Parametric Integer Hull

Marc Moreno Maza Linxiao Wang
ORCCA, University of Western Ontario, Canada

November 06, 2020

Outline

(1) Why

(2) What

(3 How (On-going work)

Outline

(1) Why

(2) What
(3) How (On-going work)

The Delinearization Problem

A simple example

Input:
($\mathbf{i}=0 ; \mathbf{i}<n ; \mathbf{i}++$)
($\mathbf{j}=0 ; \mathbf{j}<m ; \mathbf{j}++$)
$A[i \times m+j] \leftarrow \cdots$

Output:

$$
\begin{aligned}
(\mathbf{i}= & 0 ; \mathbf{i}<n ; \mathbf{i}++) \\
& (\mathbf{j}=0 ; \mathbf{j}<m ; \mathbf{j}++) \\
& \tilde{A}[i][j] \leftarrow \cdots
\end{aligned}
$$

- Data dependency analysis: ex. Are references $A\left(\mathbf{i}_{1}+10 \mathbf{j}_{1}\right)$ and $A\left(\mathbf{i}_{2}+5\right), 0 \leq \mathbf{i}_{1}, \mathbf{i}_{2} \leq n, 0 \leq \mathbf{j}_{1}, \mathbf{j}_{2} \leq m$ independent?
- Loop parallelization
- Loop optimization such as blocking

Input:

$$
\begin{aligned}
& \left(\mathbf{i}_{1} \cdots ; \cdots ; \mathbf{i}_{1}++\right) \\
& \cdots\left(\mathbf{i}_{d} \cdots ; \cdots ; \mathbf{i}_{d}++\right) \\
& A\left[R\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{d}, \mathbf{m}_{1}, \ldots, \mathbf{m}_{\delta}\right)\right] \leftarrow \cdots
\end{aligned}
$$

- $\mathbf{i}_{1}, \ldots, \mathbf{i}_{d}$ take non-negative integer values such that

$$
L\left(\begin{array}{c}
\mathbf{i}_{1} \\
\vdots \\
\mathbf{i}_{d}
\end{array}\right) \leq\left(\begin{array}{c}
\mathbf{r}_{1} \\
\vdots \\
\mathbf{r}_{d}
\end{array}\right)
$$

- L is a lower-triangular full-rank matrix over \mathbb{Z} (known at compile time) defining the iteration domain
- $\mathbf{m}_{1}, \ldots, \mathbf{m}_{\delta}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{\delta}$: data parameters (known only at execution time)
- $R\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{d}, \mathbf{m}_{1}, \ldots, \mathbf{m}_{\delta}\right)$ is a polynomial, the coefficients of which are known at compile time.

Input:

$\left(\mathbf{i}_{1} \cdots ; \cdots ; \mathbf{i}_{1}++\right)$
$\ldots\left(\mathbf{i}_{d} \cdots ; \cdots ; \mathbf{i}_{d}++\right)$
$A\left[R\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{d}, \mathbf{m}_{1}, \ldots, \mathbf{m}_{\delta}\right)\right] \leftarrow \cdots$

- $\mathbf{i}_{1}, \ldots, \mathbf{i}_{d}$ take non-negative integer values such that

$$
L\left(\begin{array}{c}
\mathbf{i}_{1} \\
\vdots \\
\mathbf{i}_{d}
\end{array}\right) \leq\left(\begin{array}{c}
\mathbf{r}_{1} \\
\vdots \\
\mathbf{r}_{d}
\end{array}\right)
$$

- L is a lower-triangular full-rank matrix over \mathbb{Z} (known at compile time) defining the iteration domain
- $\mathbf{m}_{1}, \ldots, \mathbf{m}_{\delta}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{\delta}$: data parameters (known only at execution time)
- $R\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{d}, \mathbf{m}_{1}, \ldots, \mathbf{m}_{\delta}\right)$ is a polynomial, the coefficients of which are known at compile time.

Output:

$$
\begin{aligned}
& \left(\mathbf{i}_{1} \cdots ; \cdots ; \mathbf{i}_{1}++\right) \\
& \ldots\left(\mathbf{i}_{d} \cdots ; \cdots ; \mathbf{i}_{d}++\right) \\
& \tilde{\tilde{A}}\left[f_{1}\right] \cdots\left[f_{\delta}\right] \leftarrow \cdots \cdots
\end{aligned}
$$

- $f_{1}, \ldots, f_{\delta}$ are affine forms in $\mathbf{i}_{1}, \ldots, \mathbf{i}_{d}$ the coefficients of which are integers to-be-determined,
- \tilde{A} is an $\mathbf{M}_{1} \times \cdots \times \mathbf{M}_{\delta}$-array,
- $\mathbf{M}_{1}, \ldots, \mathbf{M}_{\delta}$ are affine forms in $\mathbf{m}_{1}, \ldots, \mathbf{m}_{d}$ the coefficients of which are integers TBD,
such that:

$$
R=f_{1} \mathbf{M}_{2} \cdots \mathbf{M}_{\delta}+\cdots+f_{\delta-1} \mathbf{M}_{2}+
$$ holds and for each $\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{d}\right)$ in the iteration domain we have:

$$
0 \leq f_{1}<\mathbf{M}_{1}, \ldots, 0 \leq f_{\delta}<\mathbf{M}_{\delta}
$$

The sub-problems

Polynomial system solving

(11 Expressing the coefficients of $f_{1}, \ldots, f_{\delta}$ and $\mathbf{M}_{1}, \ldots, \mathbf{M}_{\delta}$ as functions of the coefficients of R
(2) This can be done off-line (that is, before compile-time) once d and δ are fixed.
(3) Recall that the matrix L and the coefficients of the polynomial R are integer values known at compile-time.

Quantifier elimination

(1) The constraint: for each $\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{d}\right)$ in the iteration domain we have:

$$
0 \leq f_{1}<\mathbf{M}_{1}, \quad \ldots, 0 \leq f_{\delta}<\mathbf{M}_{\delta}
$$

implies constraints on the coefficients of $f_{1}, \ldots, f_{\delta}$. and $\mathbf{M}_{1}, \ldots, \mathbf{M}_{\delta}$
(2) Off-line, this is a non-linear QE problem which can only be solved over the reals (not over the integers). The obtained constraint is then sufficient but not necessary.
(3) At compile time, the coefficients of L and R are known and the QE problem can be reduced to Presburger arithmetic (that is, QE on affine forms over \mathbb{Z}) which can be solved by software like ISL.
(4) This is the point of view of the paper Optimistic Delinearization of Parametrically Sized Arrays by T. Grosser, J. Ramanujam, L.-N. Pouchet, P. Sadayappan and S. Pop (ICS15).
(5) At run-time, $\mathbf{m}_{1}, \ldots, \mathbf{m}_{\delta}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{\delta}$ are known and the QE problem reduces to optimize peice-wise linear functions (actually sawtooth functions).

The 2D case

The iteration domain looks like:

2D Case QE solving

There are mainly four different cases. Based on the shape of the plots, we call this type of functions "sawtooth" functions.

The 3D Case QE solving

"sawtooth" functions in 3D case.

- Only integer points matter in loop iterations.
- The integer hull problem

Outline

(1) Why

(2) What

(3) How (On-going work)

Convex hull and Integer hull

- In geometry, the convex hull of a shape is the smallest convex set that contains it.
- Integer hull: when all the vertices are integer points

Outline

(1) Why

(2) What
(3) How (On-going work)

Finding the Integer hull of a polygon

An example
For a polygon given by the facets

$$
\left\{\begin{array}{l}
y \leq \frac{1}{5} x+\frac{264}{25} \tag{1}\\
y \leq-\frac{9}{16} x+\frac{767}{32} \\
y \leq \frac{8}{5} x-\frac{3}{5} \\
y \geq \frac{1}{12} x+\frac{2}{3}
\end{array}\right.
$$

Finding the Integer hull of a Triangle

An example (cont.)
Triangle Rasterization:

Consider one rational vertex:

Finding the Integer hull of a Triangle

An example (cont.)

Find the convex hull of all the integer

Connect the new vertices:

The Parametric Case

The triangle will be given by:

$$
\left\{\begin{array}{cl}
b_{1} & \leq a_{1} x+y \tag{2}\\
b_{2} & \leq a_{2} x+y \\
b_{3} \leq a_{3} x+y
\end{array}\right.
$$

- Our goal: generate in constant time a program for computing the integer hull, and evaluate that program when the value of parameters are given.
- Parametric code generation: branch at conditional statements
- Consider every integer points would cause too many branches. (At least linear complexity)
- Solution: Finding the integer hull of a triangle in constant time
- Cook, W., Hartmann, M., Kannan, R., \& McDiarmid, C. (1992). On integer points in polyhedra. Combinatorica, 12(1), 27-37.
Suggests that the number of points in an integer hull has a upper limit related to the size of the polygon
- But is there a limit for a fixed shape?

Periodic behavior of the integer hulls of a fix-shaped triangle

Number of points of a complex example:

Periodic behavior of the integer hulls of a fix-shaped triangle

Consider the triangle defined by the facets

$$
\left\{\begin{array}{l}
y \leq 2 x \tag{3}\\
y \geq 0 \\
y \leq-2 x+b
\end{array}\right.
$$

b	n	x	y
$4 i-2$	4	$[2 i-1, i, i-1,0]$	$[0,2 i-2,2 i-2,0]$
$4 i-1$	5	$[2 i-1,2 i-1, i, i-1,0]$	$[0,1,2 i-1,2 i-2,0]$
$4 i$	3	$[2 i, i, 0]$	$[0,2 i, 0]$
$4 i+1$	5	$[2 i, 2 i, i+1, i, 0]$	$[0,1,2 i-1,2 i, 0]$

Table: Points in the integer hull

Periodic behavior of the integer hulls of a fix-shaped triangle

Visulization of the above example

Periodic behavior of the integer hulls of a fix-shaped triangle

Consider the triangle defined by the facets

$$
\left\{\begin{array}{l}
y=2 x \tag{4}\\
y=0 \\
y=-3 x+b
\end{array}\right.
$$

$b-15 i$	$b-3 j$	n	x	y
0	0	3	$[j, 3 i, 0]$	$[0,6 i, 0]$
1	1	5	$[j, j, 3 i+1,3 i, 0]$	$[0,1,6 i-2,6 i, 0]$
2	2	3	$[j, j, 3 i+1,3 i, 0]$	$[0,2,6 i-1,6 i, 0]$
3	0	4	$[j, 3 i+1,3 i, 0]$	$[0,6 i, 6 i, 0]$
4	1	5	$[j, j, 3 i+1,3 i, 0]$	$[0,1,6 i+1,6 i, 0]$
5	2	4	$[j, j, 3 i+1,0]$	$[0,2,6 i+2,0]$
6	0	4	$[j, 3 i+2,3 i+1,0]$	$[0,6 i, 6 i+2,0]$
7	1	5	$[j, j, 3 i+2,3 i+1,0]$	$[0,1,6 i+1,6 i+2,0]$
8	2	5	$[j, j, 3 i+2,3 i+1,0]$	$[0,2,6 i+2,6 i+2,0]$
9	0	4	$[j, 3 i+2,3 i+1,0]$	$[0,6 i+3,6 i+2,0]$
10	1	4	$[j, j, 3 i+2,0]$	$[0,1,6 i+4,0]$
11	2	5	$[j, j, 3 i+3,3 i+2,0]$	$[0,2,6 i+2,6 i+4,0]$
12	0	4	$[j, 3 i+3,3 i+2,0]$	$[0,6 i+3,6 i+4,0]$
13	1	5	$[j, j, 3 i+3,3 i+2,0]$	$[0,1,6 i+4,6 i+4,0]$
14	2	5	$[j, j, 3 i+3,3 i+2,0]$	$[0,2,6 i+5,6 i+4,0]$

Table: Example with a double period

This example has a period of 15 and a inner period of 3

Periodic behavior of the integer hulls of a fix-shaped triangle

Theorem

For a triangle given by the facets

$$
\left\{\begin{array}{l}
y=a_{1} x+b_{1} \tag{5}\\
y=a_{2} x+b_{2} \\
y=a_{3} x+b_{3}
\end{array}\right.
$$

where $a_{i}=\frac{m_{i}}{d_{i}}$ are rational numbers, m_{i}, d_{i} are integer numbers. The period of the integer hull is given by

$$
\begin{equation*}
L C M\left(\left|m_{1} d_{2} d_{3}-m_{2} d_{1} d_{3}\right|,\left|m_{1} d_{2} d_{3}-m_{3} d_{1} d_{3}\right|,\left|m_{2} d_{1} d_{3}-m_{3} d_{1} d_{2}\right|\right) \tag{6}
\end{equation*}
$$

The vertices are:

$$
\left\{\begin{array}{l}
x_{1}=\frac{b_{1}-b_{2}}{a_{1}-a_{2}}=\frac{b_{1}-b_{2}}{m_{1} d_{2}-m_{2} d_{1}}=\frac{d_{1} d_{2}\left(b_{1}-b_{2}\right)}{m_{1} d_{2}-m_{2} d_{1}}=\frac{d_{1} d_{2} d_{3}\left(b_{1}-b_{2}\right)}{m_{1} d_{2} d_{3}-m_{2} d_{1} d_{3}} \tag{7}\\
x_{2}=\frac{b_{1}-b_{3}}{a_{1}-a_{3}}=\frac{b_{1} b_{3}}{\frac{m_{1} d_{3} b_{3} d_{1}}{d_{1} d_{3}}}=\frac{d_{1} d_{3}\left(b_{1}-b_{3}\right)}{m_{1} d_{3}-m_{3} d_{1}}=\frac{d_{1} d_{2} d_{3}\left(b_{1}-b_{3}\right)}{m_{1} d_{2} d_{3}-m_{3} d_{1} d_{2}} \\
x_{2}-a_{3}
\end{array} \frac{b_{2}-b_{3} d_{2} d_{2} d_{3} d_{3} d_{2}}{d_{3}}=\frac{d_{2} b_{3} b_{2}-b_{3}}{m_{2} d_{3}-m_{3} d_{2}}=\frac{d_{1} d_{2} d_{3}\left(b_{2}-b_{3}\right)}{m_{2} d_{1} d_{3}-m_{3} d_{1} d_{2}} .\right.
$$

The period is the LCM of the denominators of the x_{i}.

On-going work

What's next?

- Formally prove the above theorem
- General form of the points in a cycle (like the tables above)
- Expand the results to other shapes and higher dimensions
- Parametric integer hull
- Delinearization

Thank You!

Your Questions?

