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Solving Systems of Equations

a(z,y,z) =0
Find values of x,y, z which satisfy F=1 b(z,y,2) =0
c(z,y,2) = 0

= Solving systems of equations is a fundamental problem in scientific
computing

= Numerical methods are very efficient and useful in practice, but only
find approximate solutions as floating point numbers

L, Newton's method, Homotopy methods, Gradient descent

= Symbolic methods to find exact solutions are required in robotics,
celestial mechanics, cryptography, signal processing [18]

L, Particularly used to find a complete description of all solutions
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Solving a Linear System of Equations v+ 3y —2:26
3x + 05y +62=7

Step 1: triangularization 2z + 4y + 32=38

(a) by elimination of variables:

T+ 3y —-22=6 e £ r=5-3y + 2z e £ r=5+ 2z -3y
3w+ 5y +62=7 TS L dy+122=-8 T3 1 y=2+3
2§+4z+3§=8 swsie _§y+7§=_2 swaiwey |y

(b) by Gaussian elimination:

1 3 =215 1 3 -2| 5 1 3 =215
35 6|7|=(0 1 -3 2|=|01 -3|2
2 4 3|8 0 -2 7|-2 0 0 1|2

Step 2: back-substitution to find particular values for x,y, 2

Alex Brandt December 22, 2021



Solving a Non-Linear System of Equations

Via Grobner Basis we can “solve” a non-linear system
rry+22=1
(y+2-1)(y-2)=0
22(22+2y—1) =0
22(22+2z—1)(z—1)2 =0

?+y+z=1
z+yi+z=1 =

rry+22=1

“Solving” a system is not just about finding particular values, rather:

“find a description of the solutions from which we can easily
extract relevant data”

Why?
= A positive-dimensional system has infinitely many solutions

» Underdetermined linear systems, and most non-linear systems

Alex Brandt December 22, 2021



Decomposing a Non-Linear System

Many ways to “solve” a system
) rry+22=1
Tr+y+z=1

Grobner Basis (y +z - 1) (y - Z) =0

2
ST (2 em)
Y zz(z2+22—1)(z—1)2=0
“ Triangular Decomposition
r—-2=0 z=0 z=0 r—-1=0
y—2z=0, y=0, y—-1=0 , y=0
22+22-1=0 z-1=0 z=0 2=0

Both solutions are equivalent (via a union).
= by using triangular decomposition, multiple components are found,

suggesting possible component-level parallelism
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Incremental Decomposition of a Non-Linear System
Intersect one equation at a time with the current solution set

P ry+z=1
F = a:+y2+z:1

rt+y+z2=1

9]
Fap
{a?+y+2=1}
Fl2]
r+yi+z=1
vt (22-2)y? +y+(22-2)=0
F[3] v v N N
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Solving polynomial systems symbolically is hard

= Algorithms are at least singly exponential O(d"™)
L. At least in PSPACE but up to EXYPSPACE-complete [17, Ch. 21]

= Algorithms require complex code and vast dependencies:
arbitrary-precision integers, GCDs, factorization, linear algebra

= Intermediate expression swell

EXPSPACE
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Motivations and Challenges

Motivations:
= Solving symbolically is difficult but still desirable in many fields

= Algorithmic development [7] has come a long way; must now focus on
implementation techniques, making the most of modern hardware

L, Multicore processors, cache hierarchy
L, Must apply parallel computing and data locality

Challenges:

= Study application of high-performance techniques to high-level
geometric algorithms

= Potential parallelism is problem-dependent and not algorithmic
L, Geometry may or may not split into different components
L, Finding splittings is as difficulty as solving the problem

= Study how software design can manage maintainability and usability
of highly complex mathematical code
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Unbalanced and Irregular Parallelism

Sys2913 Component Tree

—s

000 002 004 006 008 010 012 0.14
Time (s)

= More parallelism exposed as more components found,
= Work unbalanced between branches; this is irregular parallelism

= Mechanism needed for adaptive, dynamic parallelism
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Previous Works

= Long history of theoretical and algorithmic development in triangular
decomposition [3, 5, 7-9, 22, 26, 27]

= Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

L. Such as in Grébner Bases [2, 6, 15] and CAD [24]

= Recent parallelism of low-level routines with regular parallelism:

.. Polynomial arithmetic [16, 20]
L. Modular methods for GCDs and Factorization [19, 21]

= Recently, high-level algorithms, often with irregular parallelism, have
seen little progress in research or implementation

L. The normalization algorithm of [4] finds components serially, then
processes each component with a simple parallel map

L, Early work on parallel triangular decomposition was limited by
symmetric multi-processing and inter-process communication [23]
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Objectives

Investigate and evaluate component-level parallelism and other
high-performance techniques for triangular decompositions

Examine the composition of parallelism between high-level and
low-level algorithms in symbolic computation

Re-imagine dynamic evaluation in the context of triangular
decomposition

Study how software design can be used to improve the maintainability
and usability of the resulting highly optimized and complex code
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Preliminary Results

Kalkbrener, Tasks & RRC Lazard, Tasks & RRC
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Serial Runtime (s)

High-performance, parallel triangular decomposition in C/C++
with multiple simultaneous levels of parallelism

A library for composable and cooperative parallel programming with
support for parallel patterns

An object-oriented class hierarchy encoding the algebraic hierarchy
provides compile-time type safety and mathematical correctness
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Polynomial Notations
= Let K be a perfect field (e.g. Q or C) and K its algebraic closure

= Let K[X] be the set of multivariate polynomials (a polynomial ring)
with n ordered variables, X = X <--- < X,.

= For pe K[X]:
L, the main variable of p is the maximum variable with positive degree
L, the initial of p is the leading coeff. of p with respect to its main variable

L, the tail of p is the terms leftover after setting its initial to O

(2y +ba)x? + (by)z+a® € Qb<a<y<zx]

= Any set of polynomials F' c K[X] can form a system of equations
by setting f =0 for each f e F.

= The zero set of F is an algebraic variety—the geometric
representation of its solutions

L V(F):{(al,...,an)eKn | f(a1,...,an) =0, erF}
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Triangular Sets and Regular Chains

A triangular set T c K[ X] is a collection of polynomials with pairwise
different main variables

Example:
T, = hv? + tail(T;)

(2y + ba)x — by + a®
T = T = 2y — by — a®

T - Y Y
a+b

cQb<a<y<zx]
c K[X]

A regular chain is a triangular set if:
(1) T, is a regular chain, and
(27) initial of T, (h) is regular with respect to T

In triangular decomposition, every component is a regular chain
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Regularity: Not all triangular sets are regular chains

yr—-1=0
T = =0
z2-1=0

= This set is inconsistent;
there are no solutions

= Back-substituting y = 0 into
yr—1=0yields -1 =0

(y+Dax?-z=0
1= y?-1=0
z-1=0
= g has two solutions:
Y =1=(y+1)(y-1)
= For y =-1, x has 1 solution

= For y =1, x has 2 solutions

A polynomial is regular (modulo a regular chain) if it is neither:

(1) zero (e.g. y in T1), nor

(i1) a zero-divisor (e.g. (y+1) in Tv)
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The foundation of splitting: regularity testing

To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion
= either the initial is regular, or it is not regular

f=y+1)z* -z // {
|

This actually forms a direct product isomorphism:

Alex

K[z, y, z]/sat(T)

Brandt

o
-1=0

Z—l O&X
1%0 Ty =

y+1=0
z—-1=0

z-1=0

=0

f=z
T3= y+1=0
z—1=0
22 -2=0

-1=0 f=22>-
4 f=2 xT4: y—-1=0
z—-1=0

2 Klz,y, z]/sat(T1) ® K[x,y, z]/sat(T2)
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|deal-Variety Correspondence

(i) 0eZ,
ZcK[X]is an ideal if:  (i7) for f,geZ, f+geZ, and
(iti) for feZ,r e K[X], rfeT

For f,g e K[X], (f,9)=(f)+{(g) ={r1f +rag | ri,r2 e K[X]}

{f1, f2,---, fu} = F cK[X], (F) is all polynomial consequences of F:
L, that is, all results which follow from f1 = fo =---= f;, = 0.
L V(F)=V(F))

Sum: V(Z+TJ)=V(IT)nV(T)
Product: V(ZJ)=V(ZInT)=V(Z)uV(T)
Saturation: V(Z : J*°)=V(Z)\V(J)

Note: for S c K", S is its closure: the smallest variety V such that ScV
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Regular Chains and Triangular Decomposition

Let T be a regular chain and hp = [] initial(p)
peT

Saturated ideal of a regular chain:

= sat(T) =(T): hy = sat(@) = (0)
Quasi-component of a regular chain:
= W(T):=V(T)\V(hp) = W(T)=V(sat(T))

A triangular decomposition of an input system F' ¢ K[X] is a set of
regular chains 717, ...,T, such that:

(Kalkbrener decomposition) V (F') =U;_, W(T;), or
(Lazard-Wu decomposition) V (F) =U5, W(T3)
Note: Some T; may be redundant; 3j W (T;) € W(T})
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All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

L, In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize —— RemoveReundancies

l

_— Intersect

IntersectFree

J CleanChain

-~ ™~

Extend «<——— Regularize IntersectAlgebraic

U O \ RegularGCD ‘/ U
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Map

= Simultaneously execute a function on each data item in a collection

= |f more data items than threads, apply the pattern block-wise:
partition the collection and apply one thread to each partition

= Often simplified as just a parallel_for loop

= Where multiple map steps are performed in a row,
they must operate in lockstep

Input

(IXIX X
L L LT L -t
(IXXTIX)

Output
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Workpile

= Workpile generalizes map pattern to a queue of tasks
= Tasks in-flight can add new tasks to input queue

= Threads take tasks from queue until it is empty

= Very similar in structure to a thread pool

= Can be seen as a parallel_while loop

Input

__,[. ®-0 .]—l

I
'

'

: Function Execution

! wen
'

'

'

'

'

o0 -ee

Output
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Triangularize: Incremental Triangular Decomposition

Algorithm 1 Triangularize(F')

Input: a finite set ' ¢ K[X]
Output: regular chains 71, ..., T, € K[X] such that V(F) = W(T1)u---uW(T,)
1 T = {@}
cforpeF do
7"/
parallel_for TeT D> map Intersect over the current components
| 7' :=T'U Intersect(p, T")
end for
T := RemoveRedundantComponents(7") > prune redundancies each step
8: return T

Noakwen

= Coarse-grained parallelism: each Intersect represents substantial work

= At each “level” there | 7| components with which to intersect,
yielding |7] - 1 additional threads

= Performs a breadth-first search, with synchronization at each level
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Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks(F')

Input: a finite set F' ¢ K[ X]
Output: regular chains 71, ..., T, € K[X] such that V(F) = W(T1)u--uW(T,)
1: Tasks ={(F,@)}; T:=0

2: while | Tasks| > 0 do

3: (P,T) := pop a task from Tasks

4 Choose a polynomial p € P; P':= P~ {p}

5: for 7" in Intersect(p,T) do
6: if |P'|=0then 7:=T u{T'}
7.
8:

else Tasks:= Tasks u {(P',T")}
return RemoveRedundantComponents(7)

= Performs a depth-first search
= Tasks is essentially a data structure for a task scheduler
= Tasks create more tasks, workers pop Tasks until none remain.

= Adaptive to load-balancing, no inter-task synchronization
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Producer-Consumer, Asynchronous Generators

= Two functions connected by a queue, executing concurrently
= The producer produces data items, pushing them to the queue

= The consumer processes data items, pulling them from the queue

Data Queue
Producer Consumer

I 00 08e—1u

= Producer may be considered as an iterator or generator

L, special kinds of coroutines which yield data items one at a time,
rather than many as a collection

= If generation of data is expensive, generator may execute
asynchronously, fulfilling the role of producer
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Intersect as a Generator

Algorithm 3 Intersect(p,T")

Input: peK[X]\K, v:=mvar(p), a regular chain T's.t. T=T, uT,
Qutput: regular chains Ty, ..., T, satisfying specs.
for (g;,T;) € RegularGCD(p,Tv,'u T,) do
: if dim(7;) # dim(7,) then
for T; ; € Intersect(p,T;) do
‘ yleld Ti,j

if g; ¢ K and deg(g;,v) >0 then

| yield T; u {g;}

for T; ; € Intersect(lc(g;,v),T;) do
for T' ¢ Intersect(p, T; ;) do

1:

2:

3

4

5: else
6.

7

8

9:

10: | yield T’

= yield "produces” a single data item, and then continues computation

= each for loop iteration consumes one data item from a generator
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Pipeline
= A sequence of stages where the output of one stage is used as the
input to another
= Two consecutive stages form a producer-consumer pair
= Internal stages are both producer and consumer

= Typically, a pipeline is constructed statically through code
organization

= Pipelines can be created dynamically and implicitly with
asynchronous generators and the call stack

e-—-0-1—-8--0
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Triangularize Subroutine Pipeline

Triangularize
¥
Intersect

IntersectFree < i
l //CleanChain "

Extend <— Regularize IntersectAlgebraic

@) @) ™ RegularGCD ¥ @)
= all subroutines as generators allows pipeline to evolve dynamically
with the call stack.

= data streams between subroutines; all soubroutines are effectively
non-blocking

= call stack forms a tree as several generators invoked by one consumer

= pipeline creates fine-grained parallelism since work diminishes with
each recursive call

Alex Brandt December 22, 2021



Outline

Cooperative Multithreading and Parallel Patterns

Alex Brandt December 22, 2021



Thread-level parallelism

Multithreading: using (software) threads—multiple independent control
flows in one process—for concurrency

Hardware enables parallelism by executing multiple threads simultaneously
on independent processors (i.e. hardware threads)

Parallel overheads:
L, software threads > hardware threads = over-subscription

L, spawning and joining threads

L, load imbalance: unevenly distributed work between threads; some
are left idle while others are still executing

L, inter-thread communication and synchronization

C++11 Thread Support Library supports object-oriented multithreading



Thread Pools

Task Queue

~([@@@O — O 1
E i (e)[[¢) [0 ®[e)][

Completed Tasks |

-~ ([([(@@@@@@@O «— O «

A fixed number of threads are spawned, only once, at the beginning
of the program

Threads remain active for the program lifetime
Threads receive tasks, code blocks or functions, to execute as needed
Threads return to the pool upon completing their task

Services requests from multiple client codes enabling cooperation
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ExecutorThreadPool

= A pool of ExecutorThreads able to execute any function object

= AsyncObjectStream implements producer-consumer pattern to
stream objects between threads

L, includes function objects, and later, objects for generators

= Allows for thread cooperation: (normal) tasks vs. priority tasks

L, If all normal threads busy, new “priority thread” spawned to
immediately launch a priority task

L. A returning thread is retired to avoid over-subscription

L, Limits total number priority threads; after limit,
priority tasks pushed to the front of queue

= Enables optional parallelism: user specifies areas for concurrency in
code, runtime dynamically chooses which to execute in parallel
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AsyncGenerator and AsyncObjectStream

We want an object-oriented approach to create and use generators
L, AsyncGenerator acts as interface between producer and consumer

L, Use AsyncObjectStream as producer-consumer queue

= The consumer constructs the AsyncGenerator, passing the
constructor the producer’s function and arguments

= The AsyncGenerator inserts itself into the producer’s list of
arguments so that it has reference to the generator object

= The producer’s signature should be:

1 void producerFunction(..., AsyncGenerator<Object>&);

If ExecutorThreadPool not empty producer executes
asynchronously, otherwise execute serially on consumer’s thread
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AsyncGenerator Example

1 void FibonacciGen(int n, AsyncGenerator<int>& gen) {
2 int Fn_1 = 0;

3 int Fn = 1;

4 for (int i = 0; i < n; ++i) {

5 gen.generateObject(Fn_1); //yield Fn_1 and continue
6 Fn = Fn + Fn_1;

7 Fn_1 = Fn - Fn_1;

8 +

9 gen.setComplete () ;

10}

11

12 void Fib() {

13 int n, fib;

14 std::cin >> n;

15 AsyncGenerator<int> gen(FibonacciGen, n);

16

17 //get one integer at a time until generator is finished
18 while (gen.getNextObject(fib)) {

19 std::cerr << fib << std::endl;

20 }

21}
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Improved Parallel Performance, Avoiding Redundancies

= TriangularizeByTasks improved parallelism but could not
intermittently remove redundancies

L, we will investigate a hybrid approach: depth-first search with task
cancellation to prune redundant branches

= Parallelize low-level routines to add parallelism and load-balance when
there is little to no component-level parallelism to exploit

= Memoization of subroutines
L. Typical of (mutually-)recursive algorithms

L, Different branches of computation deriving from the same regular chain
are very likely to share geometric and algebraic features

L, Caching the results of operations in, e.g., a hash table will avoid
redundant re-computation
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Dynamic Evaluation and Avoiding Redundant Computation

Dynamic Evaluation: an automatic case discussion based on choices of
particular values on parameters [13, 14]

Regularity testing:

Two branches are likely to share geometric and algebraic features

_ ) a(y,2) _ ) d(y,2)
e { b)) T { b(z)e(2)
= T5 splitting into {a(y, 2), b(z)} and {a(y,z), c¢(z)} should
automatically split T into {d(y,z), b(z)} and {d(y,z), c(2)}
= Requires a universal view and shared data structure [10]

Alex Brandt December 22, 2021



Polymorphic Regular Chains

= Triangular decomposition, in theory, works over any perfect field
= Current implementation limited to the field of rationals Q

= Working over a finite field enables additional component-level
parallelism as components more easily split [23]

= Solving over finite fields is itself useful in practice and is required as a
modular method to solve very hard problems [11]

= Qur regular chains code requires refactoring to properly use a generic
multivariate polynomial interface, and thus rely on polymorphism
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BPAS vs RegularChains in Maple

Runtime Ratio

Lazard, Maple 2020 vs BPAS Serial

25

Kalkbrener, Maple 2020 vs BPAS Serial
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Parallel Speedup
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Speedup for each parallel scheme individually
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Fork-Join

Fork

Join

Alex Brandt

Fork: divide problem and
execute separate calls in
parallel

Join: merge parallel
execution back into serial

Recursively applying
fork-join can easily
parallelize a
divide-and-conquer
algorithm
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Divide-and-Conquer and Fork-Join

Remove redundancies from a list of regular chains with DnC:

= Recursively and concurrently obtain two irredundant lists, then merge.
= Merge can be done as a map

Algorithm 4 RemoveRedundantComponents(7")

Input: a finite set 7 = {T4,...,Tc} of regular chains
Output: an irredundant set 7" with the same algebraic set as 7
if e =1 then return T
0= [6/2]; 7;[ = {Tl,. ..7Tz}; 7—>e = {T,@+1,. . .,Te}
71 := spawn RemoveRedundantComponents(7<¢)
T2 := RemoveRedundantComponents(7-¢)
sync
Ti=2, Ti=o
parallel_for T1 ¢ T1
| if VT in Tz IsNotincluded (71,72) then T{:=7{u{T1}
parallel_for T € 75
‘ if VT1 in 77 IsNotlncluded (T»,71) then T3 :=T; u{T2}
return 7 U T3

Alex Brandt December 22, 2021



Threading Primitives

C++11 introduced the Thread Support Library
B std::thread
L, C++ class encapsulating a thread (often a pthread) and its low-level
spawn and join
B std::mutex

L, shared object between threads to indicate mutual exclusion to a
critical region.
L, mutex is locked or owned by at most one thread at a time.

B std::lock_guard, std::unique_lock

L, temporary object wrapping a mutex whose object lifetime
automatically locks and unlocks the mutex.

L, the constructor blocks and only returns once the shared mutex is
successfully owned by the calling thread.

B std::condition_variable

L, blocks the current thread and temporarily releases a lock
L, receives notification from another thread to awaken the blocked thread
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std::function

Functors, function objects, callable objects

= First-class objects which are callable using normal function syntax
= Are often constructed by passing function names, function pointers

= std::bind binds arguments to a function or function object,
returning a function object which requires fewer arguments

void printInteger (int a) {
std::cout << a << std::endl;
}

//Function object from function name
std::function<void(int)> f_printInt(printInteger);
f_printInt (12);

© N o OA W N R

//Function object binding arguments to function name
std::function<void () > f_print42( std::bind(printInteger ,42) );
f_print42();

=
= o
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Function Executor Thread: Implementation

1 class FunctionExecutorThread {

2 AsyncObjectStream<std::function<void()>> requestQueue;
3 std::thread m_worker;

4

5 std::mutex m_mutex;

6 std::condition_variable m_cv;

7

8 FunctionExecutorThread () {

9 //member functions require pointer to member
10 m_worker = std::thread(

11 &FunctionExecutorThread::eventLoop, this);
12 }

13

14 //NOTE: copy constructor and copy operator are deleted
15

16 void eventLoop();

17

18 void sendRequest (std::function<void()>);

19

20 void waitForThread() ;

21}
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AsyncObjectStream

a synchronized producer-consumer queue of objects, and
a blocking mechanism to keep the ExecutorThread alive and idle
when waiting for tasks

1 template <class Object>

2 class AsyncObjectStream {

3 //Producer: add an object to the queue

4 void addResult(Object& res);

5

6 //Producer: close the producer end of stream,

7 // no more objects to produce

8 void resultsFinished();

9

10 //Consumer: wait for an object from the queue, return true
11 // iff stream is open and objects available
12 bool getNextObject(Object& res);

13

14 //Consumer: determine if queue is currently empty

15 void streamEmpty () ;

16 };
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AsyncObjectStream: getNextObject

1 bool getNextObject(Object& res) {

2 std::unique_lock<std::mutex> lk(m_mutex);
3 if (finished && retObjs.empty()) {

4 1k .unlock () ;

5 return false;

6 }

7

8 //Wait in a loop in case of spurious wake ups
9 while (!finished && retObjs.empty() {
10 m_cv.wait (1k);

11 }

12

13 if (finished && retObjs.empty()) {

14 lk.unlock () ;

15 return false;

16 } else {

17 res = retObjs.front();

18 retObjs.pop () ;

19 lk.unlock () ;

20 return true;

21 ¥

2}

Alex Brandt



ExecutorThreadPool

A thread pool built using FunctionExecutorThreads

= An internal queue of tasks and queue of threads

When threads are busy, they are temporarily removed from the pool
When all threads busy, tasks are added to task queue

© W N AW N

11

private:

std:
std:
std:
std:

void
void

12 public:

13
14

15 }

void
void

class ExecutorThreadPool {

:deque<FunctionExecutorThread*> threadPool;
:deque<std::function<void () >> taskPool;

:mutex m_mutex;

:condition_variable m_cv; //used in waitForThreads

tryPullTask () ;
putBackThread (FunctionExecutorThread* t);

addTask (std::function<void ()> f);
waitForThreads () ;

Alex Brandt
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ExecutorThreadPool: Flexible Usage (1/2)

= In support of certain parallel patterns, clients can (temporarily)

obtain ownership of threads from the pool, rather than using addTask

= Abstract away actual threads through thread IDs
= Once thread obtained, repeat Steps 2—3 as often as necessary

class ExecutorThreadPool {

//Storage for threads removed from pool by obtainThread
std::vector<FunctionExecutorThread#*> occupiedThreads;

//Step 1: obtain a thread’s ID, removing it from the pool
void obtainThread (threadID& id);

//Step 2: execute a task on a particular thread
void executeTask (threadID id, std::function<void()>& f);

//Step 3 (optional): wait for thread to become idle
void waitForThread (threadID id);

//Step 4: return thread to pool (waits before returning)
void returnThread (threadID id);
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ExecutorThreadPool: Flexible Usage (2/2)

= In support of certain parallel patterns, clients can (temporarily)
obtain ownership of threads from the pool, rather than using addTask

= Can obtain one thread at a time (previous slide), or multiple threads

at a time
1 class ExecutorThreadPool {
2
3 //Step 1: obtain threadIDs, removing them from the pool
4 void obtainThreads(std::vector<threadID>& ids);
5
6 //Step 2: execute a task on a particular thread
7 void executeTask(threadID id, std::function<void()>& f);
8
9 //Step 3 (optional): wait for threads to become idle
10 void waitForThreads (std::vector<threadID>& ids);
11
12 //Step 4: return threads to pool (waits before returning)
13 void returnThreads(std::vector<threadID>& ids);
14 }
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Motivation: Usability

BPAS is concerned with accessibility, interoperability, and usability.

= Open-source and written in C/C++ provides the former two.

To achieve usability, we consider best practices for its interface.

Natural: a symmetric encoding of the algebraic hierarchy

field c Euclidean domain ¢ GCD domain c integral domain c ring

Easy to use: an object-oriented design with well-defined interfaces.
A so-called algebraic class hierarchy: rings are classes and elements
of a ring are objects

Encapsulation: hide complexity of low-level code; class interfaces
Extensible: adaptable to new (user-created) types, type composition

Type safe: compile-time type safety and mathematical type safety
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Motivation: Type Safety

A naive implementation of the algebraic hierarchy as a class hierarchy
creates mathematically unsafe operations via polymorphism.

1 class EuclidDomain {
2 EuclidDomain remainder (EuclidDomain& divisor);
3 %
4
A 6 RationalPoly b;
7 EuclidDomain r = a.remainder(b);
JAN
pEp— = Z/17Z and Q[z] are Euclidean domains
remainder(divisor): EuclidDomain . . . .
(divisor) = the code is valid via polymorphism
[Fea | [awd | * could compile, but then issues at runtime.

A

Z mod 17
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Existing Solutions

In other compiled libraries, mathematical type safety is only a runtime
property maintained through runtime value checks.

= In Singular's libpolys [12], all algebraic types are a single class.
Instance variables (Booleans, enums) store properties of rings

= In CoCoA [1] rings and elements of a ring are separate classes.
Elements hold references to their “owning” ring which are compared
at runtime and errors thrown if not identical.

= In LinBox [25] rings and elements are again distinct, with references

to abstract ring elements being downcasted for operations.

Our Goal: provide both compile-time mathematical type safety and a
natural, extensible object-oriented hierarchy for the algebraic hierarchy
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Algebraic Class Hierarchy
The algebraic hierarchy as a class hierarchy with mathematical type safety

Solution: an abstract class template hierarchy.
= abstract classes: well-defined interfaces, default behaviour
= inheritance incrementally extends/builds interface
= template parameter modifies interface to restrict method parameters

1 template <class Derived>

2 class Ring {...};

3

4 template <class Derived>

5 class IntegralDomain : Ring<Derived> {...};
6

7 template <class Derived>

8 class GCDDomain : IntegralDomain<Derived> {...};
9

10 template <class Derived>

11  class EuclidDomain : GCDDomain<Derived> {
12 Derived remainder (Derived& divisor);
13}
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Algebraic Class Hierarchy: Static Polymorphism

Static polymorphism via Curiously Recurring Template Pattern: concrete
class is used as template parameter of super class.

= function resolution occurs at compile-time

= method declaration restricts params to be compile-time compatible

template <class Derived>
class EuclidDomain : GCDDomain<Derived> {
Derived remainder (const Derived& divisor);

I8

class Integer : EuclidDomain<Integer> {...}; //CRTP
//Integer remainder (const Integer& divisor);

© ® N oA W N R

class RationalPoly : EuclidDomain<RatonalPoly> {...}; //CRTP
//RationalPoly remainder (const RationalPoly& divisor);

=
N = O

Integer x; RationalPoly p;

=
S oW

//compiler error: EuclidDomain<RationalPoly>::remainder
// takes RationalPoly as parameter
RationalPoly r = p.remainder(x);

=
o o
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Algebraic Class Hierarchy with Polynomials

Extend abstract class template hierarchy to include polynomials

= parameterize polynomial abstract classes by coefficient ring

template <class Derived>
class Ring {...};

template <class CoefRing, class Derived>
class Poly : Ring<Derived> {...};

N o g W N =

class RationalPoly : Poly<RationalNumber , RationalPoly> {...};

Problem: What if CoefRing is not actually a ring?
= e.g. Poly<std::string> or Poly: :<Apple>

Problem: polynomial rings form different algebraic types depending on
the ground ring

= e.g. Q[x]is a Euclidean domain, Z[z] is an integral domain
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Constraining the Ground Ring

At compile-time ensure that a polynomial’s coefficient ring is an actual
ring with template metaprogramming.

Derived_from<T, Base>: statically determines if T is a subclass of Base,
creating a compiler-error if not

= inheriting from Derived_from forces evaluation at compile-time
during template instantiation

= Coefficient ring must be a subclass of Ring

= Poly can assume CoefRing has a certain interface at minimum

template <class T, class Base>
class Derived_from {...};

template <class CoefRing, class Derived>
class Poly : Ring<Derived>,
Derived_from<CoefRing, Ring<CoefRing>> {...};

[ R N N T N
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Adapting to Different Coefficient Rings (1/2)

Determine type of coefficient ring using compile-time introspection

= Conditional inheritance then determines correct algebraic type and
interface for polynomials over that ring

= “Dynamic” type creation via introspection, template instantiation

is_base_of<T, Base>::value
= compile-time Boolean value determines if T is a subclass of Base
conditional<Bool, T1, T2>::value

= A compile-time tertiary conditional operator for choosing types
= Bool ?7 T1 : T2

1 template <class CRing, class Derived>

2 class Poly : conditional< is_base_of<CRing, Field<CRing>>::value,
3 EuclidDomain<Derived>,

4 Ring<Derived>

5 >::value {...};
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Adapting to Different Coefficient Rings (2/2)

A chain of conditional’s create a case-discussion at compile-time
= Tester hierarchy separates introspection from actual interface
= Concrete classes inherit from Polynomial to automatically determine
their type and interface

e
A Ring,Derived |

Ring is not an integral domain

-

(I

BasePolynomial

|
\ Ring,Derived |

- - --
IntegralPoly Tester

Ring is not a|GCD domain

Ring, Derived |

=

Ring is an integral domain

(I

GCDDomain

_____ il | |
Ring, Derived | \ Ring,Derived |

[ —— Ring is a GCD domain L - -
GCDDomainPoly |—<‘r

=

GCDPolyTester

Ring,Derived |

- - --
Polynomial
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