Parallel Programming and Triangular Decompositions

Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, Marc Moreno Maza, Yuzhen Xie
Ontario Research Center for Computer Algebra
Department of Computer Science University of Western Ontario, Canada

CS Grad Student Seminars

November 6, 2020

Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Solving a Linear System of Equations

Step 1: triangularization

$$
\left\{\begin{array}{r}
x+3 y-2 z=6 \\
3 x+5 y+6 z=7 \\
2 x+4 y+3 z=8
\end{array}\right.
$$

(a) by elimination of variables:
$\left\{\begin{array}{r}x+3 y-2 z=6 \\ 3 x+5 y+6 z=7 \\ 2 x+4 y+3 z=8\end{array}\right.$ substitue x solve for $x\left\{\begin{array}{r}x=5-3 y+2 z \\ -4 y+12 z=-8 \\ -2 y+7 z=-2\end{array} \quad\right.$ substitue y solve for y ($\left\{\begin{array}{l}x=5+2 z-3 y \\ y=2+3 z \\ z=2\end{array}\right.$
(b) by Gaussian elimination:

$$
\left[\begin{array}{rrr|r}
1 & 3 & -2 & 5 \\
3 & 5 & 6 & 7 \\
2 & 4 & 3 & 8
\end{array}\right] \Longrightarrow\left[\begin{array}{rrr|r}
1 & 3 & -2 & 5 \\
0 & 1 & -3 & 2 \\
0 & -2 & 7 & -2
\end{array}\right] \Longrightarrow\left[\begin{array}{rrr|r}
1 & 3 & -2 & 5 \\
0 & 1 & -3 & 2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Step 2: back-substitution to find particular values for x, y, z

Solving a Non-Linear System of Equations

Via Gröbner Basis we can "solve" a non-linear system

$$
\left\{\begin{array} { l }
{ x ^ { 2 } + y + z = 1 } \\
{ x + y ^ { 2 } + z = 1 } \\
{ x + y + z ^ { 2 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{r}
x+y+z^{2}=1 \\
(y+z-1)(y-z)=0 \\
z^{2}\left(z^{2}+2 y-1\right)=0 \\
z^{2}\left(z^{2}+2 z-1\right)(z-1)^{2}=0
\end{array}\right.\right.
$$

"Solving" a system is not just about finding particular values, rather:
"find a description of the solutions from which we can easily extract relevant data."

Why?
\rightarrow A positive-dimensional system has infinitely many solutions
\rightarrow Underdetermined linear systems, and most non-linear systems

Decomposing a Non-Linear System

Many ways to "solve" a system

$$
\left\{\begin{array}{l}
x^{2}+y+z=1 \\
x+y^{2}+z=1 \\
x+y+z^{2}=1
\end{array} \quad \stackrel{\text { Gröbner Basis }}{\Longrightarrow}\right.
$$

$$
\left\{\begin{array}{r}
x+y+z^{2}=1 \\
(y+z-1)(y-z)=0 \\
z^{2}\left(z^{2}+2 y-1\right)=0 \\
z^{2}\left(z^{2}+2 z-1\right)(z-1)^{2}=0
\end{array}\right.
$$

\downarrow Triangular Decomposition

$$
\left\{\begin{array}{r}
x-z=0 \\
y-z=0 \\
z^{2}+2 z-1=0
\end{array},\left\{\begin{array}{r}
x=0 \\
y=0 \\
z-1=0
\end{array}, \quad\left\{\begin{array}{r}
x=0 \\
y-1=0 \\
z=0
\end{array}, \quad\left\{\begin{array}{r}
x-1=0 \\
y=0 \\
z=0
\end{array}\right.\right.\right.\right.
$$

Both solutions are equivalent (via a union).
\rightarrow by using triangular decomposition, multiple components are found, suggesting possible component-level parallelism

Incremental Decomposition via Intersection

$$
\begin{aligned}
& F=\left\{\begin{array}{l}
x^{2}+y+z=1 \\
x+y^{2}+z=1 \\
x+y+z^{2}=1
\end{array}\right. \\
& F[1] \quad \begin{array}{l}
\varnothing \\
\downarrow
\end{array} \\
& \left\{x^{2}+y+z=1\right\} \\
& F[2] \quad \downarrow \\
& \left\{\begin{array}{r}
x+y^{2}+z=1 \\
y^{4}+(2 z-2) y^{2}+y+\left(z^{2}-z\right)=0
\end{array}\right\} \\
& F[3]
\end{aligned}
$$

Our Goal: take advantage of different, independent components to gain performance via concurrency and thread-level parallelism

Motivations and Challenges

Component-level parallelism

\hookrightarrow when a splitting is found during an intermediate step, subsequent operations can be performed on each component concurrently

Solving systems by intersection exhibits irregular parallelism: parallelism is problem-dependent and not algorithmic
\hookrightarrow Finding splittings in the geometry is as difficult as solving the system
\hookrightarrow Some systems never split
\hookrightarrow Some split only at the final step, resulting in no concurrency
\hookrightarrow Some split irregularly into one big component and many small ones

A dynamic, adaptable solution is needed to find, and exploit possible parallelism, without adding excessive overhead in cases where there is none.

A more interesting example (1/2)

$$
\left\{\begin{array}{r}
x+z^{2}+1 \\
5 y+1 \\
5 w-1
\end{array}\right\}, \quad\left\{\begin{array}{r}
5 y+1 \\
z \\
5 w-1
\end{array}\right\},\left\{\begin{array}{r}
x+z^{2}+1 \\
y \\
w
\end{array}\right\},\left\{\begin{array}{c}
y \\
z \\
w
\end{array}\right\}
$$

$F[4]$

$$
\left\{\begin{array}{r}
x+z^{2}+1 \\
5 y+1 \\
z^{8}+\cdots \\
5 w-1
\end{array},\left\{\begin{array}{r}
x-z \\
5 y+1 \\
z^{2}+z+1 \\
5 w-1
\end{array},\left\{\begin{array}{r}
x \\
5 y+1 \\
z^{\prime} \\
5 w-1
\end{array}, \quad\left\{\begin{array}{r}
x^{2}+1 \\
5 y+1 \\
z w-1 \\
z
\end{array},\left\{\begin{array}{r}
x+z^{2}+1 \\
y \\
z^{8}+\cdots \\
w
\end{array},\left\{\begin{array}{r}
x-z \\
y \\
z^{2}+z+1 \\
w
\end{array},\left\{\begin{array}{r}
x^{2}+1 \\
y \\
z^{\prime} \\
w
\end{array},\left\{\begin{array}{r}
x \\
y \\
z \\
w
\end{array}\right.\right.\right.\right.\right.\right.\right.\right.
$$

A more interesting example $(2 / 2)$

Sys2913 Component Tree

\rightarrow more parallelism exposed as more components found
\rightarrow yet, work unbalanced between branches
\rightarrow mechanism needed for dynamic parallelism: "workpile" or "task pool"

Previous Works

- Parallelization of high-level algebraic and geometric algorithms was more common roughly 30 years ago
\hookrightarrow Such as in Gröbner Bases [1, 3, 4] and CAD [11]
- Recent work on parallelism in computer algebra has been on low-level routines with regular parallelism:
\hookrightarrow Polynomial arithmetic [5, 8]
\hookrightarrow Modular methods for GCDs and Factorization [6, 9]
- Recently, high-level algorithms, often with irregular parallelism have neither seen much attention nor received thorough parallelization
\hookrightarrow The normalization algorithm of [2] finds components serially, then processes each component with a simple parallel map
\hookrightarrow Early work on parallel triangular decomposition was limited by symmetric multi-processing and inter-process communication [10]

Main Results

- An implementation of triangular decomposition fully in $\mathrm{C} / \mathrm{C}++$
- Parallelization dynamically finds and exploits as much parallelism as possible throughout the triangular decomposition algorithm
- Implementation framework for parallelization based on task pools, generating functions, pipelines, fork-join
- An extensive evaluation of our implementation against over 3000 real-world polynomial systems

Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Polynomial Notations

- Let \mathbf{k} be a perfect field, such as \mathbb{Q} (and its extensions) or \mathbb{C}
- Let $\mathbf{k}[\underline{X}]$ be the set of multivariate polynomials (a polynomial ring) with n ordered variables, $\underline{X}=X_{1}<\cdots<X_{n}$.
- For $p \in \mathbf{k}[\underline{X}]$:
\hookrightarrow the main variable of p is the maximum variable with positive degree
\hookrightarrow the initial of p is the leading coeff. of p with respect to its main variable
\hookrightarrow the tail of p is the terms leftover after setting its initial to 0

$$
(2 y+b a) x^{2}+(b y) x+a^{2} \quad \in \mathbb{Q}[b<a<y<x]
$$

- Any set of polynomials $F \subset \mathbf{k}[\underline{X}]$ can form a system of equations by setting $f=0$ for each $f \in F$.
- The algebraic variety of F is the geometric representation of the solution set of F

$$
\hookrightarrow V(F)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{k}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0, \forall f \in F\right\}
$$

Triangular Sets and Regular Chains

A triangular set $T \subset \mathbf{k}[\underline{X}]$ is a collection of polynomials with pairwise different main variables.

Example:

$$
\begin{aligned}
T & =\left\{\begin{array}{r}
(2 y+b a) x-b y+a^{2} \\
2 y^{2}-b y-a^{2} \\
a+b
\end{array}\right\} \\
& \subset \mathbb{Q}[b<a<y<x]
\end{aligned}
$$

A regular chain is a triangular set if:
(i) T_{v}^{-}is a regular chain, and
(ii) initial of $T_{v}(h)$ is regular with respect to T_{v}^{-}

In triangular decomposition, every component is a regular chain

Regularity

$$
F_{1}=\left\{\begin{aligned}
y x-1 & =0 \\
y & =0 \\
z-1 & =0
\end{aligned}\right.
$$

$$
F_{2}=\left\{\begin{aligned}
(y+1) x^{2}-x & =0 \\
y^{2}-1 & =0 \\
z-1 & =0
\end{aligned}\right.
$$

\rightarrow This set is inconsistent; there are no solutions
\rightarrow Back-substituting $y=0$, $y x-1=0$ yields $-1=0$
$\rightarrow y$ has two solutions:

$$
y^{2}-1=(y+1)(y-1)
$$

\rightarrow For $y=-1, x$ has 1 solution
\rightarrow For $y=1, x$ has 2 solutions

A polynomial is regular (w.r.t. a particular regular chain) if it is neither:
(i) zero (e.g. y in F_{1}), nor
(ii) a zero-divisor (e.g. $(y+1)$ in F_{2})

The foundation of splitting: regularity testing

To intersect a polynomial with an existing regular chain, it must have a regular initial, regularizing finds splittings via a case discussion
\rightarrow either the initial is regular, or it is not regular

$$
\begin{aligned}
& f=(y+1) x^{2}-x \\
& T=\left\{\begin{array}{r}
y^{2}-1=0 \\
z-1=0
\end{array} T_{1}=\left\{\begin{array}{l}
y+1=0 \\
z-1=0
\end{array} \quad \xrightarrow{f=x} \quad T_{1}=\left\{\begin{array}{r}
x=0 \\
y+1=0 \\
z-1=0
\end{array}\right.\right.\right. \\
& y_{0}^{+x} T_{2}=\left\{\begin{array}{ll}
y-1=0 \\
z-1=0
\end{array} \xrightarrow{f=2 x^{2}-x} T_{2}=\left\{\begin{array}{r}
2 x^{2}-x=0 \\
y-1=0 \\
z-1=0
\end{array}\right.\right.
\end{aligned}
$$

All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of mutually recursive functions do the heavy-lifting.
\hookrightarrow In all cases, polynomials are forced to be regular and splittings are (possibly) found via Regularize

Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Parallel Map and Workpile

Map is the possibly the most well-known parallel programming pattern
\hookrightarrow execute a function on each item in a collection concurrently
\hookrightarrow with multiple Maps, tasks must execute in lockstep

Map Pattern [7]

Thread Pool (Wikipedia)

Workpile generalizes Map to a queue of a tasks, allowing tasks to add more tasks, thus enabling load-balancing as tasks start asynchronously \hookrightarrow one possible implementation of workpile is a thread pool

Triangularize: incremental triangular decomposition

```
Algorithm 1 Triangularize \((F)\)
Input: a finite set \(F \subseteq \mathbf{k}[\underline{X}]\)
Output: regular chains \(T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[\underline{X}]\) encoding the solutions of \(V(F)\)
    1: \(\mathcal{T}:=\{\varnothing\}\)
    2: for \(p \in F\) do
3: \(\quad \mathcal{T}^{\prime}:=\{ \}\)
4: for \(T \in \mathcal{T}\) Map \(\triangleright\) map Intersect over the current components
5: \(\quad \mathcal{T}^{\prime}:=\mathcal{T}^{\prime} \cup \operatorname{Intersect}(p, T)\)
6: \(\quad \mathcal{T}:=\mathcal{T}^{\prime}\)
7: return RemoveRedundantComponents \((\mathcal{T})\)
```

- Coarse-grained parallelism: each Intersect represents substantial work
- At each "level" there are $|\mathcal{T}|$ components with which to intersect, yielding $|\mathcal{T}|$ concurrent calls to intersect
- Performs a breadth-first search, with intersects occurring in lockstep

Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks (F)
Input: a finite set $F \subseteq \mathbf{k}[\underline{X}]$
Output: regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[\underline{X}]$ encoding the solutions of $V(F)$
1: Tasks $\leftarrow\{(F, \varnothing)\} ; \mathcal{T} \leftarrow\{ \}$
2: while \mid Tasks $\mid>0$ do
3: $\quad(P, T) \leftarrow$ pop a task from Tasks
4: \quad Choose a polynomial $p \in P ; P^{\prime} \leftarrow P \backslash\{p\}$
5: \quad for T^{\prime} in $\operatorname{Intersect}(p, T)$ do
6: \quad if $\left|P^{\prime}\right|=0$ then $\mathcal{T} \leftarrow \mathcal{T} \cup\left\{T^{\prime}\right\}$
7: \quad else Tasks \leftarrow Tasks $\cup\left\{\left(P^{\prime}, T^{\prime}\right)\right\}$
8: return RemoveRedundantComponents (\mathcal{T})

- Tasks is really a task scheduler augmented with a thread pool
- Tasks create more tasks, workers pop Tasks until none remain.
- Adaptive to load-balancing, no inter-task synchronization

Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Generators and Pipelines

Generators

\rightarrow A generator function (i.e. iterator) yields data items one a time, allowing the function's control flow to resume on its next execution.

Asynchronous Generators; Producer-Consumer

\rightarrow async generators can concurrently produce items while the generator's caller is consuming items; creating a producer-consumer pair

Pipeline

\rightarrow By connecting many producer-consumer pairs we create a pipeline
\rightarrow Pipelines need not be linear, they can be directed acyclic graphs

Regularize as an Asynchronous Generator

```
Algorithm 3 Regularize(p,T)
Input: }p\in\mathbf{k}[\underline{X}]\\mathbf{k},v:= mvar(p)\mathrm{ , a regular chain T=T
Output: regular chains }\mp@subsup{T}{1}{},\ldots,\mp@subsup{T}{e}{}\mathrm{ satisfying specs.
    1: for (gi, Ti ) \in RegularGCD}(p,\mp@subsup{T}{v}{},\mp@subsup{T}{v}{-})\mathrm{ do
2: if 0< deg}(\mp@subsup{g}{i}{},v)<\operatorname{deg}(\mp@subsup{T}{v}{},v)\mathrm{ then
3: yield }\mp@subsup{T}{i}{}\cup\mp@subsup{g}{i}{
4: yield }\mp@subsup{T}{i}{}\cup\operatorname{pquo}(\mp@subsup{T}{v}{},\mp@subsup{g}{i}{}
5: for }\mp@subsup{T}{i,j}{}\in\operatorname{Intersect}(\operatorname{lc}(\mp@subsup{g}{i}{},v),\mp@subsup{T}{i}{})\mathrm{ do
6: for T' }\in\operatorname{Regularize( }p,\mp@subsup{T}{i,j}{\prime})\mathrm{ do
7: yield T'
8: else
9: yield Ti
```

\rightarrow yield "produces" a single data item, and then continues computation
\rightarrow each for loop consumes a data one at a time from the generator

Subroutine Pipeline

\rightarrow Making all subroutines generators allows a pipeline to evolve dynamically with the call stack.
\rightarrow call stack forms a tree if several generators invoked by one consumer
\rightarrow Asynchronous Generators, Pipelines create fine-grained parallelism since work diminishes with each recursive call, pipeline depth
\rightarrow In our implementation, a thread pool is used and shared among all generators; generators run synchronously if pool is empty

Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

Divide-and-Conquer and Fork-Join

\rightarrow Divide a problem into sub-problems, solving each recursively
\rightarrow Combine sub-solutions to produce a full solution
\rightarrow Fork: execute multiple recursive calls in parallel (divide)
\rightarrow Join: merge parallel execution back into serial execution (combine)

Removal of Redundant Components

After a system is solved, and many components found, we can remove components from the solution set that are contained within others
\rightarrow Follow a merge-sort approach; spawn/fork and sync/join

Algorithm 4 RemoveRedundantComponents (\mathcal{T})

Input: a finite set $\mathcal{T}=\left\{T_{1}, \ldots, T_{e}\right\}$ of regular chains
Output: an irredudant set \mathcal{T}^{\prime} with the same algebraic set as \mathcal{T}
if $e=1$ then return \mathcal{T}
$\ell \leftarrow\lceil e / 2\rceil ; \mathcal{T}_{\leq \ell} \leftarrow\left\{T_{1}, \ldots, T_{\ell}\right\} ; \mathcal{T}_{>\ell} \leftarrow\left\{T_{\ell+1}, \ldots, T_{e}\right\}$
$\mathcal{T}_{1}:=$ spawn RemoveRedundantComponents $\left(\mathcal{T}_{\leq \ell}\right)$
$\mathcal{T}_{2}:=$ RemoveRedundantComponents $\left(\mathcal{T}_{>\ell}\right)$
sync
$\mathcal{T}_{1}^{\prime}:=\varnothing ; \quad \mathcal{T}_{2}^{\prime}:=\varnothing$
for $T_{1} \in \mathcal{T}_{1}$ do
if $\forall T_{2}$ in \mathcal{T}_{2} IsNotIncluded $\left(T_{1}, T_{2}\right)$ then $\mathcal{T}_{1}^{\prime}:=\mathcal{T}_{1}^{\prime} \cup\left\{T_{1}\right\}$
for $T_{2} \in \mathcal{T}_{2}$ do
if $\forall T_{1}$ in \mathcal{T}_{1}^{\prime} IsNotIncluded $\left(T_{2}, T_{1}\right)$ then $\mathcal{T}_{2}^{\prime}:=\mathcal{T}_{2}^{\prime} \cup\left\{T_{2}\right\}$
return $\mathcal{T}_{1}^{\prime} \cup \mathcal{T}_{2}^{\prime}$

Outline

1 Introduction

2 Mathematical Background

3 Triangularize: Task Pool Parallelization

4 Intersect: Asynchronous Generators, Dynamic Pipelines

5 Removing Redundancies: Divide-and-Conquer

6 Conclusions

Experimentation

Parallel Triangularization of 828 Systems

Conclusion \& Future Work

We have tackled irregular parallelism in a high-level algebraic algorithm
\rightarrow our solution dynamically finds and exploits possible parallelism
\rightarrow uses dynamic parallel task management, async. generators, and DnC

Further parallelism can be found through:
\rightarrow evaluation/interpolation schemes for subresultant chains
\rightarrow solving over a prime field produces more splittings; then lift solutions

Our parallel techniques could be employed in further high-level algorithms.
\rightarrow e.g. factorization: pipelining between square-free, distinct-degree, and equal-degree factorization

Thank You!

References

G. Attardi and C. Traverso. "Strategy-Accurate Parallel Buchberger Algorithms". In: J. Symbolic Computation 22 (1996), pp. 1-15.
[2] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S. Steidel. "Parallel algorithms for normalization". In: J. Symb. Comput. 51 (2013), pp. 99-114.
[3] B. Buchberger. "The parallelization of critical-pair/completion procedures on the L-Machine". In: Proc. of the Jap. Symp. on functional programming. 1987, pp. 54-61.
[4] J. C. Faugere. "Parallelization of Gröbner Basis". In: Parallel Symbolic Computation PASCO 1994 Proceedings. Vol. 5. World Scientific. 1994, p. 124.
[5] M. Gastineau and J. Laskar. "Parallel sparse multivariate polynomial division". In: Proceedings of PASCO 2015. 2015, pp. 25-33.
[6] J. Hu and M. B. Monagan. "A Fast Parallel Sparse Polynomial GCD Algorithm". In: ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016. 2016, pp. 271-278.
[7] M. McCool, J. Reinders, and A. Robison. Structured parallel programming: patterns for efficient computation. Elsevier, 2012.
[8] M. Monagan and R. Pearce. "Parallel sparse polynomial multiplication using heaps". In: ISSAC. 2009, pp. 263-270.
[9] M. Monagan and B. Tuncer. "Sparse Multivariate Hensel Lifting: A High-Performance Design and Implementation". In: ICMS 2018. 2018, pp. 359-368.
[10] M. Moreno Maza and Y. Xie. "Component-level parallelization of triangular decompositions". In: PASCO 2007 Proceedings. ACM. 2007, pp. 69-77.
[11] B. D. Saunders, H. R. Lee, and S. K. Abdali. "A parallel implementation of the cylindrical algebraic decomposition algorithm". In: ISSAC. Vol. 89. 1989, pp. 298-307.

