑𝑑−1
𝑗 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑𝑚

𝑖 𝑐𝑖𝑌
𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑓 = 𝛼𝑝 Ô⇒ 𝑎0 = 𝑏0𝑐0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0

⋮
𝑎𝑑−1 = 𝑏0𝑐𝑑−1 + 𝑏1𝑐𝑑−2 +⋯ + 𝑏𝑑−2𝑐1 + 𝑏𝑑−1𝑐0

𝑎𝑑 = 𝑏0𝑐𝑑 + 𝑏1𝑐𝑑−1 +⋯ + 𝑏𝑑−1𝑐1 + 𝑐0
⋮

𝑎𝑑+𝑚−1 = 𝑏𝑑−1𝑐𝑚 + 𝑐𝑚−1
𝑎𝑑+𝑚 = 𝑐𝑚

We update 𝑝 and 𝛼 by solving these equations modulo ℳ𝑟, 𝑟 = 1, 2, . . .

ë “ping-pong” updates: 𝑝 to modℳ2, 𝛼 to modℳ2, 𝑝 to modℳ3 . . .

(1) 𝑏𝑗 ≡ 0 modℳ, 𝑗 = 0, . . . , 𝑑 − 1 (2) 𝑐𝑖 ≡ 𝑎𝑖 modℳ for 𝑖 = 0, . . . , 𝑚

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 20 / 31

Lazy Weierstrass Phase 1: Updating 𝑝

Let 𝑓 = ∑𝑑+𝑚
ℓ 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑 +∑𝑑−1
𝑗 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑𝑚

𝑖 𝑐𝑖𝑌
𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑎0 = 𝑏0𝑐0
𝑎1 − 𝑏0𝑐1 = 𝑏1𝑐0

𝑎2 − 𝑏0𝑐2 − 𝑏1𝑐1 = 𝑏2𝑐0
⋮

𝑎𝑑−1 − 𝑏0𝑐𝑑−1 − 𝑏1𝑐𝑑−2 +⋯ − 𝑏𝑑−2𝑐1 = 𝑏𝑑−1𝑐0

𝑏𝑗 ≡ 0 modℳ, 𝑗 = 0, . . . , 𝑑 − 1. Then, for ℳ𝑟, 𝑟 > 1:
→ let 𝐹𝑗 = 𝑎𝑗 −∑𝑗−1

𝑘=0 𝑏𝑘𝑐𝑖−𝑘

→ the previous lemma applies to each equation 𝐹𝑗 = 𝑏𝑗𝑐0 to update each
𝑏𝑗 in succession, from 𝑗 = 0 to 𝑑 − 1

→ Each 𝐹𝑗 automatically updated through updated 𝑏𝑘 and lazy power
series arithmetic

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 21 / 31

Lazy Weierstrass Phase 2: Updating 𝛼

Let 𝑓 = ∑𝑑+𝑚
ℓ 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑 +∑𝑑−1
𝑗 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑𝑚

𝑖 𝑐𝑖𝑌
𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑐𝑚 = 𝑎𝑑+𝑚

𝑐𝑚−1 = 𝑎𝑑+𝑚−1 − 𝑏𝑑−1𝑐𝑚

𝑐𝑚−2 = 𝑎𝑑+𝑚−2 − 𝑏𝑑−2𝑐𝑚 − 𝑏𝑑−1𝑐𝑚−1
⋮

𝑐0 = 𝑎𝑑 − 𝑏0𝑐𝑑 − 𝑏1𝑐𝑑−1 −⋯ − 𝑏𝑑−1𝑐1

𝑐𝑖 ≡ 𝑎𝑖 modℳ for 𝑖 = 0, . . . , 𝑚. Then, for ℳ𝑟, 𝑟 > 1:
→ In Phase 1, 𝑏𝑗 , 𝑗 = 0, . . . , 𝑑 − 1 updated to modulo ℳ𝑟

→ 𝑐𝑖 then automatically updated (by lazy arithmetic) to modulo ℳ𝑟

→ Note: updating each 𝑐𝑖 is independent since 𝑏𝑗 ∈ℳ.
e.g. 𝑏𝑗 known ℳ𝑟, 𝑐𝑖 known ℳ𝑟−1 Ô⇒ 𝑏𝑗𝑐𝑖 known modulo ℳ𝑟

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 22 / 31

Experimentation

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 23 / 31

Outline

1 Preliminaries

2 Power Series: Data Structure and Arithmetic

3 Weierstrass Preparation

4 Factorization via Hensel’s Lemma

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 24 / 31

Hensel’s Lemma

Let 𝑓 = ∑𝑘
𝑖 𝑎𝑖𝑌

𝑖 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ be a monic polynomial of degree 𝑘.

Let 𝑓 = 𝑓(0, . . . , 0, 𝑌) ∈ k(︀𝑌 ⌋︀. Assuming k is algebraically closed, 𝑓
factorizes into linear factors 𝑓 = (𝑌 − 𝑐1)𝑘1 ⋯ (𝑌 − 𝑐𝑟)𝑘𝑟 .

Hensel’s Lemma: there exists monic 𝑓1, . . . , 𝑓𝑟 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ s.t.
(𝑖) 𝑓 = 𝑓1⋯𝑓𝑟,
(𝑖𝑖) deg(𝑓𝑖, 𝑌) = 𝑘𝑖, for 𝑖 = 0, . . . , 𝑟

(𝑖𝑖𝑖) 𝑓𝑖 = (𝑌 − 𝑐𝑖)𝑘𝑖 , for 𝑖 = 0, . . . , 𝑟

A factorization routine:
1 Translate 𝑓 by 𝑐𝑖, it now has order 𝑘𝑖

2 Weierstrass preparation can then be applied to obtain 𝑝 with degree
𝑘𝑖 and 𝛼 with degree 𝑘 − 𝑘𝑖

3 After the reverse translation, 𝑝 is 𝑓𝑖, and 𝛼 is the “new” 𝑓

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 25 / 31

Factorization via Hensel’s Lemma

Algorithm 1 HenselFactorization(𝑓)

Input: 𝑓 = ∑𝑘
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀.
Output: 𝑓1, . . . , 𝑓𝑟 satisfying Hensel’s Lemma

1: 𝑓 = 𝑓(0, . . . , 0, 𝑌)
2: 𝑐1, . . . , 𝑐𝑟 ← obtain roots of 𝑓 in k ▷ factor 𝑓
3: 𝑓∗ = 𝑓
4: for 𝑖 = 1 to 𝑟 do
5: 𝑔 ← 𝑓∗(𝑌 + 𝑐𝑖)
6: 𝑝, 𝛼 ← WeierstrassPreparation(𝑔)
7: 𝑓𝑖 ← 𝑝(𝑌 − 𝑐𝑖)
8: 𝑓∗ ← 𝛼(𝑌 − 𝑐𝑖)
9: return 𝑓1, . . . , 𝑓𝑟

→ The Taylor shifts 𝑓∗(𝑌 + 𝑐𝑖), 𝑝(𝑌 − 𝑐𝑖), 𝛼(𝑌 − 𝑐𝑖) are implemented
lazily. Combined with lazy WPT, this entire factorization is lazy.

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 26 / 31

A Factorization Pipeline (w.i.p.)

Viewing factorization via Hensel’s lemma as a pipelined computation
provides opportunities for parallelism.
→ Updating 𝑓𝑖 automatically updates its corresponding 𝛼, thus allowing

𝑓𝑖+1 to be updated
→ Perform each Weierstrass update (and reverse shift) as stages in a

parallel pipeline

Stage 1 (𝑓1) Stage 2 (𝑓2) Stage 3 (𝑓3) Stage 4 (𝑓4)
Time 1 𝑓1 to prec. 1
Time 2 𝑓1 to prec. 2 𝑓2 to prec. 1
Time 3 𝑓1 to prec. 3 𝑓2 to prec. 2 𝑓3 to prec. 1
Time 4 𝑓1 to prec. 4 𝑓2 to prec. 3 𝑓3 to prec. 2 𝑓4 to prec. 1
Time 5 𝑓1 to prec. 5 𝑓2 to prec. 4 𝑓3 to prec. 3 𝑓4 to prec. 2
Time 6 𝑓1 to prec. 6 𝑓2 to prec. 5 𝑓3 to prec. 4 𝑓4 to prec. 3

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 27 / 31

Experimentation

From PowerSeries library:
→ FVHL: Factorization via Hensel’s Lemma
→ EHC: Extended Hensel Construction (Puiseux series)

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 28 / 31

Conclusions and Future Work

We have implemented high-performing lazy implementations of
Power Series and UPoPS, including:
→ Power series arithmetic: ±, ×, ÷
→ Weierstrass preparation
→ Taylor shift by elements of k
→ Factorization via Hensel’s lemma

Further performance to be obtained through:
→ Parallelization internal to a Weierstrass Update
→ Pipelined computation in factorization via Hensel’s lemma
→ Relaxed algorithms [8]

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 29 / 31

Thank You!

Questions?

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 30 / 31

References
[1] P. Alvandi, M. Ataei, M. Kazemi, and M. Moreno Maza. “On the Extended Hensel Construction and its application to

the computation of real limit points”. In: J. Symb. Comput. 98 (2020), pp. 120–162.

[2] P. Alvandi, M. Kazemi, and M. Moreno Maza. “Computing limits with the regularchains and powerseries libraries:
from rational functions to Zariski closure”. In: ACM Commun. Comput. Algebra 50.3 (2016), pp. 93–96.

[3] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mohajerani, R. H. C. Moir, M. Moreno
Maza, D. Talaashrafi, L. Wang, N. Xie, and Y. Xie. Basic Polynomial Algebra Subprograms (BPAS).
www.bpaslib.org. 2020.

[4] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Sparse Polynomial Arithmetic with the BPAS Library”.
In: Computer Algebra in Scientific Computing, CASC 2018, Lille, France, Proceedings. 2018, pp. 32–50.

[5] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. Xie. “On the Parallelization of Triangular
Decomposition of Polynomial Systems”. In: International Symposium on Symbolic and Algebraic Computation, ISSAC
2020, Proceedings. ACM, 2020, pp. 22–29.

[6] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Algorithms and Data Structures for Sparse Polynomial
Arithmetic”. In: Mathematics 7.5 (2019), p. 441.

[7] W. H. Burge and S. M. Watt. “Infinite structures in Scratchpad II”. In: European Conference on Computer Algebra.
Springer. 1987, pp. 138–148.

[8] J. van der Hoeven. “Relax, but Don’t be Too Lazy”. In: J. Symb. Comput. 34.6 (2002), pp. 479–542.

[9] M. Kazemi and M. Moreno Maza. “Detecting Singularities Using the PowerSeries Library”. In: Maple in Mathematics
Education and Research - Third Maple Conference, MC 2019, Proceedings. Springer, 2019, pp. 145–155.

[10] M. B. Monagan and P. Vrbik. “Lazy and Forgetful Polynomial Arithmetic and Applications”. In: Computer Algebra in
Scientific Computing, 11th International Workshop, CASC 2009, Proceedings. 2009, pp. 226–239.

Alexander Brandt (UWO) Power Series Arithmetic with the BPAS Library CASC 2020 31 / 31

www.bpaslib.org

