
Parallel Programming and Triangular Decompositions

Mohammadali Asadi, Alexander Brandt,
Robert H. C. Moir, Marc Moreno Maza, Yuzhen Xie

Ontario Research Center for Computer Algebra
Department of Computer Science

University of Western Ontario, Canada

CS Grad Student Seminars

November 6, 2020

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 1 / 33



Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 2 / 33



Solving a Linear System of Equations

Step 1: triangularization

(a) by elimination of variables:
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 3𝑦 − 2𝑧 = 6
3𝑥 + 5𝑦 + 6𝑧 = 7
2𝑥 + 4𝑦 + 3𝑧 = 8

solve for 𝑥Ð→
substitue 𝑥

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 = 5 − 3𝑦 + 2𝑧
−4𝑦 + 12𝑧 = −8
−2𝑦 + 7𝑧 = −2

solve for 𝑦Ð→
substitue 𝑦

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 = 5 + 2𝑧 − 3𝑦
𝑦 = 2 + 3𝑧
𝑧 = 2

(b) by Gaussian elimination:

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
3 5 6 7
2 4 3 8

⎬⎠⎠⎠⎠⎠⎮
Ô⇒

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
0 1 −3 2
0 −2 7 −2

⎬⎠⎠⎠⎠⎠⎮
Ô⇒

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
0 1 −3 2
0 0 1 2

⎬⎠⎠⎠⎠⎠⎮

Step 2: back-substitution to find particular values for 𝑥, 𝑦, 𝑧

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 3𝑦 − 2𝑧 = 6
3𝑥 + 5𝑦 + 6𝑧 = 7
2𝑥 + 4𝑦 + 3𝑧 = 8

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 3 / 33



Solving a Non-Linear System of Equations

Via Gröbner Basis we can “solve” a non-linear system

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Ô⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

“Solving” a system is not just about finding particular values, rather:
“find a description of the solutions from which we can easily
extract relevant data.”

Why?
→ A positive-dimensional system has infinitely many solutions
→ Underdetermined linear systems, and most non-linear systems

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 4 / 33



Decomposing a Non-Linear System
Many ways to “solve” a system

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Gröbner BasisÔ⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2 + 2𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

Both solutions are equivalent (via a union).
→ by using triangular decomposition, multiple components are found,

suggesting possible component-level parallelism

Ô
⇒ Triangular Decomposition

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 5 / 33



Incremental Decomposition via Intersection

𝐹 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥2
+ 𝑦 + 𝑧 = 1

𝑥 + 𝑦2
+ 𝑧 = 1

𝑥 + 𝑦 + 𝑧2
= 1

∅
𝐹 (︀1⌋︀ ↓
{𝑥2 + 𝑦 + 𝑧 = 1}

𝐹 (︀2⌋︀ ↓

{ 𝑥 + 𝑦2 + 𝑧 = 1
𝑦4 + (2𝑧 − 2)𝑦2 + 𝑦 + (𝑧2 − 𝑧) = 0 (︀

𝐹 (︀3⌋︀ ↙ ↙ ↘ ↘
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2
+ 2𝑧 − 1 = 0

,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

Our Goal: take advantage of different, independent components to gain
performance via concurrency and thread-level parallelism

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 6 / 33



Motivations and Challenges

Component-level parallelism
ë when a splitting is found during an intermediate step, subsequent

operations can be performed on each component concurrently

Solving systems by intersection exhibits irregular parallelism:
parallelism is problem-dependent and not algorithmic

ë Finding splittings in the geometry is as difficult as solving the system
ë Some systems never split
ë Some split only at the final step, resulting in no concurrency
ë Some split irregularly into one big component and many small ones

A dynamic, adaptable solution is needed to find, and exploit possible
parallelism, without adding excessive overhead in cases where there is none.

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 7 / 33



A more interesting example (1/2)
∅

𝐹 (︀1⌋︀
××Ö

{𝑦 +𝑤}
𝐹 (︀2⌋︀

{5𝑦 + 1
5𝑤 − 1(︀, {𝑦

𝑤
(︀

𝐹 (︀3⌋︀

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
5𝑦 + 1
5𝑤 − 1

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

5𝑦 + 1
𝑧

5𝑤 − 1

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
𝑦
𝑤

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑦
𝑧
𝑤

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
𝐹 (︀4⌋︀

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 + 𝑧2
+ 1

5𝑦 + 1
𝑧8
+⋯

5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 − 𝑧
5𝑦 + 1

𝑧2
+ 𝑧 + 1
5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥
5𝑦 + 1

𝑧
5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥2
+ 1

5𝑦 + 1
𝑧

5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 + 𝑧2
+ 1

𝑦
𝑧8
+⋯

𝑤

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 − 𝑧
𝑦

𝑧2
+ 𝑧 + 1

𝑤

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥2
+ 1

𝑦
𝑧
𝑤

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥
𝑦
𝑧
𝑤

𝐹 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑦 +𝑤
5𝑤2 + 𝑦
𝑥𝑧 + 𝑧3 + 𝑧
𝑥5 + 𝑥3 + 𝑧

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 8 / 33



A more interesting example (2/2)

→ more parallelism exposed as more components found
→ yet, work unbalanced between branches
→ mechanism needed for dynamic parallelism: “workpile” or “task pool”

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 9 / 33



Previous Works

• Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

ë Such as in Gröbner Bases [1, 3, 4] and CAD [11]

• Recent work on parallelism in computer algebra has been on low-level
routines with regular parallelism:

ë Polynomial arithmetic [5, 8]
ë Modular methods for GCDs and Factorization [6, 9]

• Recently, high-level algorithms, often with irregular parallelism have
neither seen much attention nor received thorough parallelization

ë The normalization algorithm of [2] finds components serially, then
processes each component with a simple parallel map

ë Early work on parallel triangular decomposition was limited by
symmetric multi-processing and inter-process communication [10]

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 10 / 33



Main Results

• An implementation of triangular decomposition fully in C/C++

• Parallelization dynamically finds and exploits as much parallelism as
possible throughout the triangular decomposition algorithm

• Implementation framework for parallelization based on task pools,
generating functions, pipelines, fork-join

• An extensive evaluation of our implementation against over 3000
real-world polynomial systems

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 11 / 33



Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 12 / 33



Polynomial Notations

• Let k be a perfect field, such as Q (and its extensions) or C

• Let k(︀𝑋⌋︀ be the set of multivariate polynomials (a polynomial ring)
with 𝑛 ordered variables, 𝑋 = 𝑋1 < ⋯ < 𝑋𝑛.

• For 𝑝 ∈ k(︀𝑋⌋︀:
ë the main variable of 𝑝 is the maximum variable with positive degree
ë the initial of 𝑝 is the leading coeff. of 𝑝 with respect to its main variable
ë the tail of 𝑝 is the terms leftover after setting its initial to 0

(2𝑦 + 𝑏𝑎)𝑥2 + (𝑏𝑦)𝑥 + 𝑎2 ∈ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

• Any set of polynomials 𝐹 ⊂ k(︀𝑋⌋︀ can form a system of equations
by setting 𝑓 = 0 for each 𝑓 ∈ 𝐹 .

• The algebraic variety of 𝐹 is the geometric representation of the
solution set of 𝐹

ë 𝑉 (𝐹 ) = {(𝑎1, . . . , 𝑎𝑛) ∈ k𝑛 ⋃︀ 𝑓(𝑎1, . . . , 𝑎𝑛) = 0,∀𝑓 ∈ 𝐹}

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 13 / 33



Triangular Sets and Regular Chains
A triangular set 𝑇 ⊂ k(︀𝑋⌋︀ is a collection of polynomials with pairwise
different main variables.

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑇𝑣 = ℎ 𝑣𝑑 + tail(𝑇𝑣)

𝑇−𝑣 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ k(︀𝑋⌋︀

Example:

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(2𝑦 + 𝑏𝑎)𝑥 − 𝑏𝑦 + 𝑎2

2𝑦2 − 𝑏𝑦 − 𝑎2

𝑎 + 𝑏

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

A regular chain is a triangular set if:
(𝑖) 𝑇−𝑣 is a regular chain, and

(𝑖𝑖) initial of 𝑇𝑣 (ℎ) is regular with respect to 𝑇−𝑣

In triangular decomposition, every component is a regular chain
Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 14 / 33



Regularity

𝐹1 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑦𝑥 − 1 = 0
𝑦 = 0

𝑧 − 1 = 0
𝐹2 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

(𝑦 + 1)𝑥2 − 𝑥 = 0
𝑦2 − 1 = 0
𝑧 − 1 = 0

→ This set is inconsistent;
there are no solutions

→ Back-substituting 𝑦 = 0,
𝑦𝑥 − 1 = 0 yields −1 = 0

→ 𝑦 has two solutions:
𝑦2 − 1 = (𝑦 + 1)(𝑦 − 1)

→ For 𝑦 = −1, 𝑥 has 1 solution
→ For 𝑦 = 1, 𝑥 has 2 solutions

A polynomial is regular (w.r.t. a particular regular chain) if it is neither:
(𝑖) zero (e.g. 𝑦 in 𝐹1), nor

(𝑖𝑖) a zero-divisor (e.g. (𝑦 + 1) in 𝐹2)

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 15 / 33



The foundation of splitting: regularity testing
To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion
→ either the initial is regular, or it is not regular

𝑓 = (𝑦 + 1)𝑥2 − 𝑥

𝑇 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦2 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 − 1 = 0
𝑧 − 1 = 0

𝑇1 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

2𝑥2 − 𝑥 = 0
𝑦 − 1 = 0
𝑧 − 1 = 0

𝑦 +
1 =

0

𝑦 + 1 ≠ 0

𝑓 = 𝑥

𝑓 = 2𝑥2
− 𝑥

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 16 / 33



All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

ë In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize

Intersect
IntersectFree

CleanChain

IntersectAlgebraicRegularize

RegularGCD

Extend

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 17 / 33



Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 18 / 33



Parallel Map and Workpile
Map is the possibly the most well-known parallel programming pattern

ë execute a function on each item in a collection concurrently
ë with multiple Maps, tasks must execute in lockstep

Map Pattern [7] Thread Pool (Wikipedia)

Workpile generalizes Map to a queue of a tasks, allowing tasks to add
more tasks, thus enabling load-balancing as tasks start asynchronously

ë one possible implementation of workpile is a thread pool

Data Item Function Execution

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 19 / 33

https://commons.wikimedia.org/wiki/File:Thread_pool.svg


Triangularize: incremental triangular decomposition

Algorithm 1 Triangularize(𝐹 )
Input: a finite set 𝐹 ⊆ k(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ encoding the solutions of 𝑉 (𝐹 )
1: 𝒯 ∶= {∅}
2: for 𝑝 ∈ 𝐹 do
3: 𝒯 ′ ∶= {}
4: for 𝑇 ∈ 𝒯 Map ▷ map Intersect over the current components
5: 𝒯

′
∶= 𝒯

′
∪ Intersect(𝑝, 𝑇 )

6: 𝒯 ∶= 𝒯
′

7: return RemoveRedundantComponents(𝒯 )

• Coarse-grained parallelism: each Intersect represents substantial work
• At each “level” there are ⋃︀𝒯 ⋃︀ components with which to intersect,

yielding ⋃︀𝒯 ⋃︀ concurrent calls to intersect
• Performs a breadth-first search, with intersects occurring in lockstep

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 20 / 33



Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks(𝐹 )
Input: a finite set 𝐹 ⊆ k(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ encoding the solutions of 𝑉 (𝐹 )
1: Tasks ← { (𝐹,∅) }; 𝒯 ← {}
2: while ⋃︀Tasks ⋃︀ > 0 do
3: (𝑃, 𝑇 )← pop a task from Tasks
4: Choose a polynomial 𝑝 ∈ 𝑃 ; 𝑃 ′ ← 𝑃 ∖ {𝑝}
5: for 𝑇 ′ in Intersect(𝑝, 𝑇 ) do
6: if ⋃︀𝑃 ′⋃︀ = 0 then 𝒯 ← 𝒯 ∪ {𝑇 ′}
7: else Tasks← Tasks ∪ {(𝑃 ′, 𝑇 ′)}
8: return RemoveRedundantComponents(𝒯 )

• Tasks is really a task scheduler augmented with a thread pool
• Tasks create more tasks, workers pop Tasks until none remain.
• Adaptive to load-balancing, no inter-task synchronization

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 21 / 33



Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 22 / 33



Generators and Pipelines

Generators
→ A generator function (i.e. iterator) yields data items one a time,

allowing the function’s control flow to resume on its next execution.

Asynchronous Generators; Producer-Consumer
→ async generators can concurrently produce items while the generator’s

caller is consuming items; creating a producer-consumer pair

Pipeline
→ By connecting many producer-consumer pairs we create a pipeline
→ Pipelines need not be linear, they can be directed acyclic graphs

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 23 / 33



Regularize as an Asynchronous Generator

Algorithm 3 Regularize(𝑝, 𝑇 )

Input: 𝑝 ∈ k(︀𝑋⌋︀ ∖ k, 𝑣 ∶= mvar(𝑝), a regular chain 𝑇 = 𝑇 −

𝑣 ∪ 𝑇𝑣

Output: regular chains 𝑇1, . . . , 𝑇𝑒 satisfying specs.
1: for (𝑔𝑖, 𝑇𝑖) ∈ RegularGCD(𝑝, 𝑇𝑣, 𝑇 −

𝑣 ) do
2: if 0 < deg(𝑔𝑖, 𝑣) < deg(𝑇𝑣, 𝑣) then
3: yield 𝑇𝑖 ∪ 𝑔𝑖

4: yield 𝑇𝑖 ∪ pquo(𝑇𝑣, 𝑔𝑖)
5: for 𝑇𝑖,𝑗 ∈ Intersect(lc(𝑔𝑖, 𝑣), 𝑇𝑖) do
6: for 𝑇 ′ ∈ Regularize(𝑝, 𝑇𝑖,𝑗) do
7: yield 𝑇 ′

8: else
9: yield 𝑇𝑖

→ yield “produces” a single data item, and then continues computation
→ each for loop consumes a data one at a time from the generator

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 24 / 33



Subroutine Pipeline
Triangularize

Intersect
IntersectFree

CleanChain
IntersectAlgebraicRegularize

RegularGCD
Extend

→ Making all subroutines generators allows a pipeline to evolve
dynamically with the call stack.

→ call stack forms a tree if several generators invoked by one consumer

→ Asynchronous Generators, Pipelines create fine-grained parallelism
since work diminishes with each recursive call, pipeline depth

→ In our implementation, a thread pool is used and shared among all
generators; generators run synchronously if pool is empty

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 25 / 33



Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 26 / 33



Divide-and-Conquer and Fork-Join

→ Divide a problem into
sub-problems, solving each
recursively

→ Combine sub-solutions to
produce a full solution

→ Fork: execute multiple
recursive calls in parallel
(divide)

→ Join: merge parallel
execution back into serial
execution (combine)

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 27 / 33



Removal of Redundant Components
After a system is solved, and many components found, we can remove
components from the solution set that are contained within others
→ Follow a merge-sort approach; spawn/fork and sync/join

Algorithm 4 RemoveRedundantComponents(𝒯 )
Input: a finite set 𝒯 = {𝑇1, . . . , 𝑇𝑒} of regular chains
Output: an irredudant set 𝒯 ′ with the same algebraic set as 𝒯

if 𝑒 = 1 then return 𝒯
ℓ← [︂𝑒⇑2⌉︂; 𝒯≤ℓ ← {𝑇1, . . . , 𝑇ℓ}; 𝒯>ℓ ← {𝑇ℓ+1, . . . , 𝑇𝑒}

𝒯1 ∶= spawn RemoveRedundantComponents(𝒯≤ℓ)
𝒯2 ∶= RemoveRedundantComponents(𝒯>ℓ)
sync
𝒯
′

1 ∶= ∅; 𝒯 ′2 ∶= ∅
for 𝑇1 ∈ 𝒯1 do

if ∀𝑇2 in 𝒯2 IsNotIncluded (𝑇1, 𝑇2) then 𝒯 ′1 ∶= 𝒯 ′1 ∪ {𝑇1}

for 𝑇2 ∈ 𝒯2 do
if ∀𝑇1 in 𝒯 ′1 IsNotIncluded (𝑇2, 𝑇1) then 𝒯 ′2 ∶= 𝒯 ′2 ∪ {𝑇2}

return 𝒯 ′1 ∪ 𝒯 ′2

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 28 / 33



Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 29 / 33



Experimentation

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 30 / 33



Conclusion & Future Work

We have tackled irregular parallelism in a high-level algebraic algorithm
→ our solution dynamically finds and exploits possible parallelism
→ uses dynamic parallel task management, async. generators, and DnC

Further parallelism can be found through:
→ evaluation/interpolation schemes for subresultant chains
→ solving over a prime field produces more splittings; then lift solutions

Our parallel techniques could be employed in further high-level algorithms.
→ e.g. factorization: pipelining between square-free, distinct-degree, and

equal-degree factorization

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 31 / 33



Thank You!

Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 32 / 33



References
[1] G. Attardi and C. Traverso. “Strategy-Accurate Parallel Buchberger Algorithms”. In: J.

Symbolic Computation 22 (1996), pp. 1–15.
[2] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S. Steidel. “Parallel

algorithms for normalization”. In: J. Symb. Comput. 51 (2013), pp. 99–114.
[3] B. Buchberger. “The parallelization of critical-pair/completion procedures on the

L-Machine”. In: Proc. of the Jap. Symp. on functional programming. 1987, pp. 54–61.
[4] J. C. Faugere. “Parallelization of Gröbner Basis”. In: Parallel Symbolic Computation

PASCO 1994 Proceedings. Vol. 5. World Scientific. 1994, p. 124.
[5] M. Gastineau and J. Laskar. “Parallel sparse multivariate polynomial division”. In:

Proceedings of PASCO 2015. 2015, pp. 25–33.
[6] J. Hu and M. B. Monagan. “A Fast Parallel Sparse Polynomial GCD Algorithm”. In:

ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016. 2016, pp. 271–278.
[7] M. McCool, J. Reinders, and A. Robison. Structured parallel programming: patterns for

efficient computation. Elsevier, 2012.
[8] M. Monagan and R. Pearce. “Parallel sparse polynomial multiplication using heaps”. In:

ISSAC. 2009, pp. 263–270.
[9] M. Monagan and B. Tuncer. “Sparse Multivariate Hensel Lifting: A High-Performance

Design and Implementation”. In: ICMS 2018. 2018, pp. 359–368.
[10] M. Moreno Maza and Y. Xie. “Component-level parallelization of triangular

decompositions”. In: PASCO 2007 Proceedings. ACM. 2007, pp. 69–77.
[11] B. D. Saunders, H. R. Lee, and S. K. Abdali. “A parallel implementation of the

cylindrical algebraic decomposition algorithm”. In: ISSAC. Vol. 89. 1989, pp. 298–307.
Alexander Brandt Parallel Programming and Triangular Decompositions 2020-11-06 33 / 33


