Parametric Integer Hull

Marc Moreno Maza Linxiao Wang

ORCCA, University of Western Ontario, Canada

November 06, 2020

Outline

2 What

3 How (On-going work)

Outline

A simple example

Input:	Output:	
(i = 0; i < n; i++)	(i = 0; i < n; i++)	
(j = 0; j < m; j++)	(j = 0; j < m; j++)	
$A[i \times m + j] \leftarrow \cdots$	$ ilde{A}[i][j] \leftarrow \cdots$	

- Data dependency analysis: ex. Are references $A(\mathbf{i}_1 + 10 \mathbf{j}_1)$ and $A(\mathbf{i}_2 + 5)$, $0 \le \mathbf{i}_1, \mathbf{i}_2 \le n$, $0 \le \mathbf{j}_1, \mathbf{j}_2 \le m$ independent?
- Loop parallelization
- Loop optimization such as blocking

Input:

$$\begin{array}{l} (\mathbf{i}_1 \cdots; \cdots; \mathbf{i}_1 + +) \\ \dots (\mathbf{i}_d \cdots; \cdots; \mathbf{i}_d + +) \\ A[R(\mathbf{i}_1, \dots, \mathbf{i}_d, \mathbf{m}_1, \dots, \mathbf{m}_\delta)] \leftarrow \cdots \\ \dots \end{array}$$

• $\mathbf{i}_1, \dots, \mathbf{i}_d$ take non-negative integer values such that

$$L\left(\begin{array}{c} \mathbf{i}_1\\ \vdots\\ \mathbf{i}_d \end{array}\right) \leq \left(\begin{array}{c} \mathbf{r}_1\\ \vdots\\ \mathbf{r}_d \end{array}\right),$$

- L is a lower-triangular full-rank matrix over ℤ (known at compile time) defining the iteration domain
- $\mathbf{m}_1, \ldots, \mathbf{m}_\delta, \mathbf{r}_1, \ldots, \mathbf{r}_\delta$: data parameters (known only at execution time)
- R(i₁,..., i_d, m₁,..., m_δ) is a polynomial, the coefficients of which are known at compile time.

Input:

$$\begin{aligned} & (\mathbf{i}_1 \cdots; \cdots; \mathbf{i}_1 + +) \\ & \dots (\mathbf{i}_d \cdots; \cdots; \mathbf{i}_d + +) \\ & A[R(\mathbf{i}_1, \dots, \mathbf{i}_d, \mathbf{m}_1, \dots, \mathbf{m}_\delta)] \leftarrow \cdots \\ & \dots \end{aligned}$$

• $\mathbf{i}_1, \ldots, \mathbf{i}_d$ take non-negative integer values such that

$$L\begin{pmatrix} \mathbf{i}_1\\ \vdots\\ \mathbf{i}_d \end{pmatrix} \leq \begin{pmatrix} \mathbf{r}_1\\ \vdots\\ \mathbf{r}_d \end{pmatrix},$$

- L is a lower-triangular full-rank matrix over ℤ (known at compile time) defining the iteration domain
- $\mathbf{m}_1, \ldots, \mathbf{m}_\delta, \mathbf{r}_1, \ldots, \mathbf{r}_\delta$: data parameters (known only at execution time)
- R(i₁,..., i_d, m₁,..., m_δ) is a polynomial, the coefficients of which are known at compile time.

Output:

- $\begin{array}{ccc} (\mathbf{i}_1 \cdots; \cdots; \mathbf{i}_1 + +) \\ \dots (\mathbf{i}_d \cdots; \cdots; \mathbf{i}_d + +) \\ \tilde{A}[f_1] \cdots [f_{\delta}] \leftarrow \cdots \dots \end{array}$
- f_1, \ldots, f_{δ} are affine forms in $\mathbf{i}_1, \ldots, \mathbf{i}_d$ the coefficients of which are integers to-be-determined,
- $ilde{A}$ is an $\mathbf{M}_1 imes \cdots imes \mathbf{M}_{\delta}$ -array,
- $\mathbf{M}_1, \ldots, \mathbf{M}_\delta$ are affine forms in $\mathbf{m}_1, \ldots, \mathbf{m}_d$ the coefficients of which are integers TBD,

such that:
$R = f_1 \mathbf{M}_2 \cdots \mathbf{M}_{\delta} + \cdots + f_{\delta-1} \mathbf{M}_2 + \dots$
holds and for each $(\mathbf{i}_1,\ldots,\mathbf{i}_d)$ in the
iteration domain we have:
$0 \le f_1 < \mathbf{M}_1, \dots, 0 \le f_\delta < \mathbf{M}_\delta.$

The sub-problems

Polynomial system solving

- **()** Expressing the coefficients of f_1, \ldots, f_{δ} and $\mathbf{M}_1, \ldots, \mathbf{M}_{\delta}$ as functions of the coefficients of R
- **2** This can be done off-line (that is, before compile-time) once d and δ are fixed.
- Recall that the matrix L and the coefficients of the polynomial R are integer values known at compile-time.

Quantifier elimination

① The constraint: for each $(\mathbf{i}_1, \ldots, \mathbf{i}_d)$ in the iteration domain we have:

 $0 \leq f_1 < \mathbf{M}_1, \ldots, 0 \leq f_\delta < \mathbf{M}_\delta$

implies constraints on the coefficients of f_1,\ldots,f_δ . and $\mathbf{M}_1,\ldots,\mathbf{M}_\delta$

- Off-line, this is a non-linear QE problem which can only be solved over the reals (not over the integers). The obtained constraint is then sufficient but not necessary.
- ⁽³⁾ At compile time, the coefficients of L and R are known and the QE problem can be reduced to Presburger arithmetic (that is, QE on affine forms over \mathbb{Z}) which can be solved by software like ISL.
- This is the point of view of the paper Optimistic Delinearization of Parametrically Sized Arrays by T. Grosser, J. Ramanujam, L.-N. Pouchet, P. Sadayappan and S. Pop (ICS15).
- Solution At run-time, $\mathbf{m}_1, \ldots, \mathbf{m}_{\delta}, \mathbf{r}_1, \ldots, \mathbf{r}_{\delta}$ are known and the QE problem reduces to optimize peice-wise linear functions (actually *sawtooth functions*).

The 2D case

There are mainly four different cases. Based on the shape of the plots, we call this type of functions "sawtooth" functions.

The 3D Case QE solving

"sawtooth" functions in 3D case.

- Only integer points matter in loop iterations.
- The integer hull problem

Outline

2 What

Convex hull and Integer hull

- In geometry, the convex hull of a shape is the smallest convex set that contains it.
- Integer hull: when all the vertices are integer points

Outline

Finding the Integer hull of a polygon

An example

Finding the Integer hull of a Triangle

An example (cont.)

The triangle will be given by:

 $\begin{cases} b_1 \leq a_1 x + y \\ b_2 \leq a_2 x + y \\ b_3 \leq a_3 x + y \end{cases}$

- Our goal: generate in constant time a program for computing the integer hull, and evaluate that program when the value of parameters are given.
- Parametric code generation: branch at conditional statements
- Consider every integer points would cause too many branches. (At least linear complexity)
- Solution: Finding the integer hull of a triangle in constant time
- Cook, W., Hartmann, M., Kannan, R., & McDiarmid, C. (1992). On integer points in polyhedra. Combinatorica, 12(1), 27-37.
 Suggests that the number of points in an integer hull has a upper limit related to the size of the polygon
- But is there a limit for a fixed shape?

Number of points of a complex example:

Consider the triangle defined by the facets

$$\begin{cases} y &\leq 2x \\ y &\geq 0 \\ y &\leq -2x+b \end{cases}$$

b	n	×	у
4i - 2	4	[2i - 1, i, i - 1, 0]	[0, 2i - 2, 2i - 2, 0]
4i - 1	5	[2i-1, 2i-1, i, i-1, 0]	[0, 1, 2i - 1, 2i - 2, 0]
4i	3	[2i, i, 0]	[0, 2i, 0]
4i + 1	5	[2i, 2i, i+1, i, 0]	[0, 1, 2i - 1, 2i, 0]

Table: Points in the integer hull

(3)

Visulization of the above example

Consider the triangle defined by the facets

$$\begin{cases} y = 2x \\ y = 0 \\ y = -3x + b \end{cases}$$
(4)

This example has a period of 15 and a inner period of 3 $\,$

b - 15i	b - 3j	n	x	y
0	0	3	[j, 3i, 0]	[0, 6i, 0]
1	1	5	[j, j, 3i + 1, 3i, 0]	[0, 1, 6i - 2, 6i, 0]
2	2	3	[j, j, 3i + 1, 3i, 0]	[0, 2, 6i - 1, 6i, 0]
3	0	4	[j, 3i + 1, 3i, 0]	[0, 6i, 6i, 0]
4	1	5	[j, j, 3i + 1, 3i, 0]	[0, 1, 6i + 1, 6i, 0]
5	2	4	[j, j, 3i + 1, 0]	[0, 2, 6i + 2, 0]
6	0	4	[j, 3i + 2, 3i + 1, 0]	[0, 6i, 6i + 2, 0]
7	1	5	[j, j, 3i + 2, 3i + 1, 0]	[0, 1, 6i + 1, 6i + 2, 0]
8	2	5	[j, j, 3i + 2, 3i + 1, 0]	[0, 2, 6i + 2, 6i + 2, 0]
9	0	4	[j, 3i + 2, 3i + 1, 0]	[0, 6i + 3, 6i + 2, 0]
10	1	4	[j, j, 3i + 2, 0]	[0, 1, 6i + 4, 0]
11	2	5	[j, j, 3i + 3, 3i + 2, 0]	[0, 2, 6i + 2, 6i + 4, 0]
12	0	4	[j, 3i + 3, 3i + 2, 0]	[0, 6i + 3, 6i + 4, 0]
13	1	5	[j, j, 3i + 3, 3i + 2, 0]	[0, 1, 6i + 4, 6i + 4, 0]
14	2	5	[j, j, 3i + 3, 3i + 2, 0]	[0, 2, 6i + 5, 6i + 4, 0]

Table: Example with a double period

Theorem

For a triangle given by the facets

$$y = a_1 x + b_1 y = a_2 x + b_2 y = a_3 x + b_3$$
(5)

where $a_i = \frac{m_i}{d_i}$ are rational numbers, m_i, d_i are integer numbers. The period of the integer hull is given by

$$LCM(|m_1d_2d_3 - m_2d_1d_3|, |m_1d_2d_3 - m_3d_1d_3|, |m_2d_1d_3 - m_3d_1d_2|)$$
 (6)

The vertices are:

$$\begin{cases} x_1 = \frac{b_1 - b_2}{a_1 - a_2} = \frac{b_1 - b_2}{\frac{m_1 d_2 - m_2 d_1}{d_1 d_2}} = \frac{d_1 d_2 (b_1 - b_2)}{m_1 d_2 - m_2 d_1} = \frac{d_1 d_2 d_3 (b_1 - b_2)}{m_1 d_2 d_3 - m_2 d_1 d_3} \\ x_2 = \frac{b_1 - b_3}{a_1 - a_3} = \frac{b_1 - b_3}{\frac{m_1 d_3 - m_3 d_1}{d_1 d_3}} = \frac{d_1 d_3 (b_1 - b_3)}{m_1 d_3 - m_3 d_1} = \frac{d_1 d_2 d_3 (b_1 - b_3)}{m_1 d_2 d_3 - m_3 d_1 d_2} \\ x_3 = \frac{b_2 - b_3}{a_2 - a_3} = \frac{b_2 - b_3}{\frac{m_2 d_3 - m_3 d_2}{d_3 d_3}} = \frac{d_2 d_3 (b_2 - b_3)}{m_2 d_3 - m_3 d_2} = \frac{d_1 d_2 d_3 (b_2 - b_3)}{m_2 d_1 d_3 - m_3 d_1 d_2} \end{cases}$$
(7)

The period is the LCM of the denominators of the x_i .

What's next?

- Formally prove the above theorem
- General form of the points in a cycle (like the tables above)
- Expand the results to other shapes and higher dimensions
- Parametric integer hull
- Delinearization

Thank You!

Your Questions?