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Solving a Linear System of Equations

Step 1: triangularization

(a) by elimination of variables:
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 3𝑦 − 2𝑧 = 6
3𝑥 + 5𝑦 + 6𝑧 = 7
2𝑥 + 4𝑦 + 3𝑧 = 8

solve for 𝑥Ð→
substitue 𝑥

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 = 5 − 3𝑦 + 2𝑧
−4𝑦 + 12𝑧 = −8
−2𝑦 + 7𝑧 = −2

solve for 𝑦Ð→
substitue 𝑦

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 = 5 + 2𝑧 − 3𝑦
𝑦 = 2 + 3𝑧
𝑧 = 2

(b) by Gaussian elimination:

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
3 5 6 7
2 4 3 8

⎬⎠⎠⎠⎠⎠⎮
Ô⇒

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
0 1 −3 2
0 −2 7 −2

⎬⎠⎠⎠⎠⎠⎮
Ô⇒

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
0 1 −3 2
0 0 1 2

⎬⎠⎠⎠⎠⎠⎮

Step 2: back-substitution to find particular values for 𝑥, 𝑦, 𝑧

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 3𝑦 − 2𝑧 = 6
3𝑥 + 5𝑦 + 6𝑧 = 7
2𝑥 + 4𝑦 + 3𝑧 = 8
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Solving a Non-Linear System of Equations

Via Gröbner Basis we can “solve” a non-linear system

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Ô⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

“Solving” a system is not just about finding particular values, rather:
“find a description of the solutions from which we can easily
extract relevant data.”

Why?
→ A positive-dimensional system has infinitely many solutions
→ Underdetermined linear systems, and most non-linear systems
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Decomposing a Non-Linear System
Many ways to “solve” a system

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Gröbner BasisÔ⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2 + 2𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

Both solutions are equivalent (via a union).
→ by using triangular decomposition, multiple components are found,

suggesting possible component-level parallelism

Ô
⇒ Triangular Decomposition
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Incremental Decomposition via Intersection

𝐹 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥2
+ 𝑦 + 𝑧 = 1

𝑥 + 𝑦2
+ 𝑧 = 1

𝑥 + 𝑦 + 𝑧2
= 1

∅
𝐹 (︀1⌋︀ ↓
{𝑥2 + 𝑦 + 𝑧 = 1}

𝐹 (︀2⌋︀ ↓

{ 𝑥 + 𝑦2 + 𝑧 = 1
𝑦4 + (2𝑧 − 2)𝑦2 + 𝑦 + (𝑧2 − 𝑧) = 0 (︀

𝐹 (︀3⌋︀ ↙ ↙ ↘ ↘
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2
+ 2𝑧 − 1 = 0

,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

Our Goal: take advantage of different, independent components to gain
performance via concurrency and thread-level parallelism
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Motivations and Challenges

Component-level parallelism
ë when a splitting is found during an intermediate step, subsequent

operations can be performed on each component concurrently

Solving systems by intersection exhibits irregular parallelism:
parallelism is problem-dependent and not algorithmic

ë Finding splittings in the geometry is as difficult as solving the system
ë Some systems never split
ë Some split only at the final step, resulting in no concurrency
ë Some split irregularly into one big component and many small ones

A dynamic, adaptable solution is needed to find, and exploit possible
parallelism, without adding excessive overhead in cases where there is none.
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A more interesting example (1/2)
∅

𝐹 (︀1⌋︀
××Ö

{𝑦 +𝑤}
𝐹 (︀2⌋︀

{5𝑦 + 1
5𝑤 − 1(︀, {𝑦

𝑤
(︀

𝐹 (︀3⌋︀

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
5𝑦 + 1
5𝑤 − 1

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

5𝑦 + 1
𝑧

5𝑤 − 1

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
𝑦
𝑤

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑦
𝑧
𝑤

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
𝐹 (︀4⌋︀

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 + 𝑧2
+ 1

5𝑦 + 1
𝑧8
+⋯

5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 − 𝑧
5𝑦 + 1

𝑧2
+ 𝑧 + 1
5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥
5𝑦 + 1

𝑧
5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥2
+ 1

5𝑦 + 1
𝑧

5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 + 𝑧2
+ 1

𝑦
𝑧8
+⋯

𝑤

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 − 𝑧
𝑦

𝑧2
+ 𝑧 + 1

𝑤

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥2
+ 1

𝑦
𝑧
𝑤

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥
𝑦
𝑧
𝑤

𝐹 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑦 +𝑤
5𝑤2 + 𝑦
𝑥𝑧 + 𝑧3 + 𝑧
𝑥5 + 𝑥3 + 𝑧
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A more interesting example (2/2)

→ more parallelism exposed as more components found
→ yet, work unbalanced between branches
→ mechanism needed for dynamic parallelism: “workpile” or “task pool”
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Previous Works

• Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

ë Such as in Gröbner Bases [1, 3, 4] and CAD [11]

• Recent work on parallelism in computer algebra has been on low-level
routines with regular parallelism:

ë Polynomial arithmetic [5, 8]
ë Modular methods for GCDs and Factorization [6, 9]

• Recently, high-level algorithms, often with irregular parallelism have
neither seen much attention nor received thorough parallelization

ë The normalization algorithm of [2] finds components serially, then
processes each component with a simple parallel map

ë Early work on parallel triangular decomposition was limited by
symmetric multi-processing and inter-process communication [10]
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Main Results

• An implementation of triangular decomposition fully in C/C++

• Parallelization dynamically finds and exploits as much parallelism as
possible throughout the triangular decomposition algorithm

• Implementation framework for parallelization based on task pools,
generating functions, pipelines, fork-join

• An extensive evaluation of our implementation against over 3000
real-world polynomial systems
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Polynomial Notations

• Let k be a perfect field, such as Q (and its extensions) or C

• Let k(︀𝑋⌋︀ be the set of multivariate polynomials (a polynomial ring)
with 𝑛 ordered variables, 𝑋 = 𝑋1 < ⋯ < 𝑋𝑛.

• For 𝑝 ∈ k(︀𝑋⌋︀:
ë the main variable of 𝑝 is the maximum variable with positive degree
ë the initial of 𝑝 is the leading coeff. of 𝑝 with respect to its main variable
ë the tail of 𝑝 is the terms leftover after setting its initial to 0

(2𝑦 + 𝑏𝑎)𝑥2 + (𝑏𝑦)𝑥 + 𝑎2 ∈ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

• Any set of polynomials 𝐹 ⊂ k(︀𝑋⌋︀ can form a system of equations
by setting 𝑓 = 0 for each 𝑓 ∈ 𝐹 .

• The algebraic variety of 𝐹 is the geometric representation of the
solution set of 𝐹

ë 𝑉 (𝐹 ) = {(𝑎1, . . . , 𝑎𝑛) ∈ k𝑛 ⋃︀ 𝑓(𝑎1, . . . , 𝑎𝑛) = 0,∀𝑓 ∈ 𝐹}
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Triangular Sets and Regular Chains
A triangular set 𝑇 ⊂ k(︀𝑋⌋︀ is a collection of polynomials with pairwise
different main variables.

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑇𝑣 = ℎ 𝑣𝑑 + tail(𝑇𝑣)

𝑇−𝑣 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ k(︀𝑋⌋︀

Example:

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(2𝑦 + 𝑏𝑎)𝑥 − 𝑏𝑦 + 𝑎2

2𝑦2 − 𝑏𝑦 − 𝑎2

𝑎 + 𝑏

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

A regular chain is a triangular set if:
(𝑖) 𝑇−𝑣 is a regular chain, and

(𝑖𝑖) initial of 𝑇𝑣 (ℎ) is regular with respect to 𝑇−𝑣

In triangular decomposition, every component is a regular chain
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Regularity

𝐹1 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑦𝑥 − 1 = 0
𝑦 = 0

𝑧 − 1 = 0
𝐹2 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

(𝑦 + 1)𝑥2 − 𝑥 = 0
𝑦2 − 1 = 0
𝑧 − 1 = 0

→ This set is inconsistent;
there are no solutions

→ Back-substituting 𝑦 = 0,
𝑦𝑥 − 1 = 0 yields −1 = 0

→ 𝑦 has two solutions:
𝑦2 − 1 = (𝑦 + 1)(𝑦 − 1)

→ For 𝑦 = −1, 𝑥 has 1 solution
→ For 𝑦 = 1, 𝑥 has 2 solutions

A polynomial is regular (w.r.t. a particular regular chain) if it is neither:
(𝑖) zero (e.g. 𝑦 in 𝐹1), nor

(𝑖𝑖) a zero-divisor (e.g. (𝑦 + 1) in 𝐹2)
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The foundation of splitting: regularity testing
To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion
→ either the initial is regular, or it is not regular

𝑓 = (𝑦 + 1)𝑥2 − 𝑥

𝑇 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦2 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 − 1 = 0
𝑧 − 1 = 0

𝑇1 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

2𝑥2 − 𝑥 = 0
𝑦 − 1 = 0
𝑧 − 1 = 0

𝑦 +
1 =

0

𝑦 + 1 ≠ 0

𝑓 = 𝑥

𝑓 = 2𝑥2
− 𝑥
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All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

ë In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize

Intersect
IntersectFree

CleanChain

IntersectAlgebraicRegularize

RegularGCD

Extend
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Parallel Map and Workpile
Map is the possibly the most well-known parallel programming pattern

ë execute a function on each item in a collection concurrently
ë with multiple Maps, tasks must execute in lockstep

Map Pattern [7] Thread Pool (Wikipedia)

Workpile generalizes Map to a queue of a tasks, allowing tasks to add
more tasks, thus enabling load-balancing as tasks start asynchronously

ë one possible implementation of workpile is a thread pool

Data Item Function Execution
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Triangularize: incremental triangular decomposition

Algorithm 1 Triangularize(𝐹 )
Input: a finite set 𝐹 ⊆ k(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ encoding the solutions of 𝑉 (𝐹 )
1: 𝒯 ∶= {∅}
2: for 𝑝 ∈ 𝐹 do
3: 𝒯 ′ ∶= {}
4: for 𝑇 ∈ 𝒯 Map ▷ map Intersect over the current components
5: 𝒯

′
∶= 𝒯

′
∪ Intersect(𝑝, 𝑇 )

6: 𝒯 ∶= 𝒯
′

7: return RemoveRedundantComponents(𝒯 )

• Coarse-grained parallelism: each Intersect represents substantial work
• At each “level” there are ⋃︀𝒯 ⋃︀ components with which to intersect,

yielding ⋃︀𝒯 ⋃︀ concurrent calls to intersect
• Performs a breadth-first search, with intersects occurring in lockstep
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Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks(𝐹 )
Input: a finite set 𝐹 ⊆ k(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ encoding the solutions of 𝑉 (𝐹 )
1: Tasks ← { (𝐹,∅) }; 𝒯 ← {}
2: while ⋃︀Tasks ⋃︀ > 0 do
3: (𝑃, 𝑇 )← pop a task from Tasks
4: Choose a polynomial 𝑝 ∈ 𝑃 ; 𝑃 ′ ← 𝑃 ∖ {𝑝}
5: for 𝑇 ′ in Intersect(𝑝, 𝑇 ) do
6: if ⋃︀𝑃 ′⋃︀ = 0 then 𝒯 ← 𝒯 ∪ {𝑇 ′}
7: else Tasks← Tasks ∪ {(𝑃 ′, 𝑇 ′)}
8: return RemoveRedundantComponents(𝒯 )

• Tasks is really a task scheduler augmented with a thread pool
• Tasks create more tasks, workers pop Tasks until none remain.
• Adaptive to load-balancing, no inter-task synchronization

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 21 / 33



Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 22 / 33



Generators and Pipelines

Generators
→ A generator function (i.e. iterator) yields data items one a time,

allowing the function’s control flow to resume on its next execution.

Asynchronous Generators; Producer-Consumer
→ async generators can concurrently produce items while the generator’s

caller is consuming items; creating a producer-consumer pair

Pipeline
→ By connecting many producer-consumer pairs we create a pipeline
→ Pipelines need not be linear, they can be directed acyclic graphs
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Regularize as an Asynchronous Generator

Algorithm 3 Regularize(𝑝, 𝑇 )

Input: 𝑝 ∈ k(︀𝑋⌋︀ ∖ k, 𝑣 ∶= mvar(𝑝), a regular chain 𝑇 = 𝑇 −

𝑣 ∪ 𝑇𝑣

Output: regular chains 𝑇1, . . . , 𝑇𝑒 satisfying specs.
1: for (𝑔𝑖, 𝑇𝑖) ∈ RegularGCD(𝑝, 𝑇𝑣, 𝑇 −

𝑣 ) do
2: if 0 < deg(𝑔𝑖, 𝑣) < deg(𝑇𝑣, 𝑣) then
3: yield 𝑇𝑖 ∪ 𝑔𝑖

4: yield 𝑇𝑖 ∪ pquo(𝑇𝑣, 𝑔𝑖)
5: for 𝑇𝑖,𝑗 ∈ Intersect(lc(𝑔𝑖, 𝑣), 𝑇𝑖) do
6: for 𝑇 ′ ∈ Regularize(𝑝, 𝑇𝑖,𝑗) do
7: yield 𝑇 ′

8: else
9: yield 𝑇𝑖

→ yield “produces” a single data item, and then continues computation
→ each for loop consumes a data one at a time from the generator
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Subroutine Pipeline
Triangularize

Intersect
IntersectFree

CleanChain
IntersectAlgebraicRegularize

RegularGCD
Extend

→ Making all subroutines generators allows a pipeline to evolve
dynamically with the call stack.

→ call stack forms a tree if several generators invoked by one consumer

→ Asynchronous Generators, Pipelines create fine-grained parallelism
since work diminishes with each recursive call, pipeline depth

→ In our implementation, a thread pool is used and shared among all
generators; generators run synchronously if pool is empty
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Divide-and-Conquer and Fork-Join

→ Divide a problem into
sub-problems, solving each
recursively

→ Combine sub-solutions to
produce a full solution

→ Fork: execute multiple
recursive calls in parallel
(divide)

→ Join: merge parallel
execution back into serial
execution (combine)
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Removal of Redundant Components
After a system is solved, and many components found, we can remove
components from the solution set that are contained within others
→ Follow a merge-sort approach; spawn/fork and sync/join

Algorithm 4 RemoveRedundantComponents(𝒯 )
Input: a finite set 𝒯 = {𝑇1, . . . , 𝑇𝑒} of regular chains
Output: an irredudant set 𝒯 ′ with the same algebraic set as 𝒯

if 𝑒 = 1 then return 𝒯
ℓ← [︂𝑒⇑2⌉︂; 𝒯≤ℓ ← {𝑇1, . . . , 𝑇ℓ}; 𝒯>ℓ ← {𝑇ℓ+1, . . . , 𝑇𝑒}

𝒯1 ∶= spawn RemoveRedundantComponents(𝒯≤ℓ)
𝒯2 ∶= RemoveRedundantComponents(𝒯>ℓ)
sync
𝒯
′

1 ∶= ∅; 𝒯 ′2 ∶= ∅
for 𝑇1 ∈ 𝒯1 do

if ∀𝑇2 in 𝒯2 IsNotIncluded (𝑇1, 𝑇2) then 𝒯 ′1 ∶= 𝒯 ′1 ∪ {𝑇1}

for 𝑇2 ∈ 𝒯2 do
if ∀𝑇1 in 𝒯 ′1 IsNotIncluded (𝑇2, 𝑇1) then 𝒯 ′2 ∶= 𝒯 ′2 ∪ {𝑇2}

return 𝒯 ′1 ∪ 𝒯 ′2
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Experimentation
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Conclusion & Future Work

We have tackled irregular parallelism in a high-level algebraic algorithm
→ our solution dynamically finds and exploits possible parallelism
→ uses dynamic parallel task management, async. generators, and DnC

Further parallelism can be found through:
→ evaluation/interpolation schemes for subresultant chains
→ solving over a prime field produces more splittings; then lift solutions

Our parallel techniques could be employed in further high-level algorithms.
→ e.g. factorization: pipelining between square-free, distinct-degree, and

equal-degree factorization
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Thank You!
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