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Past, Present, Future

The Basic Polynomial Algebra Subprograms (BPAS) library [3]
provides support for high-performance polynomial algebra.

— At CASC 2018 we presented sparse polynomial arithmetic [4, 6]

— These polynomials were employed in a polynomial system solving
framework based on regular chains [5]

In this talk we present our high-performance implementation of
multivariate power series written in C.

We are motivated by: (see [1])
— Computation of limits of multivariate rational functions

— New applications of Hensel lifting: Extended Hensel Construction,
Jung-Abhyankar Theorem

— Computation of topological closures, resolution of singularities
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Goals and Previous Work

Our goal is a high-performance power series implementation
— a lazy implementation in a compiled language (for performance)

— ability to exploit opportunities for concurrent programming

Lazy evaluation is not new:
— univariate power series in Scratchpad Il using Lisp [7]
— univariate power series and relaxed algorithms [8]

— polynomial arithmetic [10]

Yet, no general implementation of (compiled) multivariate power series
— SAGEMATH provides truncated multivariate power series

— multivariate power series in PowerSeries library of MAPLE [2, 9]
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What is a power series?

Let k be a field (often algebraic closed) then k[[X7,..., X, ]] is the
ring of formal power series

— indeterminates are X1,...,X,, coefficients in k

Let f =Y, acX®ek[[X1,...,X,]]
- ae €k
— e=(e1,...,e,) is a multi-index with n coordinates
- lel=e1+...+ep

— homogeneous part: f5) = ¥ a.X*
le|=d

- polynomial part: f(9) = ¥ T
k<d

Example: f=1+ X; + X; X + X22 + X1X22 + X:f o
fi2y = X1 X2+ X3 FO =1+ X0+ X1 Xa + X5

We say f is known to precision 3
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Design Motivations

Only compute terms explicitly needed: requested by user, needed for
subsequent operations

Ability to resume and increase precision of an existing power series

This suggests the need for:

— power series ancestry, a history of operands and operators leading
to a particular “child” power series

— generator functions, a function to produce new terms of a power
series on demand
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Ancestry Example

f: g: a = b:
l+z+yz+... l+z+y+... T+y+a?+... l+yz+zz+...
N N

h: C=
l+z+y+ax+yz+az+zy+... 1+y+yz+mz+x2+“.

N
l
h+c=

2+ 2+ 2y +x +2yz + 22z + xy + 2

+ ...

Alexander Brandt (UWO) CASC 2020



Generator Functions

Generators could be co-routines or iterators, continually yield-ing terms
of a power series in increasing order.

— Power series operations/arithmetic also necessitates dynamic
combinations of generator functions

— Easy in a scripting language, Harder in a compiled language

In a more “closed-form” solution, our generators:

— generate a homogeneous part of a power series,
for a particular (total) degree, where

— the degree is a parameter of the function

Top-level homogeneous_part and polynomial_part functions call the
generators generically, as needed for particular degrees
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Encoding a Power Series

Our power series struct:

— dense array of homogeneous polynomials

foyl fay [ ey [ o) | fay | fo)

— int's for current allocation, precision
— a function pointer to a generator

— the arguments to pass to the generator function.

The struct emulates a function closure for the generator:

— captures and stores all necessary variables by reference (pointer)
to pass as arguments to the generator

— uses void* parameters for generality
— The ancestry is implied by storing power series pointers as parameters
L, use reference counting on the power series
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The PowerSeries struct

1 typedef Poly_ptr (*homog_part_gen) (int);

2 typedef Poly_ptr (*homog_part_gen_unary) (int, voidx);
3 typedef Poly_ptr (*xhomog_part_gen_binary) (int, void*, voidx);
4 typedef Poly_ptr (*homog_part_gen_tert) (int,void*,void*,void*);
5

6 typedef union HomogPartGenerator {

7 homog_part_gen nullaryGen;

8 homog_part_gen_unary unaryGen;

9 homog_part_gen_binary binaryGen;

10 homog_part_gen_tert tertiaryGen;

11} HomogPartGenerator_u;

12

13 typedef struct PowerSeries {

14 int deg, alloc;

15 Poly_ptr* homog_polys;

16

17 HomogPartGenerator_u gen;

18 int genOrder;

19 void *genParaml, *genParam2, *genParam3;

20

21 int refCount;

N
N

} PowerSeries_t;
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Power Series Arithmetic: Multiplication

A top-level lazy function sets up a PowerSeries with generator and
generator parameters and immediately returns

A void generator (wrapper function) is called generically with the
void* params, casting them to the correct type, and then calls...

The true generator creates and returns f(4) for input d :

Poly_ptr homogPart_prod(int d, PowerSeries_t* f, PowerSeries_t* g){
Poly_ptr sum = zeroPolynomial();
for (int i = 0; i <= d; i++) {
Poly_ptr p = multPolys(homogPart(d-i,f), homogPart(i,g));
sum = addPolynomials(sum, p);
}

return sum;

— "“Top-level” homogPart immediately returns already computed terms,
or calls the generator through the function pointer as needed

— Other supported operations: addition, subtraction, negation, inversion
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The Ancestry and Generators

The power series ancestry is implied by a generator’s parameters
— For a power series f, f.genParaml, f.genParam?2, ... are its parents

— Relationship is one-sided; parents don't know about their children

For a generator to make use of its parents, they must be kept “alive”

— reference counting

— a parent’s reference count is incremented when a child is created
— “destroying” only decrements reference count...

— when count <0, then data is actually free'd

— when a child is free'd, its parents get “destroyed”
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Experimentation: Integer coefs, 2 vars

Power Series Arithmetic for f=1+ X1 + X3

103 .
102 4
1
E 10
)
£
= 1004
10—1 .
== PowerSeries, 1-f == mtaylor, ;- f =El= Sage,'f =O= BPAS,i-f
1072 4 =~ PowerSeries, 1 =#- mtaylor, 1 =@~ Sage,1  —@= BPAS, 1
T T T T T T T T T T T
100 200 400 600 800 1000 1200 1400 1600 1800 2000

Precision

— PowerSeries library in MAPLE [2, 9]  — Truncated multivariate
— mtaylor in MAPLE 2020 power series in SAGE
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Experimentation: Integer coefs, 3 vars

Power Series Arithmetic for f=1+ X, + X5 + X3

103_
102_
0}
g 10! 4
£
100_
=/\= PowerSeries, > -f =£3= mtaylor, . , 2 f
10-1 4 =#— PowerSeries, =4- mtaylor,
— T T T T T T T
25 75 125 200 400 600 800 1000 1200
Precision

— PowerSeries library in MAPLE [2, 9] — Truncated multivariate
— mtaylor in MAPLE 2020 power series in SAGE
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Experimentation: Rat. Num coefs, 2 vars

Power Series Arithmetic for f=2 + %(Xl + X3)

103 .
102 .
E 101 .
o
£
=
100 .
10—1 .
P ~/\= PowerSeries, 1-f =€3= mtaylor,1-f =f}= Sage,1-f =O= BPAS,1-f
10-2 ~A— PowerSeries, 1 =8 mtaylor, 1 =~ Sage, ! =8~ BPAS, 1
— T T T T T T T T T
100 200 400 600 800 1000 1200 1400 1600 1800 2000
Precision

— PowerSeries library in MAPLE [2, 9]  — Truncated multivariate
— mtaylor in MAPLE 2020 power series in SAGE
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Weierstrass Preparation Theorem

Let A =k[[X1,...,X,]] and M =(X},...,X,,) be its maximal ideal
Let f=3,a;Y" € A[[Y]], d >0 be the smallest integer s.t. ag ¢ M
— at the origin (X;=--=X,,=0), f+#0and ag+#0

WPT vyields a polynomial approximation of a power series around the
origin through factorization

Weierstrass Preparation Theorem: there exists unique «, p s.t.
(1) aeA[[Y]] is invertible,
(i) p=Y+ Y58 b Y € A[Y] with by, ..., bg_1 € M
(iii) f=ap
L, pe A[Y] is a monic Univariate Polynomial over Power Series, UPoPS

L, if f is a UPoPS then so is «
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Computability of WPT: A Lemma

Let f,g,h € A with f=gh. With f and h known, compute g.

Assume f5) =0 and h(g) # 0, then:
f)y=90)h0)=0 = 90)=0

By induction, g, is uniquely determined by f(1),..., f(); R(o)s- -5 P(ro1)

fay+foy+-+fo
fay
fe)

fey

(901) + 92y + -+ 90)) (hoy + hay + -+ + )

91yl (o)
92h) +90)h1)

9oy + 9e-1)hy + -+ gy hir-y

We can compute g(,) for r=1,2,... using only polynomial arithmetic:

1
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Lazy Weierstrass Preparation

Let f= X8 aY!, p=Yit 3 0¥, =3 ¢;Y be UPOPS.

L ag,bj,c; are power series

f=ap = ao
ai

aq-1
aq

Gd+m-1
Ad+m

L bjeMfor j=0,...,d-1

boco
b()Cl + b100

bocg-1 +bicg_g + -+ bg_ac1 +bg_1¢o
b()cd + blcd_l + -+ bd_161 + Cop

ba-1Cm + Cm-1

Cm

We update p and « by solving these equations modulo M", r=1,2,...

L, “ping-pong” updates: p to mod M?, a to mod M2, p to mod M3 ...

(1)bj=0 mod M, j=0,...,d-1 (2) ¢;=a; mod M fori=0,...,m
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Lazy Weierstrass Phase 1: Updating p

Let f =3¢ aY!, p=Y?+ 34 h Y7, a=3"¢Y" be UPoPS.

Ls ay,bj, c; are power series L bjeMforj=0,...,d-1
ap = boco
a1 —bocr = bico
ag — bng - b101 = bgCo
ag-1 —bocg-1 —bicgg +--=bgac1 = bg_1co

bj=0 mod M, j=0,...,d-1. Then, for M", r > 1:
-1
— let Fj =a;— Z?c=0 brci_k
— the previous lemma applies to each equation F}; = bjco to update each
b; in succession, from j=0tod-1

— Each F} automatically updated through updated b, and lazy power
series arithmetic
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Lazy Weierstrass Phase 2: Updating «

Let f =8 aY!, p=Y4+ T b YI, a=¥ ;Y be UPoPS.

Ls ayg,bj,c; are power series L bjeMforj=0,...,d-1
Cm = GQd+m
Cm-1 = Qad+m-1— bd—lcm
Cm-2 = Qdim-2 —bg_2cm —ba_1Cm-1
co = aq—bocg—bicgq—-—bg1c1

¢;=a; mod M fori=0,...,m. Then, for M", r>1:
— In Phase 1, b;, j=0,...,d -1 updated to modulo M"
— ¢; then automatically updated (by lazy arithmetic) to modulo M"

— Note: updating each ¢; is independent since b; € M.
e.g. b; known M", ¢; known Ml — b;c; known modulo M"
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Experimentation

Weierstrass Prep. of — 2 YK+ YKk=1 4 ... 4 YIK21 4 o yTk21-1 4o 4 XoY + X

T+X+X
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Hensel's Lemma

Let f=>%a;Y? ek[[X1,...,X,]][Y] be a monic polynomial of degree k.

Let f=£(0,...,0,Y) ¢ k[Y]. Assuming k is algebraically closed, f
factorizes into linear factors f = (Y —¢y)" - (Y — ¢, )Fr.

Hensel's Lemma: there exists monic fi,..., f, e k[[X1,..., X, ]][Y] s.t.
(1) f=frfr,

(i1) deg(fi,Y)=k;, fori=0,...,r

(ii1) fi=(Y —¢)k, fori=0,...,r

A factorization routine:
Translate f by ¢;, it now has order k;

Weierstrass preparation can then be applied to obtain p with degree
k; and a with degree k — k;

After the reverse translation, p is f;, and « is the “new” f
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Factorization via Hensel's Lemma

Algorithm 1 HenselFactorization( f)

Input: f = Zi'f:O aiYi, a; € k[[Xl, R Xn]]

Output: f1,..., f, satisfying Hensel's Lemma
1. f=f(0,...,0,Y) - -
. ¢1,...,Cr < obtain roots of f in k > factor f

2

3 fr=f

4: fori=1tor do
5: g <« f* (Y + Ci)
6 p, & < WeierstrassPreparation(g)
7 fiep(Y —c)

8 frealY —¢)

9

: return fi,..., f;

— The Taylor shifts f*(Y +¢;), p(Y —¢;), a(Y —¢;) are implemented
lazily. Combined with lazy WPT, this entire factorization is lazy.
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A Factorization Pipeline (w.i.p.)

Viewing factorization via Hensel’'s lemma as a pipelined computation
provides opportunities for parallelism.

— Updating f; automatically updates its corresponding «, thus allowing
fi+1 to be updated

— Perform each Weierstrass update (and reverse shift) as stages in a
parallel pipeline

Stage 1 (f1) | Stage 2 (f2) | Stage 3 (f3) | Stage 4 (f4)
Time 1 | f; to prec. 1
Time 2 | f] to prec. 2 | fo to prec. 1
Time 3 | fi to prec. 3 | fo to prec. 2 | f3 to prec. 1
Time 4 | f; to prec. 4 | fo to prec. 3 | f3 to prec. 2 | f4 to prec. 1
Time 5 | fi to prec. 5| fo to prec. 4 | f3 to prec. 3 | f4 to prec. 2
Time 6 | fi to prec. 6 | fo to prec. 5 | f3 to prec. 4 | f4 to prec. 3
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Experimentation

Factorization via Hensel's Lemma in Q[[X1]11[Y]

103 4
102 4
R
o 10%3
£
=
10° 4
fi=(Y=1)(Y=2)(Y=3)+X1(Y?+Y)
f=(Y=1)(Y=2)(Y=3)(Y = 4) + Xy (Y3 +Y)
10—1 .
~A= FVHL,f, =E} EHC,f, =O= BPAS,f,
~h~ FVHL,fi == EHC,f =@= BPAS,f;

— T T T T T T T T T
25 100 200 400 600 800 1000 1200 1400 1600 1800
Precision

From PowerSeries library:
— FVHL: Factorization via Hensel's Lemma

— EHC: Extended Hensel Construction (Puiseux series)

T
2000

Alexander Brandt (UWO) CASC 2020



Conclusions and Future Work

We have implemented high-performing lazy implementations of
Power Series and UPoPS, including:

— Power series arithmetic: +, x, +
— Weierstrass preparation
— Taylor shift by elements of k

— Factorization via Hensel’s lemma

Further performance to be obtained through:
— Parallelization internal to a Weierstrass Update
— Pipelined computation in factorization via Hensel's lemma

— Relaxed algorithms [8]
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Thank You!

Questions?
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