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The Delinearization Problem

A simple example
Input:

(i = 0; i < n; i++)
(j = 0; j < m; j++)
A[i×m+ j]← · · ·
. . .

Output:
(i = 0; i < n; i++)

(j = 0; j < m; j++)
Ã[i][j]← · · ·
. . .

• Data dependency analysis:
ex. Are references A(i1 + 10 j1) and A(i2 + 5), 0 ≤ i1, i2 ≤ n, 0 ≤ j1, j2 ≤ m
independent?

• Loop parallelization
• Loop optimization such as blocking

1 / 17



Input:
(i1 · · · ; · · · ; i1++)
. . . (id · · · ; · · · ; id++)
A[R(i1, . . . , id,m1, . . . ,mδ)]← · · ·
. . .

• i1, . . . , id take non-negative integer
values such that

L

 i1
...
id

 ≤

 r1
...
rd

 ,

• L is a lower-triangular full-rank matrix
over Z (known at compile time)
defining the iteration domain

• m1, . . . ,mδ, r1, . . . , rδ: data
parameters (known only at execution
time)

• R(i1, . . . , id,m1, . . . ,mδ) is a
polynomial, the coefficients of which
are known at compile time.

Output:
(i1 · · · ; · · · ; i1++)
. . . (id · · · ; · · · ; id++)
Ã[f1] · · · [fδ]← · · · . . .

• f1, . . . , fδ are affine forms in i1, . . . , id
the coefficients of which are integers
to-be-determined,
• Ã is an M1 × · · · ×Mδ-array,
• M1, . . . ,Mδ are affine forms in
m1, . . . ,md the coefficients of which
are integers TBD,

such that:
R = f1M2 · · ·Mδ + · · · + fδ−1M2 + fδ

holds and for each (i1, . . . , id) in the
iteration domain we have:

0 ≤ f1 < M1, . . . , 0 ≤ fδ < Mδ.
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The sub-problems
Polynomial system solving

1 Expressing the coefficients of f1, . . . , fδ and M1, . . . ,Mδ as functions of the coefficients
of R

2 This can be done off-line (that is, before compile-time) once d and δ are fixed.
3 Recall that the matrix L and the coefficients of the polynomial R are integer values

known at compile-time.

Quantifier elimination
1 The constraint: for each (i1, . . . , id) in the iteration domain we have:

0 ≤ f1 < M1, . . . , 0 ≤ fδ < Mδ

implies constraints on the coefficients of f1, . . . , fδ. and M1, . . . ,Mδ

2 Off-line, this is a non-linear QE problem which can only be solved over the reals (not over
the integers). The obtained constraint is then sufficient but not necessary.

3 At compile time, the coefficients of L and R are known and the QE problem can be
reduced to Presburger arithmetic (that is, QE on affine forms over Z) which can be
solved by software like ISL.

4 This is the point of view of the paper Optimistic Delinearization of Parametrically Sized
Arrays by T. Grosser, J. Ramanujam, L.-N. Pouchet, P. Sadayappan and S. Pop (ICS15).

5 At run-time, m1, . . . ,mδ, r1, . . . , rδ are known and the QE problem reduces to optimize
peice-wise linear functions (actually sawtooth functions).
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The 2D case

The iteration domain looks like:
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2D Case QE solving

There are mainly four different cases. Based on the shape of the plots, we call this
type of functions “sawtooth” functions.
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The 3D Case QE solving

“sawtooth” functions in 3D case.

• Only integer points matter in loop iterations.
• The integer hull problem
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Convex hull and Integer hull

• In geometry, the convex hull of a shape is the smallest convex set that contains
it.

• Integer hull: when all the vertices are integer points
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Finding the Integer hull of a polygon

An example
For a polygon given by the facets

y ≤ 1
5 x+ 264

25
y ≤ − 9

16 x+ 767
32

y ≤ 8
5 x−

3
5

y ≥ 1
12 x+ 2

3

(1)
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Finding the Integer hull of a Triangle

An example (cont.)

Consider one rational vertex:

Triangle Rasterization:
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Finding the Integer hull of a Triangle

An example (cont.)

Find the convex hull of all the integer
points: Connect the new vertices:
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The Parametric Case

The triangle will be given by:  b1 ≤ a1 x+ y
b2 ≤ a2 x+ y
b3 ≤ a3 x+ y

(2)

• Our goal: generate in constant time a program for computing the integer hull,
and evaluate that program when the value of parameters are given.

• Parametric code generation: branch at conditional statements
• Consider every integer points would cause too many branches. (At least linear

complexity)
• Solution: Finding the integer hull of a triangle in constant time
• Cook, W., Hartmann, M., Kannan, R., & McDiarmid, C. (1992). On integer

points in polyhedra. Combinatorica, 12(1), 27-37.
Suggests that the number of points in an integer hull has a upper limit related
to the size of the polygon

• But is there a limit for a fixed shape?
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Periodic behavior of the integer hulls of a fix-shaped triangle

Number of points of a complex example:

12 / 17



Periodic behavior of the integer hulls of a fix-shaped triangle

Consider the triangle defined by the facets y ≤ 2x
y ≥ 0
y ≤ −2x+ b

(3)

b n x y
4i− 2 4 [2i− 1, i, i− 1, 0] [0, 2i− 2, 2i− 2, 0]
4i− 1 5 [2i− 1, 2i− 1, i, i− 1, 0] [0, 1, 2i− 1, 2i− 2, 0]
4i 3 [2i, i, 0] [0, 2i, 0]

4i+ 1 5 [2i, 2i, i+ 1, i, 0] [0, 1, 2i− 1, 2i, 0]

Table: Points in the integer hull
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Periodic behavior of the integer hulls of a fix-shaped triangle

Visulization of the above example
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Periodic behavior of the integer hulls of a fix-shaped triangle

Consider the triangle defined by the
facets  y = 2x

y = 0
y = −3x+ b

(4)

This example has a period of 15 and a
inner period of 3

b− 15 i b− 3 j n x y
0 0 3 [j, 3i, 0] [0, 6i, 0]
1 1 5 [j, j, 3i+ 1, 3i, 0] [0, 1, 6i− 2, 6i, 0]
2 2 3 [j, j, 3i+ 1, 3i, 0] [0, 2, 6i− 1, 6i, 0]
3 0 4 [j, 3i+ 1, 3i, 0] [0, 6i, 6i, 0]
4 1 5 [j, j, 3i+ 1, 3i, 0] [0, 1, 6i+ 1, 6i, 0]
5 2 4 [j, j, 3i+ 1, 0] [0, 2, 6i+ 2, 0]
6 0 4 [j, 3i+ 2, 3i+ 1, 0] [0, 6i, 6i+ 2, 0]
7 1 5 [j, j, 3i+ 2, 3i+ 1, 0] [0, 1, 6i+ 1, 6i+ 2, 0]
8 2 5 [j, j, 3i+ 2, 3i+ 1, 0] [0, 2, 6i+ 2, 6i+ 2, 0]
9 0 4 [j, 3i+ 2, 3i+ 1, 0] [0, 6i+ 3, 6i+ 2, 0]
10 1 4 [j, j, 3i+ 2, 0] [0, 1, 6i+ 4, 0]
11 2 5 [j, j, 3i+ 3, 3i+ 2, 0] [0, 2, 6i+ 2, 6i+ 4, 0]
12 0 4 [j, 3i+ 3, 3i+ 2, 0] [0, 6i+ 3, 6i+ 4, 0]
13 1 5 [j, j, 3i+ 3, 3i+ 2, 0] [0, 1, 6i+ 4, 6i+ 4, 0]
14 2 5 [j, j, 3i+ 3, 3i+ 2, 0] [0, 2, 6i+ 5, 6i+ 4, 0]

Table: Example with a double period

15 / 17



Periodic behavior of the integer hulls of a fix-shaped triangle

Theorem
For a triangle given by the facets y = a1 x+ b1

y = a2 x+ b2
y = a3 x+ b3

(5)

where ai =
mi

di
are rational numbers, mi, di are integer numbers. The period of

the integer hull is given by
LCM(|m1d2d3 −m2d1d3|, |m1d2d3 −m3d1d3|, |m2d1d3 −m3d1d2|) (6)

The vertices are:
x1 = b1−b2

a1−a2
= b1−b2

m1d2−m2d1
d1d2

= d1d2(b1−b2)
m1d2−m2d1

= d1d2d3(b1−b2)
m1d2d3−m2d1d3

x2 = b1−b3
a1−a3

= b1−b3
m1d3−m3d1

d1d3

= d1d3(b1−b3)
m1d3−m3d1

= d1d2d3(b1−b3)
m1d2d3−m3d1d2

x3 = b2−b3
a2−a3

= b2−b3
m2d3−m3d2

d3d3

= d2d3(b2−b3)
m2d3−m3d2

= d1d2d3(b2−b3)
m2d1d3−m3d1d2

(7)

The period is the LCM of the denominators of the xi.
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On-going work

What’s next?
• Formally prove the above theorem
• General form of the points in a cycle (like the tables above)
• Expand the results to other shapes and higher dimensions
• Parametric integer hull
• Delinearization
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Thank You!



Your Questions?


