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The BPAS Library

The Basic Polynomial Algebra Subprograms (BPAS) is a free, open-source
library providing support for polynomial arithmetic and system solving.

ë Optimized fundamental operations support higher-level algorithms.

ë Dense and sparse polynomial multiplication, division, pseudo-division.

ë Normal forms, subresultants, regular chains.

http://www.bpaslib.org
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Motivation

To support the developement of our polynomial system solver we look
to optimize some fundamental operations.

Build from the ground up:

ë Polynomial multiplication, division, pseudo-division;
ë Normal forms, pseudo-division w.r.t a triangular set;
ë Subresultants (in progress);
ë Regular chains.

For multivariate polynomials, sparsity must be exploited when
possible.
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Motivation

Algorithm performance on modern computers is influenced by the
processor-memory gap [2] and by the memory wall [8].

Amount of memory used and how that memory is traversed is very
important.

ë Data locality, cache misses.

Sparse algorithms, like that of Johnson [4], naturally make use of
locality by producing the terms of the sum (difference, product,
quotient, remainder) in-order.
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Related and Previous Works

Stephen C Johnson. “Sparse polynomial arithmetic”. In: ACM
SIGSAM Bulletin 8.3 (1974), pp. 63–71

Michael Monagan and Roman Pearce. “Sparse polynomial division
using a heap”. In: J. Symb. Comput. 46.7 (2011), pp. 807–822

Michael Monagan and Roman Pearce. “Polynomial division using
dynamic arrays, heaps, and packed exponent vectors”. In: CASC
2007. Springer. 2007, pp. 295–315

Michael Monagan and Roman Pearce. “The design of Maple’s
sum-of-products and POLY data structures for representing
mathematical objects”. In: ACM Communications in Computer
Algebra 48.3/4 (2015), pp. 166–186

From this work, Maple has become a leader in arithmetic performance
and we use it as base of comparison.
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Notations

Throughout this presentation we use the following notation:

𝑎 “
𝑛
ÿ

𝑖“1

𝑎𝑖𝑋
𝛼𝑖 “

𝑛
ÿ

𝑖“1

𝐴𝑖

The polynomial 𝑎 has 𝑛 terms.

𝑎𝑖 are non-zero coefficients.

𝛼𝑖 are exponent vectors for the variables 𝑋 “ p𝑥1, 𝑥2, . . . , 𝑥𝑚q

𝐴𝑖 are non-zero terms.

𝑙𝑚p𝑎q “ 𝑋𝛼1 is the leading monomial of 𝑎.

𝑙𝑐p𝑎q “ 𝑎1 is the leading coefficient of 𝑎.

𝑙𝑡p𝑎q “ 𝑎1𝑋
𝛼1 “ 𝐴1 is the leading term of 𝑎.
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Polynomial Data Structures: The Basics

Polynomials are essentially collections of individual terms.

ë Must encode individual terms efficiently,
ë Must collect terms into a polynomial data structure effectively.

An individual term is simply a coefficient and monomial.

ë Coefficients easily represented by GMP numbers.
ë With a consistent variable ordering, only exponent vectors need be

encoded. This is done using exponent packing [1, 3] — bit-tricks.

5 2 3

0x0005 0x00002 0x0000003

32 bits

16 bits 20 bits 28 bits+ + = 64 bits
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Polynomial Data Structures: The Collection

A näıve approach would be to collect each term into a linked list.

ë Wasted memory storing a pointer for each node.
ë Indirection of pointers means adjacent terms not necessarily adjacet in

memory.

An alternating array is more succinct, removing pointers and
alternating between coefficients and exponent vectors side-by-side in
an array.

ë Adjacent terms are adjacent in memory, no overhead in encoding the
structure (no pointers).

In either case, maintain a canonical representation by keeping terms
sorted using some term-order (lex).

13 𝑥2𝑦3 5 𝑥2𝑦 7 𝑦3𝑧 ¨ ¨ ¨

Term 1 Term 2 Term 3
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Polynomial Data Structures: Experimentation
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Polynomial Data Structures: Experimentation
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Polynomial Data Structures: Recursive Views

Many polynomial operations are essentially univariate, viewing
multivaraite polynomials recursively: pseudo-division, subresultants.

It is useful to view a multivariate polynomial recursively, creating a
univariate polynomial with polynomial coefficients.

ë Reuse the original polynomial array as coefficients Ñ fast conversion
ë Create a small auxiliary alternating array for univariate exponents,

coefficient size, and pointers to the original array.

3 𝑦2𝑧 6 𝑦2𝑧 4 𝑦𝑧 7 𝑧

3 1 2 2 0 1

Recursive View

3𝑥3𝑦2𝑧 ` 6𝑥2𝑦2𝑧 ` 4𝑥2𝑦𝑧 ` 7𝑧 encoded recursively in 𝑥.
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Sparse Polynomial Addition

Sparse polynomial addition highlights the general idea of our sparse
arithmetic scheme: generate terms in order to exploit locality.

Addition is essentially one step of merge-sort.

If terms are equal they are combined and appended to sum, otherwise
simply append the maximum of the two.

𝑎 “ 13𝑥2𝑦3 ` 5𝑥2𝑦 ` 7𝑦3𝑧 ` . . .
Ò

𝑏 “ 6𝑥2𝑦 ` 12𝑥𝑧2 ` 4𝑦2 ` . . .
Ò

,

.

-

𝑐 “ 13𝑥2𝑦3 ` 11𝑥2𝑦`
Ò
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Polynomial Data Structures: “In-Place” Arithmetic

In reality, GMP numbers are encoded as a head and a tree.

ë The head contains metadata: size, allocation, pointer to actual data.
ë The tree contains the actual encoding.

𝑎1 𝛼1 𝑎2 𝛼2 ¨ ¨ ¨ 𝑎𝑛 𝛼𝑛

Term 1 Term 2 Term 𝑛

𝑡1 𝑡2 𝑡𝑛

For a lazy in-place implementation, simply copy all meta data
including pointers to trees, do not copy the trees.
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Sparse Addition: Experimentation
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Sparse Polynomial Multiplication

Multiplication performs an 𝑛-way merge of “streams”, each stream
being one term of 𝑎 distributed over the entirety of 𝑏.

Since 𝑏 is sorted, multiplying by a single term of 𝑎 keeps the sort
order.

Instead of choosing the maximum of 2 partitions as in addition, we
choose the maximum among 𝑛.

ë This choice can be effectively implemented using a heap.
ë Optimize the heap ùñ Optimize arithmetic performance.

𝑎 ¨ 𝑏 “

$

’

’

’

’

&

’

’

’

’

%

p𝑎1 ¨ 𝑏1q𝑋
𝛼1`𝛽1 ` p𝑎1 ¨ 𝑏2q𝑋

𝛼1`𝛽2 ` p𝑎1 ¨ 𝑏3q𝑋
𝛼1`𝛽3 ` . . .

p𝑎2 ¨ 𝑏1q𝑋
𝛼2`𝛽1 ` p𝑎2 ¨ 𝑏2q𝑋

𝛼2`𝛽2 ` p𝑎2 ¨ 𝑏3q𝑋
𝛼2`𝛽3 ` . . .

...

p𝑎𝑛 ¨ 𝑏1q𝑋
𝛼𝑛`𝛽1 ` p𝑎𝑛 ¨ 𝑏2q𝑋

𝛼𝑛`𝛽2 ` p𝑎𝑛 ¨ 𝑏3q𝑋
𝛼𝑛`𝛽3 ` . . .
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Sparse Polynomial Arithmetic: Quantifying Sparsity

For univariate polynomials, its sparsity can easily be described using
the degree difference between any two adjacent terms. We quantify
sparisty as the smallest integer larger than any such difference.

𝑥12 ` 𝑥9 ` 𝑥2 ` 1

12´ 9 “ 3

9´ 2 “ 7

2´ 0 “ 3

,

/

.

/

-

ùñ sparsity “ 8

Kronecker Substituion can map a multivariate polynomial to a
univariate one in order to apply the same notion of sparsity. With 𝑑
as an upper bound on partial degrees:

𝑥𝑒11 𝑥𝑒22 . . . 𝑥𝑒𝑚𝑚 Ñ 𝑦𝑒1¨𝑑` 𝑒2¨𝑑2 ` ...` 𝑒𝑚¨𝑑𝑚
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Sparse Polynomial Multiplication: Experimentation
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Sparse Polynomial Multiplication: Experimentation
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Sparse Polynomial Division

𝑎 “ 𝑞𝑏` 𝑟, 𝑑𝑒𝑔p𝑟q ă 𝑑𝑒𝑔p𝑏q

Division is simply an application of multiplication.

The quotient begins as 𝑞p1q “ ltp𝑎q{ltp𝑏q.

Quotient and remainder terms are then
produced from 𝑞 ¨ 𝑏 with 𝑞 updating
throughout the computation.

The main idea is to repeatedly choose the leading
term of 𝑎´ 𝑞p𝑖q𝑏

Each new term of the quotient, 𝑞𝑖`1, is
constructed to exactly cancel the leading
term of 𝑎´ 𝑞p𝑖q𝑏

3𝑥2 ` 1 “ 𝑞

2𝑥
˘

6𝑥3 ` 2𝑥` 1

´3𝑥2p2𝑥q

2𝑥` 1
´1p2𝑥q

1 “ 𝑟
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Sparse Polynomial Division

𝑎 “ 𝑏𝑞 ` 𝑟

Näıve Division

1: 𝑞 := 0; 𝑟 := 0
2: while p𝑟 := ltp𝑎´𝑞𝑏´𝑟qq ‰ 0

do
3: if ltp𝑏q | 𝑟 then
4: 𝑞 := 𝑞 ` 𝑟{ltp𝑏q
5: else
6: 𝑟 := 𝑟 ` 𝑟

7: end
8: return p𝑞, 𝑟q

Heap Division

1: p𝑞, 𝑟, 𝑙q := 0
2: 𝑘 := 1
3: while p𝛿 := heapPeekpqq ą ´1 or 𝑘 ď 𝑛𝑎 do
4: if 𝛿 ă 𝛼𝑘 then
5: 𝑟 := 𝐴𝑘

6: 𝑘 := 𝑘 ` 1
7: else if 𝛿 “ 𝛼𝑘 then
8: 𝑟 := 𝐴𝑘 ´ heapExtractpq
9: 𝑘 := 𝑘 ` 1
10: else
11: 𝑟 := ´ heapExtractpq

12: if 𝐵1 | 𝑟 then
13: ℓ := ℓ` 1
14: 𝑄ℓ := 𝑟{𝐵1

15: 𝑞 := 𝑞 `𝑄ℓ

16: heapInsertp𝑄ℓ, 𝐵2q

17: else
18: 𝑟 := 𝑟 ` 𝑟

19: end
20: return p𝑞, 𝑟q
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Sparse Pseudo-Division

ℎ𝑑𝑒𝑔p𝑎q´𝑑𝑒𝑔p𝑏q`1𝑎 “ 𝑞𝑏` 𝑟, 𝑑𝑒𝑔p𝑟q ă 𝑑𝑒𝑔p𝑏q

The division algorithms can easily be adapted to pseudo-division.
Repeatedly choose the leading term of ℎ𝑖𝑎´ 𝑞p𝑖q𝑏, ℎ “ 𝑙𝑐p𝑏q.

However, performance is not as easily attained.

ë Delay multiplication by ℎ as long as possible, performing only when
strictly necessary.

ë Uses recursive data structure for efficient recursive, univariate view.
ë Careful implementation of in-place arithmetic to minimize memory

movement when updating quotient and remainder.

A sparse pseudo-division computes ℎℓ where ℓ ď 𝑑𝑒𝑔p𝑎q ´ 𝑑𝑒𝑔p𝑏q ` 1
is the actual number of division steps performed.
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Sparse Polynomial Arithmetic: Pseudo-Division

ℎℓ𝑎 “ 𝑞𝑏` 𝑟

Näıve Pseudo-Division

1: p𝑞, 𝑟, ℓq := 0
2: ℎ := lcp𝑏q; 𝛾 “ degp𝑏q
3: while p𝑟 := ltpℎℓ𝑎´ 𝑞𝑏´ 𝑟qq ‰ 0 do
4: if 𝑥𝛾 | 𝑟 then
5: 𝑞 := ℎ𝑞 ` 𝑟{𝑥𝛾

6: ℓ := ℓ` 1
7: else
8: 𝑟 := 𝑟 ` 𝑟

9: end
10: return p𝑞, 𝑟, ℓq

Heap Pseudo-Division

1: p𝑞, 𝑟, 𝑙q := 0; 𝑘 := 1
2: ℎ := lcp𝑏q; 𝛾 := degp𝑏q
3: while p𝛿 := heapPeekpqq ą ´1 or 𝑘 ď 𝑛𝑎 do
4: if 𝛿 ă 𝛼𝑘 then
5: 𝑟 := ℎℓ𝐴𝑘

6: 𝑘 := 𝑘 ` 1
7: else if 𝛿 “ 𝛼𝑘 then
8: 𝑟 := ℎℓ𝐴𝑘 ´ heapExtractpq
9: 𝑘 := 𝑘 ` 1
10: else
11: 𝑟 := ´ heapExtractpq

12: if 𝑥𝛾 | 𝑟 then
13: 𝑞 := ℎ𝑞
14: ℓ := ℓ` 1
15: 𝑄ℓ := 𝑟{𝑥𝛾

16: 𝑞 := 𝑞 `𝑄ℓ

17: heapInsertp𝑄ℓ, 𝐵2q

18: else
19: 𝑟 := 𝑟 ` 𝑟

20: end
21: return p𝑞, 𝑟, ℓq
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Sparse Polynomial Division: Experimentation
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Sparse Pseudo-Division: Experimentation
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Thank you!

Questions?
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