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Sparse Multivariate Interpolation

Interpolation is about finding a function which equals certain values
at certain points. These points, are called the interpolation nodes.

Interpolation is a fundamental technique for computer algebra,
numerical analysis, engineering...

Can approximate very complex functions
Find a function for discrete data points
Evaluation-interpolation schemes in computer algebra

We are interested in interpolating sparse functions in many variables.

ë Number of terms in a polynomial explode exponentially with increasing
number of variables

Convenient interpolants are polynomials and rational functions.

ë Easy to compute derivatives, integrals, evaluations, etc.
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Introduction



Introduction: Polynomial Definitions

Variable - a symbol representing some number.
x, y, z, . . .

Monomial - a product of variables, each to some exponent.
x5yz3

Coefficient - a numerical multiplicative factor of a monomial.
13, 7{9, 2.1463

Polynomial - a summation of coefficient-monomial products.
13x5yz3 ` 7{9x3y2 ` 11

(Total) Degree - the maximum sum of exponents of any monomial
in a polynomial.

Partial Degree - the maximum exponent of a particular variable in a
polynomial.



Introduction: Sparse vs Dense Polynomials

Sparse and Dense have dual meanings for polynomials. A polynomial can
be sparse or dense while also can be represented sparsely or densely.

A polynomial is sparse if it has few non-zero coefficients.
Conversely, a polynomial is dense if it has few zero coefficients.

x9 ` 1 vs. 3x4 ` 7x3 ` 4x2 ` 1

A polynomial is represented sparsely if only its non-zero coefficients
are stored while a polynomial is represented densely if all coefficients
are stored.

1 ¨ x9 ` 1 ¨ x0 vs. 1 ¨ x9 ` 0 ¨ x8 ` 0 ¨ x7 ` . . . ` 1 ¨ x0



Introduction: Black-box functions

A black-box is some function, procedure, encoding, etc. of a mathematical
function.

Takes as input an evaluation point,

Returns the value of the function at the input point.

The black-box is “opaque”

One knows nothing of the underlying function

Can only obtain evaluations at arbitrary points.

Bpx1, x2 . . . , xvq
π1, π2, . . . , πv Bpπ1, π2, . . . , πvq



The Problem of Interpolation



The Problem of Interpolation

Problem 1: Given a set of point-value pairs, pπi, βiq, i “ 1 .. n, find a
function f such that fpπiq “ βi

Problem 2: Given a block-box encoding of a function, B, find a function,
f , such that Bpπiq “ fpπiq at sufficiently many πi.

ë If B is known to encode a polynomial (rational function) then the
exact function can be recovered.

ë Additional information is needed to define “sufficiently”. Generally,
the degree of the resulting interpolant.



The Problem of Interpolation
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The Problem of Interpolation

Different “flavours” of interpolation exist

Polynomial, Rational Function, Piece-wise Linear, etc.

One may define a function basis for the interpolation, a set of functions
ϕj , j “ 1 ..m, such that f is a linear combination of ϕj .

f “ α1ϕ1pXq ` α2ϕ2pXq ` ¨ ¨ ¨ ` αmϕmpXq

ùñ βi “ α1ϕ1pπiq ` α2ϕ2pπiq ` ¨ ¨ ¨ ` αmϕmpπiq

The choice of function basis produces different flavours of interpolation.
Choosing ϕj to be the set of monomials, we obtain polynomial
interpolation.

In the univariate case this set is t1, x, x2, x3, x4, . . . u



The Problem of Interpolation

Given a basis of functions it is easy to set up a system of linear equations.

βi “ α1ϕ1pπiq ` α2ϕ2pπiq ` ¨ ¨ ¨ ` αmϕmpπiq ùñ

»

—

—

—

–

ϕ1pπ1q ϕ2pπ1q . . . ϕmpπ1q

ϕ1pπ2q ϕ2pπ2q . . . ϕmpπ2q
...

...
. . .

...
ϕ1pπnq ϕ2pπnq . . . ϕmpπnq

fi

ffi

ffi

ffi

fl

»

—

—

—

–

α1

α2
...

αm

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β1
β2
...
βn

fi

ffi

ffi

ffi

fl

This matrix is called a sample matrix.



The Problem of Interpolation: Sparsity is a Necessity

The size of the multivariate monomial basis is exponential in the number
of variables.

As the number of variables increases, it becomes prohibitively large to
interpolate every coefficient for every monomial.

␣

1, x, y, z, xy, xz, yz, xyz, x2y, x2z, xy2, y2z, xz2, yz2, x3, y3, z3, . . .
(

If the underlying function is sparse, then we want to take advantage of this
structure to interpolate only the non-zero coefficients.



Univariate Interpolation



Univariate Interpolation

Univariate polynomial interpolation is the simplest. There is only one
variable to determine.

Very straight-forward, direct solutions exist.

Linear system solving

Lagrange interpolation

Newton interpolation (see [1, Chapter 13])



Univariate Interpolation: Linear system solving

Using the basis of functions: tϕ1, ϕ2, ϕ3, . . . u “ t1, x, x2, . . . u and
point-value pairs pπi, βiq we get the system of equations:

»

—

—

—

–

1 π1 π2
1 . . . πm´1

1

1 π2 π2
2 . . . πm´1

2
...

...
...

. . .
...

1 πn π2
n . . . πm´1

n

fi

ffi

ffi

ffi

fl

»

—

—

—

–

α1

α2
...

αm

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

β1
β2
...
βn

fi

ffi

ffi

ffi

fl

For n “ m this system can be solved to obtain a unique solution for
α1, . . . , αm and thus a unique interpolating polynomial.

The sample matrix produced by univariate monomials is a
Vandermonde matrix

It is non-singular as long as πi are pair-wise distinct



Univariate Rational Function Interpolation

Univariate rational functions can be interpolated by linear system solving
with a simple modification.

Rpxq “
apxq

bpxq
ùñ Rpπiq “

a1π
d1
i ` ¨ ¨ ¨ ` anπ

dn
i

b1π
e1
i ` ¨ ¨ ¨ ` bmπem

i

“ βi ùñ

»

—

—

—

–

πd1
1 . . . πdn

1 ´β1π
e1
1 . . . ´β1π

em
1

πd1
2 . . . πdn

2 ´β2π
e1
2 . . . ´β2π

em
1

...
. . .

...
...

. . .
...

πd1

k . . . πdn

k ´βkπ
e1
k . . . ´βkπ

em
1

fi

ffi

ffi

ffi

fl

»

—

—

—

—

–

a1
...
b1
...

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

0
...
0
...

fi

ffi

ffi

ffi

ffi

fl

This homogeneous system of equations either has the trivial solution or
infinitely many solutions.

ë Normalize one coefficient to 1 by multiplying Rpxq by ε{ε “ 1

ë Add a row to the system forcing one ai or bj to be 1

ë Cannot guarantee a particular ai or bj is non-zero to be
normalizeable, should try many.



Univariate Interpolation: Lagrange Interpolation

While linear system solving is possible, it is arithmetically expensive.

Lagrange Interpolation is more direct, providing an exact formula for the
coefficients and basis functions of the interpolant.

fpxq “

n
ÿ

j“1

βjϕjpxq ϕjpxq “

n
ź

i“1
i‰j

px ´ πiq

pπj ´ πiq

ϕjpxq “
px ´ π1q . . . px ´ πj´1qpx ´ πj`1q . . . px ´ πnq

pπj ´ π1q . . . pπj ´ πj´1qpπj ´ πj`1q . . . pπj ´ πnq



Univariate Interpolation: Lagrange Interpolation

fpxq “
n
ř

j“1
βjϕjpxq ϕjpxq “

n
ś

i“1
i‰j

px´πiq

pπj´πiq

Coefficients are just function values, βi

Basis polynomial are designed so ϕjpπjq “ 1, ϕjpπiq “ 0 i ‰ j

Hence, fpπjq “ βj as required.

ϕjpπjq “
pπj ´ π1q . . . pπj ´ πj´1qpπj ´ πj`1q . . . pπj ´ πnq

pπj ´ π1q . . . pπj ´ πj´1qpπj ´ πj`1q . . . pπj ´ πnq

“ 1

fpπjq “ β1ϕ1pπjq ` ¨ ¨ ¨ ` βjϕjpπjq ` ¨ ¨ ¨ ` βnϕnpπjq

“ β1 ¨ 0 ` ¨ ¨ ¨ ` βj ¨ 1 ` ¨ ¨ ¨ ` βn ¨ 0

“ βj



Univariate Interpolation: Lagrange Interpolation

Calculating the ϕj polynomials effectively is not immediately obvious.

For data locality while traversing the input data one can pre-compute
many values and then never use the input data again.

Calculate modified coefficients fj “ βj {
ś

i‰jpπj ´ πiq,

Generate factors facti “ px ´ πiq for i “ 1 .. n

Expanding each ϕj can be effectively implemented by realizing one
operand of each multiplication is always a monic binomial.

Multiplication by a binomial can be implemented by a simultaneous
shift, coefficient multiplication, and addition.

ë a ¨ px ´ ciq “ pax ´ aciq
ë ax is an increment of exponents of a, aci is only coefficient arithmetic.

Summation of ϕj can be done in-place to minimize memory allocation.



Univariate Interpolation: Experimentation
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Sparse Multivariate Polynomial Interpolation



Sparse Polynomial Interpolation

The seminal work of Zippel [2] introduced a probabilistic method for
sparse polynomial interpolation of a black-box. Zippel later extended this
to be deterministic in [3].

Problem (Zippel’s Sparse Polynomial Interpolation):

Given a black-box, B, in v variables, and a degree bound for the
interpolant, d, find a polynomial f such that they are equal at t “

`

v`d
d

˘

points.

Bpπiq “ fpπiq, for i “ 1 .. t

The maximum number of terms in a polynomial of v variables and degree
d is

`

v`d
d

˘

.



Sparse Polynomial Interpolation

Zippel’s method involves interpolating each variable, one at a time.

This is accomplished by fixing higher-ordered variables at a specific
starting point π̃ “ pζ1, ζ2, . . . , ζvq

The structure (sparsity) of the polynomial is maintained at each step,
interpolating only the non-zero polynomial terms.

f p0q “ fpζ1, ζ2, . . . , ζvq P K,

f p1q “ fpx1, ζ2, . . . , ζvq P Krx1s,

f p2q “ fpx1, x2, . . . , ζvq P Krx1, x2s,

...

f “ f pvq “ fpx1, x2, . . . , xvq P Krx1, . . . , xvs



Sparse Polynomial Interpolation

With the starting point π̃ “ pζ1, ζ2, . . . , ζvq, a single variable can be
interpolated by varying one value in the tuple.

Varying x1, we can interpolate the points ζ1, ω1, . . . , ωd and values
β̃, β1, . . . , βd to obtain f p1q, say by Lagrange interpolation.

d ` 1 points to interpolate a maximum degree of d.

Bp ζ1, ζ2, . . . , ζvq “ β̃,

Bpω1, ζ2, . . . , ζvq “ β1,

Bpω2, ζ2, . . . , ζvq “ β2,

...

Bpωd, ζ2, . . . , ζvq “ βd

f p1qpζ1q “ β̃,

f p1qpω1q “ β1,

f p1qpω2q “ β2,

...

f p1qpωdq “ βd



Sparse Polynomial Interpolation

The result of the univariate interpolation has a special structure, each
coefficient is really the evaluation of some function gipx2, . . . , xvq at
pζ2, . . . , ζvq.

f p1q “ fpx1, ζ2, . . . , ζvq

“ gdpζ2, . . . , ζvqxd1 ` gd´1pζ2, . . . , ζvqxd´1
1 ` ¨ ¨ ¨ ` g0pζ2, . . . , ζvq

“ γd x
d
1 ` γd´1 x

d´1
1 ` ¨ ¨ ¨ ` γ0

There are d ` 1 different coefficient functions. Some of these may be
identically zero while others may be zero at pζ2, . . . , ζvq.

Coefficient functions which are zero are assumed to be zero, leading to a
probabilistic method.

ë Choosing ζi randomly from a larger set decreases probability that
gipζ2, . . . , ζvq will evaluate to zero.



Sparse Polynomial Interpolation

Each non-zero gi should now be interpolated for one variable, just as f p1q

was for x1.

Requires obtaining gipνj , ζ3, . . . , ζnq, νj ‰ ζ2, for j “ 1 .. d

Let g1
ipνjq “ gipνj , ζ3, . . . , ζvq, B1px1, νjq “ Bpx1, νj , ζ3, . . . , ζvq

We can obtain g1
ipνjq as the solution to a linear system formed by

evaluations of B1. This makes use of the sparsity in f p1q compared to more
univariate interpolations. Choosing ωi randomly:

$

’

’

’

&

’

’

’

%

B1pω1, νjq “ g1
dpνjqω

d
1 ` g1

d´1pνjqω
d´1
1 ` ¨ ¨ ¨ ` g1

0pνjq

B1pω2, νjq “ g1
dpνjqω

d
2 ` g1

d´1pνjqω
d´1
2 ` ¨ ¨ ¨ ` g1

0pνjq
...

B1pωd, νjq “ g1
dpνjqω

d
d ` g1

d´1pνjqω
d´1
d ` ¨ ¨ ¨ ` g1

0pνjq



Sparse Polynomial Interpolation

Solving d systems of equations yields the values of each gi at d distinct
points.

Combined with the original f p1q “ γd x
d
1 ` γd´1 x

d´1
1 ` ¨ ¨ ¨ ` γ0 we have

d ` 1 points to interpolate a degree d polynomial in x2.

fpx1, ζ2, . . . , ζvq “ γd x
d
1 ` γd´1 x

d´1
1 ` ¨ ¨ ¨ ` γ0

fpx1, ν1, . . . , ζvq “ g1
dpν1qxd1 ` g1

d´1pν1qxd´1
1 ` ¨ ¨ ¨ ` g1

0pν1q

...

fpx1, νd, . . . , ζvq “ g1
dpνdqxd1 ` g1

d´1pνdqxd´1
1 ` ¨ ¨ ¨ ` g1

0pνdq

Each gi is interpolated as a function in x2 by basic univariate
interpolation using the points ζ2, ν1, . . . , νd and values
γi, g

1
1pν1q, . . . , g1

dpνdq



Sparse Polynomial Interpolation

Lastly, each numerical coefficient γi in f p1q is replaced by gipx2q to obtain:

f p2q “ fpx1, x2, . . . , ζvq

“ g1
dpx2qxd1 ` g1

d´1px2qxd´1
1 ` ¨ ¨ ¨ ` g1

0px2q

“

´

γd,dx
d
2 ` ¨ ¨ ¨ ` γd,0

¯

xd ` ¨ ¨ ¨ `

´

γ0,dx
d
2 ` ¨ ¨ ¨ ` γ0,0

¯

We repeat this process for each variable, adding one variable at each step:

piq Solve linear systems to obtain evaluations of coefficient polynomials

piiq Univariate interpolation of a single variable in each coefficient
polynomial



Sparse Polynomial Interpolation: An Example

We look to interpolate p “ x2y2 ` x2yz ` yz2 ` yz with degree bound
d “ 4. Written recursively:

p P Kry, zsrxs “ py2 ` yzqx2 ` pyz2 ` yzqx0

p P Krzsrx, ys “ p1qx2y2 ` pzqx2y ` pz2 ` zqy

Choose some starting point π̃ “ pζx, ζy, ζzq, Bpπ̃q “ β̃.

d “ 4 ùñ 5 evaluations to interpolate each variable.

Stage 1: Interpolate f p1q P Krxs

ë Vary x: ζx, ω1, ω2, ω3, ω4, while holding y and z constant at ζy and
ζz. Let these points evaluate by B to β̃, β1, β2, β3, β4.

ë Use pζx, β̃q, pω1, β1q, pω2, β2q, pω3, β3q, pω4, β4q as input to some
univariate interpolation, like Lagrange.

ë Obtain f p1q “ c1x
2 ` c2, c1, c2 P K.



Sparse Polynomial Interpolation: An Example

Stage 2: Interpolate f p2q P Krx, ys

f p1q “ c1x
2 ` c2 ùñ f p1q “ g1pζy, ζzqx2 ` g2pζy, ζzq

Need 5 evaluations each of g1 and g2 to interpolate them.

Vary y at the points ζy, ν1, ν2, ν3, ν4, holding z fixed as ζz.

For each new point, we solve a system of linear equations. Choose
new, random, distinct points for x: ωs, ωt.

„

x2|ωs x0|ωs

x2|ωt x0|ωt

ȷ „

g1pνi, ζzq

g2pνi, ζzq

ȷ

“

„

Bpωs, νi, ζzq

Bpωt, νi, ζzq

ȷ

Using the points ζy, νi and values g1pζy, ζzq, g1pνi, ζzq, i “ 1 .. 4,
interpolate g1py, ζzq “ c3y

2 ` c4y P Krys

Similarly for g2, obtaining g2py, ζzq “ c5y

Expanding f p1q, g1, g2 yields f p2q “ c3x
2y2 ` c4x

2y ` c5y



Sparse Polynomial Interpolation: An Example

Stage 3: Interpolate f “ f p3q P Krx, y, zs

f p2q “ c3x
2y2 ` c4x

2y ` c5y ùñ f p2q “ g3pζzqx2y2 ` g4pζzqx2y ` g5pζzqy

As before, we need 5 points. Reusing ζz we then need to solve 4
linear systems for the new points µ1, µ2, µ3, µ4.

New random, distinct points for x: ωs, ωt, ωu and y: νs, νt, νu.
»

–

x2y2|pωs,νsq x2y|pωs,νsq y|pωs,νsq

x2y2|pωt,νtq x2y|pωt,νtq y|pωt,νtq

x2y2|pωu,νuq x2y|pωu,νuq y|pωu,νuq

fi

fl

»

–

g3pµiq

g4pµiq

g5pµiq

fi

fl “

»

–

Bpωs, νs, µiq

Bpωt, νt, µiq

Bpωu, νu, µiq

fi

fl

Using the points ζz, µi and values g3pζyq, g3pµiq, i “ 1 .. 4,
interpolate g3pzq “ 1 P Krzs

Similarly for g4 and g5, obtaining g4pzq “ z, g5pzq “ z2 ` z

Expanding f p2q, g3, g4, g5 yields

f p3q “ x2y2 ` x2yz ` yz2 ` yz “ f “ p



Deterministic Sparse Polynomial Interpolation

The sources of error in the probabilistic methods are:

piq Choice of starting point π̃ “ pζ1, ζ2, . . . , ζvq causing coefficient
polynomials to evaluate to zero at pζk, . . . , ζvq

piiq Singularity of matrix in each system of linear equations



Determinism: Choice of starting point π̃

f p1q “ gdpζ2, . . . , ζvqxd1 ` gd´1pζ2, . . . , ζvqxd´1
1 ` ¨ ¨ ¨ ` g0pζ2, . . . , ζvq

Some gipζ2, . . . , ζvq maybe be identically zero while others may
unluckily vanish at pζ2, . . . , ζvq.

Proposition: For non-zero polynomials g1, . . . , gs P Krx1, . . . , xvs where
#pg1q + . . . + #pgsq = T , if π̃ is a sequence of v different primes in K,
then Dj P Z, 0 ď j ď T ´ s, all of gipπ̃

jq are non-zero. [1, Proposition 102]

In a very brute-force way one can iterate through T ´ s choices of starting
point, choosing the one which yields the most non-zero gi.

ë #pgiq is unknown beforehand. In implementation T is really a
parameter which gives an upper bound on the number of terms.



Determinism: Singularity in Linear Systems

$

’

’

’

&

’

’

’

%

B1pω1, νjq “ g1
dpνjqω

d
1 ` g1

d´1pνjqω
d´1
1 ` ¨ ¨ ¨ ` g1

0pνjq

B1pω2, νjq “ g1
dpνjqω

d
2 ` g1

d´1pνjqω
d´1
2 ` ¨ ¨ ¨ ` g1

0pνjq
...

B1pωd, νjq “ g1
dpνjqω

d
d ` g1

d´1pνjqω
d´1
d ` ¨ ¨ ¨ ` g1

0pνjq

When working on variable x2, the polynomial is univariate and the matrix
is a Vandermonde matrix in ωi.

ë It is non-singular as long as ωi are distinct.

In later stages when interpolating xk one must choose random points for
all xj , j ă k. Say, ω⃗i “ pωi,1, ωi,2, . . . ωi,k´1q.

Choosing ω⃗i “ p2i, 3i, 5i, 7i, . . . q, the first k ´ 1 primes raised to the
power i, ensures uniqueness when evaluating multivariate monomials
and thus non-singularity [4].



Probabilistic vs Deterministic

Running time for interpolating a sparse 3 variable function, f

T “ #pfq ` 3 T “ #pfq ` 20 T “ pd ` 1qv

Green is probabilistic, purple is deterministic

Probabilistic method varies with probability of getting incorrect result

Both vary by partial degree bounds, d



Sparse Multivariate Rational Function Interpolation



Sparse Rational Function Interpolation (SRFI)

Problem (Sparse Rational Function Interpolation):

Given a black-box B, encoding a rational function, Rpx1, . . . , xvq, and a
total degree bound for the numerator and denominator, d and e, find the
rational function R while being sensitive to its sparsity.

Cuyt and Lee propose a method for sparse rational function interpolation
using a homogenizing variable [5].

This method depends on both (dense) univariate and (sparse)
multivariate interpolation.

The use of sparsity in the rational function interpolation relies on the
use of sparsity in the sparse multivariate interpolation.



SRFI: Homogenization

Given a rational function Rpx1, . . . , xvq “
apx1,...,xvq

bpx1,...,xvq
a new variable is

introduced to produce an auxiliary rational function, R̃.

R̃pz, x1, . . . , xvq “ Rpzx1, . . . , zxvq

“
A0px1, . . . , xvq ¨ z0 ` A1px1, . . . , xvq ¨ z1 ` ¨ ¨ ¨ ` Adpx1, . . . , xvq ¨ zd

1 ` B1px1, . . . , xvq ¨ z1 ` ¨ ¨ ¨ ` Bepx1, . . . , xvq ¨ ze

The variable z groups together terms in a and b whose total degree is
equal to the exponent on z.

Assume B0px1, . . . , xvq “ 1

R̃ can easily be interpolated as a univariate function in z



SRFI: Univariate Rational Interpolation

To interpolate z in R̃pz, x1, . . . , xvq fix px1, . . . , xvq to be pζ1, . . . , ζvq “ ζ⃗
and interpolate the univariate function R̃pz, ζ1, . . . , ζvq.

This requires d ` e ` 1 points for z. Use distinct ωi as points and βi as
values, obtaining βi from black-box evaluations:

Bpωiζ1, . . . , ωiζvq “ Rpωiζ1, . . . , ωiζvq “ R̃pωi, ζ1, . . . , ζvq “ βi

This yields a univariate function whose coefficients are the evaluations of
the polynomials Ai and Bj at pζ1, . . . , ζvq.

R̃pz, ζ⃗q “
A0pζ⃗q ¨ z0 ` A1pζ⃗q ¨ z1 ` ¨ ¨ ¨ ` Adpζ⃗q ¨ zd

1 ` B1pζ⃗q ¨ z1 ` ¨ ¨ ¨ ` Bepζ⃗q ¨ ze



SRFI: Multivariate Polynomial Interpolation

Univariate interpolation yields the evaluations of Ai and Bj . Many

interpolations at various ζ⃗pkq can obtain many evaluations for each Ai and
Bj .

Using these evaluations, we can perform sparse multivariate interpolation
on each Ai and Bj .

ë The choice of multivariate interpolation scheme decides the values for
ζ⃗pkq

ë Example: ζ⃗pkq “ p2k, 3k, 5k, 7k, . . . q for deterministic Zippel

Notice each term in Ai has total degree i. One could create a specialized
interpolation method since the degree of all terms are equal and known a
priori.



SRFI: Algorithm

R̃pz, ζ⃗q “
A0pζ⃗q ¨ z0 ` A1pζ⃗q ¨ z1 ` ¨ ¨ ¨ ` Adpζ⃗q ¨ zd

1 ` B1pζ⃗q ¨ z1 ` ¨ ¨ ¨ ` Bepζ⃗q ¨ ze

Sparse Rational Function Interpolation
Input: Block-box, Bpx1, . . . , xvq, degree bounds, d and e

Output: Rpx1, . . . , xvq “ a1X d⃗1`¨¨¨`anX d⃗n

1`b2X e⃗2`¨¨¨`bmX e⃗m

For k “ 0, 1, . . . until all Ai, Bj are interpolated

Decide ζ⃗pkq based on sparse multivariate interpolation scheme
Using pairwise distinct ω1, . . . , ωd`e`1, and evaluations

Bpωjζ
pkq

1 , . . . , ωjζ
pkq
v q interpolate R̃pz, ζ

pkq

1 , . . . , ζ
pkq
v q

Add evaluations Aip
⃗ζpkqq and Bjp ⃗ζpkqq to their respective ongoing

multivariate interpolations and attempt to interpolate



SRFI: An Example

We look to interpolate the rational function Rpx, yq with a degree bound
d “ e “ 3.

Rpx, yq “
x2y ` y3 ` x

x2 ` y2 ` 1

Conceptually, homogenization produces the auxiliary function R̃pz, x, yq:

R̃pz, x, yq “ Rpzx, zyq “
pzxq2pzyq ` pzyq3 ` pzxq

pzxq2 ` pzyq2 ` 1

“
z3x2y ` z3y3 ` zx

z2x2 ` z2y2 ` 1

“
px2y ` y3qz3 ` pxqz

px2 ` y2qz2 ` 1



SRFI: An Example

R̃pz, x, yq “
px2y ` y3qz3 ` pxqz

px2 ` y2qz2 ` 1
“

A3px, yqz3 ` A1px, yqz

B2px, yqz2 ` 1

Use the probabilistic sparse polynomial interpolation method. For degree
bound d “ e “ 3 each bi-variate polynomial coefficient needs at most 16
points to be interpolated.

Generate pζ
pkq

1 , ζ
pkq

2 q as needed by sparse interpolation for k “ 1 ..16.
The same points can be used for each Ai, Bj .

For each k pick distinct ω1, . . . , ωd`e`1“7

Evaluate each Bpωiζ
pkq

1 , ωiζ
pkq

2 q and interpolate a univariate rational
function in z using ω1, . . . , ω7

R̃pz, ζ
pkq

1 , ζ
pkq

2 q “
A3pζ

pkq

1 , ζ
pkq

2 qz3 ` A1pζ
pkq

1 , ζ
pkq

2 qz

B2pζ
pkq

1 , ζ
pkq

2 qz2 ` 1



SRFI: An Example

With each R̃pz, ζ
pkq

1 , ζ
pkq

2 q we gain evaluations of A3pζ
pkq

1 , ζ
pkq

1 q,

A1pζ
pkq

1 , ζ
pkq

1 q, B2pζ
pkq

1 , ζ
pkq

1 q.

The very first univariate interpolation reveals this structure.

Simultaneously A3, A1 and B2 can be interpolated by the points

pζ
pkq

1 , ζ
pkq

2 q and their respective evaluations.

Sparse interpolations yield A3px, yq “ x2y ` y3, A1px, yq “ x,
B2 “ x2 ` y2. Simply ignore z and combine Ai to form numerator and Bj

for denominator.

Rpx, yq “
A3px, yq ` A1px, yq

B2px, yq ` 1
“

x2y ` y3 ` x

x2 ` y2 ` 1



SRFI: Shifted Basis

The previous discussion assumed that the denominator did not vanish at
p0, . . . , 0q, that is b0X

0⃗ “ 1

ë Guarantees ability to normalize the rational function

ë In general, one cannot guarantee any particular term is non-zero, so
normalization cannot occur.

Using a shifted power basis, we can instead force the normalization of the
auxiliary function.

Let σ⃗ “ pσ1, . . . , σvq be a point at which Rpσ⃗q is defined.

R̂pz, x1, . . . , xvq “ Rpzx1 ` σ1, zx2 ` σ2, . . . , zxv ` σvq

“
âpzq

b̂pzq

“
Â0px1, . . . , xvqz0 ` ¨ ¨ ¨ ` Âdpx1, . . . , xvqzd

B̂0px1, . . . , xvqz0 ` ¨ ¨ ¨ ` B̂epx1, . . . , xvqze



SRFI: Shifted Basis

b “

m
ÿ

j“1

bjx
ej,1
1 . . . xej,v

v ùñ b̂pzq “ bpzx1 ` σ1, . . . , zxv ` σvq

“

m
ÿ

j“1

bjpzx1 ` σ1qej,1 . . . pzxv ` σvqej,v

Evaluating b̂ at z “ 0 yields the constant term, B̂0 ‰ 0.

ë R̂ can be normalized, forcing B̂0px1, . . . , xvq “ 1

ë With normalization the univariate interpolation can occur

b̂p0q “ B̂0px1, . . . , xvq

“

m
ÿ

j“1

bjpσ1qej,1 . . . pσvqej,v

“ bpσ1, . . . , σvq ‰ 0



SRFI: Shifted Basis

R̂pz, x1, . . . , xvq “ Rpzx1 ` σ1, zx2 ` σ2, . . . , zxv ` σvq

“
Â0px1, . . . , xvqz0 ` ¨ ¨ ¨ ` Âdpx1, . . . , xvqzd

1 ` B̂1px1, . . . , xvqz1 ` ¨ ¨ ¨ ` B̂epx1, . . . , xvqze

Finally, one can interpolate each Âi and B̂j as before.

ë With the shift, each Âi and B̂j has densified.

ë Once the shift is removed, many terms will become zero and the
sparsity recovered.

ë More advanced schemes exist to recover sparsity while in the shifted
basis.



Future Work

Sparse interpolation schemes lend themselves to parallelization.

Multivariate Polynomial Interpolation

ë Each coefficient polynomial gi can be interpolated in parallel.
ë For the deterministic variation, the interpolation for each choice of

starting point can be run in parallel.
ë With many threads, it is likely that the deterministic algorithm could

surpass the probabilistic.

Multivariate Rational Function Interpolation

ë The coefficient polynomials Ai, Bj can all be interpolated in parallel.
ë Current experimentation focused solely on number of black-box

evaluations, look to view actual running time.
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Thank you!

Questions?
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