The Design and Implementation of a
High-Performance Polynomial System Solver

Alexander Brandt

PhD Research Topics Survey/Proposal

Department of Computer Science
University of Western Ontario

December 22, 2021

Alex Brandt December 22, 2021

Solving Systems of Equations

a(z,y,z) =0
Find values of x,y, z which satisfy F=1 b(z,y,2) =0
c(z,y,2) = 0

= Solving systems of equations is a fundamental problem in scientific
computing

= Numerical methods are very efficient and useful in practice, but only
find approximate solutions as floating point numbers

L, Newton's method, Homotopy methods, Gradient descent

= Symbolic methods to find exact solutions are required in robotics,
celestial mechanics, cryptography, signal processing [18]

L, Particularly used to find a complete description of all solutions

Alex Brandt December 22, 2021

Solving a Linear System of Equations v+ 3y —2:26
3x + 05y +62=7

Step 1: triangularization 2z + 4y + 32=38

(a) by elimination of variables:

T+ 3y —-22=6 e £ r=5-3y + 2z e £ r=5+ 2z -3y
3w+ 5y +62=7 TS L dy+122=-8 T3 1 y=2+3
2§+4z+3§=8 swsie _§y+7§=_2 swaiwey |y

(b) by Gaussian elimination:

1 3 =215 1 3 -2| 5 1 3 =215
35 6|7|=(0 1 -3 2|=|01 -3|2
2 4 3|8 0 -2 7|-2 0 0 1|2

Step 2: back-substitution to find particular values for x,y, 2

Alex Brandt December 22, 2021

Solving a Non-Linear System of Equations

Via Grobner Basis we can “solve” a non-linear system
rry+22=1
(y+2-1)(y-2)=0
22(22+2y—1) =0
22(22+2z—1)(z—1)2 =0

?+y+z=1
z+yi+z=1 =

rry+22=1

“Solving” a system is not just about finding particular values, rather:

“find a description of the solutions from which we can easily
extract relevant data”

Why?
= A positive-dimensional system has infinitely many solutions

» Underdetermined linear systems, and most non-linear systems

Alex Brandt December 22, 2021

Decomposing a Non-Linear System

Many ways to “solve” a system
) rry+22=1
Tr+y+z=1

Grobner Basis (y +z - 1) (y - Z) =0

2
ST (2 em)
Y zz(z2+22—1)(z—1)2=0
“ Triangular Decomposition
r—-2=0 z=0 z=0 r—-1=0
y—2z=0, y=0, y—-1=0 , y=0
22+22-1=0 z-1=0 z=0 2=0

Both solutions are equivalent (via a union).
= by using triangular decomposition, multiple components are found,

suggesting possible component-level parallelism

Alex Brandt December 22, 2021

Outline

Introduction

=

Mathematical Preliminaries

B N

Parallel Patterns and Triangular Decomposition

-~

Cooperative Multithreading and Parallel Patterns

Future Work

B o

Appendix: Additional Details

x Brandt December 22

Incremental Decomposition of a Non-Linear System
Intersect one equation at a time with the current solution set

P ry+z=1
F = a:+y2+z:1

rt+y+z2=1

9]
Fap
{a?+y+2=1}
Fl2]
r+yi+z=1
vt (22-2)y? +y+(22-2)=0
F[3] v v N N

Alex Brandt December 22, 2021

Solving polynomial systems symbolically is hard

= Algorithms are at least singly exponential O(d"™)
L. At least in PSPACE but up to EXYPSPACE-complete [17, Ch. 21]

= Algorithms require complex code and vast dependencies:
arbitrary-precision integers, GCDs, factorization, linear algebra

= Intermediate expression swell

EXPSPACE

Alex Brandt December 22, 2021

Motivations and Challenges

Motivations:
= Solving symbolically is difficult but still desirable in many fields

= Algorithmic development [7] has come a long way; must now focus on
implementation techniques, making the most of modern hardware

L, Multicore processors, cache hierarchy
L, Must apply parallel computing and data locality

Challenges:

= Study application of high-performance techniques to high-level
geometric algorithms

= Potential parallelism is problem-dependent and not algorithmic
L, Geometry may or may not split into different components
L, Finding splittings is as difficulty as solving the problem

= Study how software design can manage maintainability and usability
of highly complex mathematical code

Alex Brandt December 22, 2021

Unbalanced and Irregular Parallelism

Sys2913 Component Tree

—s

000 002 004 006 008 010 012 0.14
Time (s)

= More parallelism exposed as more components found,
= Work unbalanced between branches; this is irregular parallelism

= Mechanism needed for adaptive, dynamic parallelism

Alex Brandt December 22, 2021

Previous Works

= Long history of theoretical and algorithmic development in triangular
decomposition [3, 5, 7-9, 22, 26, 27]

= Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

L. Such as in Grébner Bases [2, 6, 15] and CAD [24]

= Recent parallelism of low-level routines with regular parallelism:

.. Polynomial arithmetic [16, 20]
L. Modular methods for GCDs and Factorization [19, 21]

= Recently, high-level algorithms, often with irregular parallelism, have
seen little progress in research or implementation

L. The normalization algorithm of [4] finds components serially, then
processes each component with a simple parallel map

L, Early work on parallel triangular decomposition was limited by
symmetric multi-processing and inter-process communication [23]

Alex Brandt December 22, 2021

Objectives

Investigate and evaluate component-level parallelism and other
high-performance techniques for triangular decompositions

Examine the composition of parallelism between high-level and
low-level algorithms in symbolic computation

Re-imagine dynamic evaluation in the context of triangular
decomposition

Study how software design can be used to improve the maintainability
and usability of the resulting highly optimized and complex code

Alex Brandt December 22, 2021

Preliminary Results

Kalkbrener, Tasks & RRC Lazard, Tasks & RRC
¥ 30+
[

10 = 10 n 27
N]
5 |- L 24
2
[SI} an 8
© 1 . . 21
w L]
o
=] . 18
o 6 LI 6
9 M 15
Q L]
) 12
— 4 4
2 "
i 9

L]
©
a . 2 6
|]
L] L |
L - LR b
0 Lo
10! 10? 10° 104 1072 1072 107! 10° 10! 10? 10° 104

Serial Runtime (s)

High-performance, parallel triangular decomposition in C/C++
with multiple simultaneous levels of parallelism

A library for composable and cooperative parallel programming with
support for parallel patterns

An object-oriented class hierarchy encoding the algebraic hierarchy
provides compile-time type safety and mathematical correctness

Alex Brandt December 22, 2021

Outline

Mathematical Preliminaries

Polynomial Notations
= Let K be a perfect field (e.g. Q or C) and K its algebraic closure

= Let K[X] be the set of multivariate polynomials (a polynomial ring)
with n ordered variables, X = X <--- < X,.

= For pe K[X]:
L, the main variable of p is the maximum variable with positive degree
L, the initial of p is the leading coeff. of p with respect to its main variable

L, the tail of p is the terms leftover after setting its initial to O

(2y +ba)x? + (by)z+a® € Qb<a<y<zx]

= Any set of polynomials F' c K[X] can form a system of equations
by setting f =0 for each f e F.

= The zero set of F is an algebraic variety—the geometric
representation of its solutions

L V(F):{(al,...,an)eKn | f(a1,...,an) =0, erF}

Alex Brandt December 22, 2021

Triangular Sets and Regular Chains

A triangular set T c K[X] is a collection of polynomials with pairwise
different main variables

Example:
T, = hv? + tail(T;)

(2y + ba)x — by + a®
T = T = 2y — by — a®

T - Y Y
a+b

cQb<a<y<zx]
c K[X]

A regular chain is a triangular set if:
(1) T, is a regular chain, and
(27) initial of T, (h) is regular with respect to T

In triangular decomposition, every component is a regular chain

Alex Brandt December 22, 2021

Regularity: Not all triangular sets are regular chains

yr—-1=0
T = =0
z2-1=0

= This set is inconsistent;
there are no solutions

= Back-substituting y = 0 into
yr—1=0yields -1 =0

(y+Dax?-z=0
1= y?-1=0
z-1=0
= g has two solutions:
Y =1=(y+1)(y-1)
= For y =-1, x has 1 solution

= For y =1, x has 2 solutions

A polynomial is regular (modulo a regular chain) if it is neither:

(1) zero (e.g. y in T1), nor

(i1) a zero-divisor (e.g. (y+1) in Tv)

Alex Brandt

December 22, 2021

The foundation of splitting: regularity testing

To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion
= either the initial is regular, or it is not regular

f=y+1)z* -z // {
|

This actually forms a direct product isomorphism:

Alex

K[z, y, z]/sat(T)

Brandt

o
-1=0

Z—l O&X
1%0 Ty =

y+1=0
z—-1=0

z-1=0

=0

f=z
T3= y+1=0
z—1=0
22 -2=0

-1=0 f=22>-
4 f=2 xT4: y—-1=0
z—-1=0

2 Klz,y, z]/sat(T1) ® K[x,y, z]/sat(T2)

December 22, 2021

|deal-Variety Correspondence

(i) 0eZ,
ZcK[X]is an ideal if: (i7) for f,geZ, f+geZ, and
(iti) for feZ,r e K[X], rfeT

For f,g e K[X], (f,9)=(f)+{(g) ={r1f +rag | ri,r2 e K[X]}

{f1, f2,---, fu} = F cK[X], (F) is all polynomial consequences of F:
L, that is, all results which follow from f1 = fo =---= f;, = 0.
L V(F)=V(F))

Sum: V(Z+TJ)=V(IT)nV(T)
Product: V(ZJ)=V(ZInT)=V(Z)uV(T)
Saturation: V(Z : J*°)=V(Z)\V(J)

Note: for S c K", S is its closure: the smallest variety V such that ScV

Alex Brandt December 22, 2021

Regular Chains and Triangular Decomposition

Let T be a regular chain and hp = [] initial(p)
peT

Saturated ideal of a regular chain:

= sat(T) =(T): hy = sat(@) = (0)
Quasi-component of a regular chain:
= W(T):=V(T)\V(hp) = W(T)=V(sat(T))

A triangular decomposition of an input system F' ¢ K[X] is a set of
regular chains 717, ...,T, such that:

(Kalkbrener decomposition) V (F') =U;_, W(T;), or
(Lazard-Wu decomposition) V (F) =U5, W(T3)
Note: Some T; may be redundant; 3j W (T;) € W(T})

Alex Brandt December 22, 2021

All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

L, In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize —— RemoveReundancies

l

_— Intersect

IntersectFree

J CleanChain

-~ ™~

Extend «<——— Regularize IntersectAlgebraic

U O \ RegularGCD ‘/ U

Alex Brandt December 22, 2021

Outline

Parallel Patterns and Triangular Decomposition

Map

= Simultaneously execute a function on each data item in a collection

= |f more data items than threads, apply the pattern block-wise:
partition the collection and apply one thread to each partition

= Often simplified as just a parallel_for loop

= Where multiple map steps are performed in a row,
they must operate in lockstep

Input

(IXIX X
L L LT L -t
(IXXTIX)

Output

Alex Brandt December 22, 2021

Workpile

= Workpile generalizes map pattern to a queue of tasks
= Tasks in-flight can add new tasks to input queue

= Threads take tasks from queue until it is empty

= Very similar in structure to a thread pool

= Can be seen as a parallel_while loop

Input

__,[. ®-0 .]—l

I
'

'

: Function Execution

! wen
'

'

'

'

'

o0 -ee

Output

Alex Brandt December 22, 2021

Triangularize: Incremental Triangular Decomposition

Algorithm 1 Triangularize(F')

Input: a finite set ' ¢ K[X]
Output: regular chains 71, ..., T, € K[X] such that V(F) = W(T1)u---uW(T,)
1 T = {@}
cforpeF do
7"/
parallel_for TeT D> map Intersect over the current components
| 7' :=T'U Intersect(p, T")
end for
T := RemoveRedundantComponents(7") > prune redundancies each step
8: return T

Noakwen

= Coarse-grained parallelism: each Intersect represents substantial work

= At each “level” there | 7| components with which to intersect,
yielding |7] - 1 additional threads

= Performs a breadth-first search, with synchronization at each level

Alex Brandt December 22, 2021

Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks(F')

Input: a finite set F' ¢ K[X]
Output: regular chains 71, ..., T, € K[X] such that V(F) = W(T1)u--uW(T,)
1: Tasks ={(F,@)}; T:=0

2: while | Tasks| > 0 do

3: (P,T) := pop a task from Tasks

4 Choose a polynomial p € P; P':= P~ {p}

5: for 7" in Intersect(p,T) do
6: if |P'|=0then 7:=T u{T'}
7.
8:

else Tasks:= Tasks u {(P',T")}
return RemoveRedundantComponents(7)

= Performs a depth-first search
= Tasks is essentially a data structure for a task scheduler
= Tasks create more tasks, workers pop Tasks until none remain.

= Adaptive to load-balancing, no inter-task synchronization

Alex Brandt December 22, 2021

Producer-Consumer, Asynchronous Generators

= Two functions connected by a queue, executing concurrently
= The producer produces data items, pushing them to the queue

= The consumer processes data items, pulling them from the queue

Data Queue
Producer Consumer

I 00 08e—1u

= Producer may be considered as an iterator or generator

L, special kinds of coroutines which yield data items one at a time,
rather than many as a collection

= If generation of data is expensive, generator may execute
asynchronously, fulfilling the role of producer

Alex Brandt December 22, 2021

Intersect as a Generator

Algorithm 3 Intersect(p,T")

Input: peK[X]\K, v:=mvar(p), a regular chain T's.t. T=T, uT,
Qutput: regular chains Ty, ..., T, satisfying specs.
for (g;,T;) € RegularGCD(p,Tv,'u T,) do
: if dim(7;) # dim(7,) then
for T; ; € Intersect(p,T;) do
‘ yleld Ti,j

if g; ¢ K and deg(g;,v) >0 then

| yield T; u {g;}

for T; ; € Intersect(lc(g;,v),T;) do
for T' ¢ Intersect(p, T; ;) do

1:

2:

3

4

5: else
6.

7

8

9:

10: | yield T’

= yield "produces” a single data item, and then continues computation

= each for loop iteration consumes one data item from a generator

Alex Brandt December 22, 2021

Pipeline
= A sequence of stages where the output of one stage is used as the
input to another
= Two consecutive stages form a producer-consumer pair
= Internal stages are both producer and consumer

= Typically, a pipeline is constructed statically through code
organization

= Pipelines can be created dynamically and implicitly with
asynchronous generators and the call stack

e-—-0-1—-8--0

Alex Brandt December 22, 2021

Triangularize Subroutine Pipeline

Triangularize
¥
Intersect

IntersectFree < i
l //CleanChain "

Extend <— Regularize IntersectAlgebraic

@) @) ™ RegularGCD ¥ @)
= all subroutines as generators allows pipeline to evolve dynamically
with the call stack.

= data streams between subroutines; all soubroutines are effectively
non-blocking

= call stack forms a tree as several generators invoked by one consumer

= pipeline creates fine-grained parallelism since work diminishes with
each recursive call

Alex Brandt December 22, 2021

Outline

Cooperative Multithreading and Parallel Patterns

Alex Brandt December 22, 2021

Thread-level parallelism

Multithreading: using (software) threads—multiple independent control
flows in one process—for concurrency

Hardware enables parallelism by executing multiple threads simultaneously
on independent processors (i.e. hardware threads)

Parallel overheads:
L, software threads > hardware threads = over-subscription

L, spawning and joining threads

L, load imbalance: unevenly distributed work between threads; some
are left idle while others are still executing

L, inter-thread communication and synchronization

C++11 Thread Support Library supports object-oriented multithreading

Thread Pools

Task Queue

~([@@@O — O 1
E i (e)[[¢) [0 ®[e)][

Completed Tasks |

-~ ([([(@@@@@@@O «— O «

A fixed number of threads are spawned, only once, at the beginning
of the program

Threads remain active for the program lifetime
Threads receive tasks, code blocks or functions, to execute as needed
Threads return to the pool upon completing their task

Services requests from multiple client codes enabling cooperation

Alex Brandt December 22, 2021

ExecutorThreadPool

= A pool of ExecutorThreads able to execute any function object

= AsyncObjectStream implements producer-consumer pattern to
stream objects between threads

L, includes function objects, and later, objects for generators

= Allows for thread cooperation: (normal) tasks vs. priority tasks

L, If all normal threads busy, new “priority thread” spawned to
immediately launch a priority task

L. A returning thread is retired to avoid over-subscription

L, Limits total number priority threads; after limit,
priority tasks pushed to the front of queue

= Enables optional parallelism: user specifies areas for concurrency in
code, runtime dynamically chooses which to execute in parallel

Alex Brandt December 22, 2021

AsyncGenerator and AsyncObjectStream

We want an object-oriented approach to create and use generators
L, AsyncGenerator acts as interface between producer and consumer

L, Use AsyncObjectStream as producer-consumer queue

= The consumer constructs the AsyncGenerator, passing the
constructor the producer’s function and arguments

= The AsyncGenerator inserts itself into the producer’s list of
arguments so that it has reference to the generator object

= The producer’s signature should be:

1 void producerFunction(..., AsyncGenerator<Object>&);

If ExecutorThreadPool not empty producer executes
asynchronously, otherwise execute serially on consumer’s thread

Alex Brandt December 22, 2021

AsyncGenerator Example

1 void FibonacciGen(int n, AsyncGenerator<int>& gen) {
2 int Fn_1 = 0;

3 int Fn = 1;

4 for (int i = 0; i < n; ++i) {

5 gen.generateObject(Fn_1); //yield Fn_1 and continue
6 Fn = Fn + Fn_1;

7 Fn_1 = Fn - Fn_1;

8 +

9 gen.setComplete () ;

10}

11

12 void Fib() {

13 int n, fib;

14 std::cin >> n;

15 AsyncGenerator<int> gen(FibonacciGen, n);

16

17 //get one integer at a time until generator is finished
18 while (gen.getNextObject(fib)) {

19 std::cerr << fib << std::endl;

20 }

21}

Alex Brandt

Outline

Future Work

Improved Parallel Performance, Avoiding Redundancies

= TriangularizeByTasks improved parallelism but could not
intermittently remove redundancies

L, we will investigate a hybrid approach: depth-first search with task
cancellation to prune redundant branches

= Parallelize low-level routines to add parallelism and load-balance when
there is little to no component-level parallelism to exploit

= Memoization of subroutines
L. Typical of (mutually-)recursive algorithms

L, Different branches of computation deriving from the same regular chain
are very likely to share geometric and algebraic features

L, Caching the results of operations in, e.g., a hash table will avoid
redundant re-computation

Alex Brandt December 22, 2021

Dynamic Evaluation and Avoiding Redundant Computation

Dynamic Evaluation: an automatic case discussion based on choices of
particular values on parameters [13, 14]

Regularity testing:

Two branches are likely to share geometric and algebraic features

_) a(y,2) _) d(y,2)
e { b)) T { b(z)e(2)
= T5 splitting into {a(y, 2), b(z)} and {a(y,z), c¢(z)} should
automatically split T into {d(y,z), b(z)} and {d(y,z), c(2)}
= Requires a universal view and shared data structure [10]

Alex Brandt December 22, 2021

Polymorphic Regular Chains

= Triangular decomposition, in theory, works over any perfect field
= Current implementation limited to the field of rationals Q

= Working over a finite field enables additional component-level
parallelism as components more easily split [23]

= Solving over finite fields is itself useful in practice and is required as a
modular method to solve very hard problems [11]

= Qur regular chains code requires refactoring to properly use a generic
multivariate polynomial interface, and thus rely on polymorphism

Alex Brandt December 22, 2021

References

1
[2]
[3]
[4]
5]
6]
[
[8]
19

[10]

J. Abbott and A. M. Bigatti. CoCoALib: a C++ library for doing Computations in Commutative
Algebra. Available at http://cocoa.dima.unige.it/cocoalib.

G. Attardi and C. Traverso. “Strategy-Accurate Parallel Buchberger Algorithms". In: Journal of
Symbolic Computation 22 (1996), pp. 1-15.

P. Aubry, D. Lazard, and M. Moreno Maza. “"On the Theories of Triangular Sets”. In: Journal of
Symbolic Computation 28.1-2 (1999), pp. 105-124.

J. Bohm, W. Decker, S. Laplagne, G. Pfister, A. SteenpaB, and S. Steidel. “Parallel algorithms for
normalization”. In: J. Symb. Comput. 51 (2013), pp. 99-114.

F. Boulier, F. Lemaire, and M. Moreno Maza. “Well known theorems on triangular systems and the
D5 principle”. In: Transgressive Computing 2006, Proceedings. Granada, Spain, 2006.

B. Buchberger. “The parallelization of critical-pair/completion procedures on the L-Machine”. In:
Japanese Symposium on Functional Pogramming, Proceedings. 1987, pp. 54—61.

C. Chen and M. Moreno Maza. “Algorithms for computing triangular decomposition of polynomial
systems”. In: Journal of Symbolic Computation 47.6 (2012), pp. 610-642.

C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. “Triangular
decomposition of semi-algebraic systems”. In: Journal of Symbolic Computation 49 (2013), pp. 3-26.

C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. “Comprehensive Triangular
Decomposition”. In: Computer Algebra in Scientific Computing, CASC 2007, Proceedings. 2007,
pp. 73-101.

C. Chen and M. Moreno Maza. “An Incremental Algorithm for Computing Cylindrical Algebraic
Decompositions”. In: Asian Symposium on Computer Mathematics, ASCM 2012, Proceedings.
Springer, 2012, pp. 199-221.

Alex Brandt December

EEERRRREREEEESEEEEESESSEESoooyyohohowh__n___HSSR

[11]

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]

[20]

X. Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. “Lifting techniques for triangular
decompositions”. In: International Symposium on Symbolic and Algebraic Computation, ISSAC 2005,
Proceedings. 2005, pp. 108-115.

W. Decker, G.-M. Greuel, G. Pfister, and H. Schénemann. SINGULAR 4-1-1 — A computer algebra
system for polynomial computations. http://www.singular.uni-kl.de. 2018.

J. D. Dora, C. Dicrescenzo, and D. Duval. “About a New Method for Computing in Algebraic
Number Fields”. In: European Conference on Computer Algebra, EUROCAL 1985, Proceedings
Volume 2: Research Contributions. Vol. 204. Lecture Notes in Computer Science. Springer, 1985,
pp. 289-290.

D. Duval. “Algebraic Numbers: An Example of Dynamic Evaluation”. In: Journal of Symbolic
Computation 18.5 (1994), pp. 429-445.

J. C. Faugere. “Parallelization of Grébner Basis”. In: Parallel Symbolic Computation, PASCO 1994,
Proceedings. Vol. 5. World Scientific. 1994, p. 124.

M. Gastineau and J. Laskar. “Parallel sparse multivariate polynomial division”. In: Parallel Symbolic
Computation, PASCO 2015, Proceedings. 2015, pp. 25-33.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. 3rd ed. NY, USA: Cambridge
University Press, 2013.

J. Grabmeier, E. Kaltofen, and V. Weispfenning, eds. Computer algebra handbook. Springer-Verlag,
2003.

J. Hu and M. B. Monagan. “A Fast Parallel Sparse Polynomial GCD Algorithm”. In: International
Symposium on Symbolic and Algebraic Computation, ISSAC 2016, Proceedings. 2016, pp. 271-278.

M. B. Monagan and R. Pearce. “Parallel sparse polynomial multiplication using heaps”. In:
International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, Proceedings. ACM,
2009, pp. 263-270.

Alex Brandt December

http://www.singular.uni-kl.de

[21]
[22]
[23]
[24]
[25]
[26]

[27]

M. B. Monagan and B. Tuncer. “Sparse Multivariate Hensel Lifting: A High-Performance Design and
Implementation”. In: Mathematical Software - ICMS 2018, Proceedings. 2018, pp. 359-368.

M. Moreno Maza. On Triangular Decompositions of Algebraic Varieties. Tech. rep. TR 4/99.
Presented at the MEGA-2000 Conference, Bath, England. Oxford, UK: NAG Ltd, 1999.

M. Moreno Maza and Y. Xie. “Component-level parallelization of triangular decompositions”. In:
Parallel Symbolic Computation, PASCO 2007, Proceedings. ACM. 2007, pp. 69-77.

B. D. Saunders, H. R. Lee, and S. K. Abdali. “A parallel implementation of the cylindrical algebraic
decomposition algorithm”. In: International Symposium on Symbolic and Algebraic Computation,
ISSAC 1989, Proceedings. Vol. 89. 1989, pp. 298-307.

The LinBox group. LinBox. v1.6.3. 2019. URL: http://github.com/linbox-team/linbox.

W. Wu. “A zero structure theorem for polynomial equations solving”. In: MM Research Preprints 1
(1987), pp. 2-12.

W. Wu. “On zeros of algebra equations—an application of Ritt principle”. In: Kexeu Tongbao 31.1
(1986), pp. 1-5.

Alex Brandt

http://github.com/linbox-team/linbox

Outline

@ Appendix: Additional Details

Alex Brandt December 22, 20

BPAS vs RegularChains in Maple

Runtime Ratio

Lazard, Maple 2020 vs BPAS Serial

25

Kalkbrener, Maple 2020 vs BPAS Serial

/T 30+

27

x Brandt

25
20
15
10
5

-
1
0

104 102 1072 107! 10° 10* 102 10°

Maple 2020 Runtime (s)

December

Parallel Speedup

Kalkbrener, Tasks & RRC Lazard, Tasks & RRC 3
'} 30+
(]
10 L 10 4 27
o "
5 [L 24
=
s ° LI & el 21
w r]
:o. . 18
5 6 (] [l 6
g M u 15
a J.l [}
) 12
— 4 * 4
Q]
s 9
]
©
a , . 2 6
[
] L
Lo o - MR 3
i I
0 Qo
1072 1072 107! 10° 10! 102 10° 10* 1072 1072 107! 10° 10! 102 10° 10t

Serial Runtime (s)

SRC: Subresultant chain computations, RRC: removal of redundant components

Alex Brandt

Speedup for each parallel scheme individually

Kalkbrener, Tasks Kalkbrener, Generators 3
T 30+
-
27
24
_ e =
5 I iy 2
s &
] -
g E CRCR
fitd i 18
= H
> i
o 102 1072 107! 10° 10t 10% 10° 10°)
Q 15
[} Kalkbrener, SRC Kalkbrener, RRC
% 4.0 4.0
el [} L]
9 35 A, 35 12
o
© 30 . 3.0
£ L]
25 25 °
-
2.0 " 20 .
6
15
L] - L] .
1.0 &!F 3
05
0.0 0.0 o

Serial Runtime (s)

Brandt

Fork-Join

Fork

Join

Alex Brandt

Fork: divide problem and
execute separate calls in
parallel

Join: merge parallel
execution back into serial

Recursively applying
fork-join can easily
parallelize a
divide-and-conquer
algorithm

December 22, 2021

Divide-and-Conquer and Fork-Join

Remove redundancies from a list of regular chains with DnC:

= Recursively and concurrently obtain two irredundant lists, then merge.
= Merge can be done as a map

Algorithm 4 RemoveRedundantComponents(7")

Input: a finite set 7 = {T4,...,Tc} of regular chains
Output: an irredundant set 7" with the same algebraic set as 7
if e =1 then return T
0= [6/2]; 7;[= {Tl,. ..7Tz}; 7—>e = {T,@+1,. . .,Te}
71 := spawn RemoveRedundantComponents(7<¢)
T2 := RemoveRedundantComponents(7-¢)
sync
Ti=2, Ti=o
parallel_for T1 ¢ T1
| if VT in Tz IsNotincluded (71,72) then T{:=7{u{T1}
parallel_for T € 75
‘ if VT1 in 77 IsNotlncluded (T»,71) then T3 :=T; u{T2}
return 7 U T3

Alex Brandt December 22, 2021

Threading Primitives

C++11 introduced the Thread Support Library
B std::thread
L, C++ class encapsulating a thread (often a pthread) and its low-level
spawn and join
B std::mutex

L, shared object between threads to indicate mutual exclusion to a
critical region.
L, mutex is locked or owned by at most one thread at a time.

B std::lock_guard, std::unique_lock

L, temporary object wrapping a mutex whose object lifetime
automatically locks and unlocks the mutex.

L, the constructor blocks and only returns once the shared mutex is
successfully owned by the calling thread.

B std::condition_variable

L, blocks the current thread and temporarily releases a lock
L, receives notification from another thread to awaken the blocked thread

Alex Brandt December 22, 2021

std::function

Functors, function objects, callable objects

= First-class objects which are callable using normal function syntax
= Are often constructed by passing function names, function pointers

= std::bind binds arguments to a function or function object,
returning a function object which requires fewer arguments

void printInteger (int a) {
std::cout << a << std::endl;
}

//Function object from function name
std::function<void(int)> f_printInt(printInteger);
f_printInt (12);

© N o OA W N R

//Function object binding arguments to function name
std::function<void () > f_print42(std::bind(printInteger ,42));
f_print42();

=
= o

Alex Brandt December 22, 2021

Function Executor Thread: Implementation

1 class FunctionExecutorThread {

2 AsyncObjectStream<std::function<void()>> requestQueue;
3 std::thread m_worker;

4

5 std::mutex m_mutex;

6 std::condition_variable m_cv;

7

8 FunctionExecutorThread () {

9 //member functions require pointer to member
10 m_worker = std::thread(

11 &FunctionExecutorThread::eventLoop, this);
12 }

13

14 //NOTE: copy constructor and copy operator are deleted
15

16 void eventLoop();

17

18 void sendRequest (std::function<void()>);

19

20 void waitForThread() ;

21}

Alex Brandt

AsyncObjectStream

a synchronized producer-consumer queue of objects, and
a blocking mechanism to keep the ExecutorThread alive and idle
when waiting for tasks

1 template <class Object>

2 class AsyncObjectStream {

3 //Producer: add an object to the queue

4 void addResult(Object& res);

5

6 //Producer: close the producer end of stream,

7 // no more objects to produce

8 void resultsFinished();

9

10 //Consumer: wait for an object from the queue, return true
11 // iff stream is open and objects available
12 bool getNextObject(Object& res);

13

14 //Consumer: determine if queue is currently empty

15 void streamEmpty () ;

16 };

Alex Brandt December

AsyncObjectStream: getNextObject

1 bool getNextObject(Object& res) {

2 std::unique_lock<std::mutex> lk(m_mutex);
3 if (finished && retObjs.empty()) {

4 1k .unlock () ;

5 return false;

6 }

7

8 //Wait in a loop in case of spurious wake ups
9 while (!finished && retObjs.empty() {
10 m_cv.wait (1k);

11 }

12

13 if (finished && retObjs.empty()) {

14 lk.unlock () ;

15 return false;

16 } else {

17 res = retObjs.front();

18 retObjs.pop () ;

19 lk.unlock () ;

20 return true;

21 ¥

2}

Alex Brandt

ExecutorThreadPool

A thread pool built using FunctionExecutorThreads

= An internal queue of tasks and queue of threads

When threads are busy, they are temporarily removed from the pool
When all threads busy, tasks are added to task queue

© W N AW N

11

private:

std:
std:
std:
std:

void
void

12 public:

13
14

15 }

void
void

class ExecutorThreadPool {

:deque<FunctionExecutorThread*> threadPool;
:deque<std::function<void () >> taskPool;

:mutex m_mutex;

:condition_variable m_cv; //used in waitForThreads

tryPullTask () ;
putBackThread (FunctionExecutorThread* t);

addTask (std::function<void ()> f);
waitForThreads () ;

Alex Brandt

December

ExecutorThreadPool: Flexible Usage (1/2)

= In support of certain parallel patterns, clients can (temporarily)

obtain ownership of threads from the pool, rather than using addTask

= Abstract away actual threads through thread IDs
= Once thread obtained, repeat Steps 2—3 as often as necessary

class ExecutorThreadPool {

//Storage for threads removed from pool by obtainThread
std::vector<FunctionExecutorThread#*> occupiedThreads;

//Step 1: obtain a thread’s ID, removing it from the pool
void obtainThread (threadID& id);

//Step 2: execute a task on a particular thread
void executeTask (threadID id, std::function<void()>& f);

//Step 3 (optional): wait for thread to become idle
void waitForThread (threadID id);

//Step 4: return thread to pool (waits before returning)
void returnThread (threadID id);

Alex Brandt December

ExecutorThreadPool: Flexible Usage (2/2)

= In support of certain parallel patterns, clients can (temporarily)
obtain ownership of threads from the pool, rather than using addTask

= Can obtain one thread at a time (previous slide), or multiple threads

at a time
1 class ExecutorThreadPool {
2
3 //Step 1: obtain threadIDs, removing them from the pool
4 void obtainThreads(std::vector<threadID>& ids);
5
6 //Step 2: execute a task on a particular thread
7 void executeTask(threadID id, std::function<void()>& f);
8
9 //Step 3 (optional): wait for threads to become idle
10 void waitForThreads (std::vector<threadID>& ids);
11
12 //Step 4: return threads to pool (waits before returning)
13 void returnThreads(std::vector<threadID>& ids);
14 }

Alex Brandt December

Motivation: Usability

BPAS is concerned with accessibility, interoperability, and usability.

= Open-source and written in C/C++ provides the former two.

To achieve usability, we consider best practices for its interface.

Natural: a symmetric encoding of the algebraic hierarchy

field c Euclidean domain ¢ GCD domain c integral domain c ring

Easy to use: an object-oriented design with well-defined interfaces.
A so-called algebraic class hierarchy: rings are classes and elements
of a ring are objects

Encapsulation: hide complexity of low-level code; class interfaces
Extensible: adaptable to new (user-created) types, type composition

Type safe: compile-time type safety and mathematical type safety

Alex Brandt December 22, 2021

Motivation: Type Safety

A naive implementation of the algebraic hierarchy as a class hierarchy
creates mathematically unsafe operations via polymorphism.

1 class EuclidDomain {
2 EuclidDomain remainder (EuclidDomain& divisor);
3 %
4
A 6 RationalPoly b;
7 EuclidDomain r = a.remainder(b);
JAN
pEp— = Z/17Z and Q[z] are Euclidean domains
remainder(divisor): EuclidDomain
(divisor) = the code is valid via polymorphism
[Fea | [awd | * could compile, but then issues at runtime.

A

Z mod 17

Alex Brandt December 22, 2021

Existing Solutions

In other compiled libraries, mathematical type safety is only a runtime
property maintained through runtime value checks.

= In Singular's libpolys [12], all algebraic types are a single class.
Instance variables (Booleans, enums) store properties of rings

= In CoCoA [1] rings and elements of a ring are separate classes.
Elements hold references to their “owning” ring which are compared
at runtime and errors thrown if not identical.

= In LinBox [25] rings and elements are again distinct, with references

to abstract ring elements being downcasted for operations.

Our Goal: provide both compile-time mathematical type safety and a
natural, extensible object-oriented hierarchy for the algebraic hierarchy

Alex Brandt December 22, 2021

Algebraic Class Hierarchy
The algebraic hierarchy as a class hierarchy with mathematical type safety

Solution: an abstract class template hierarchy.
= abstract classes: well-defined interfaces, default behaviour
= inheritance incrementally extends/builds interface
= template parameter modifies interface to restrict method parameters

1 template <class Derived>

2 class Ring {...};

3

4 template <class Derived>

5 class IntegralDomain : Ring<Derived> {...};
6

7 template <class Derived>

8 class GCDDomain : IntegralDomain<Derived> {...};
9

10 template <class Derived>

11 class EuclidDomain : GCDDomain<Derived> {
12 Derived remainder (Derived& divisor);
13}

Alex Brandt December 22, 2021

Algebraic Class Hierarchy: Static Polymorphism

Static polymorphism via Curiously Recurring Template Pattern: concrete
class is used as template parameter of super class.

= function resolution occurs at compile-time

= method declaration restricts params to be compile-time compatible

template <class Derived>
class EuclidDomain : GCDDomain<Derived> {
Derived remainder (const Derived& divisor);

I8

class Integer : EuclidDomain<Integer> {...}; //CRTP
//Integer remainder (const Integer& divisor);

© ® N oA W N R

class RationalPoly : EuclidDomain<RatonalPoly> {...}; //CRTP
//RationalPoly remainder (const RationalPoly& divisor);

=
N = O

Integer x; RationalPoly p;

=
S oW

//compiler error: EuclidDomain<RationalPoly>::remainder
// takes RationalPoly as parameter
RationalPoly r = p.remainder(x);

=
o o

Alex Brandt December

Algebraic Class Hierarchy with Polynomials

Extend abstract class template hierarchy to include polynomials

= parameterize polynomial abstract classes by coefficient ring

template <class Derived>
class Ring {...};

template <class CoefRing, class Derived>
class Poly : Ring<Derived> {...};

N o g W N =

class RationalPoly : Poly<RationalNumber , RationalPoly> {...};

Problem: What if CoefRing is not actually a ring?
= e.g. Poly<std::string> or Poly: :<Apple>

Problem: polynomial rings form different algebraic types depending on
the ground ring

= e.g. Q[x]is a Euclidean domain, Z[z] is an integral domain

Alex Brandt December 22, 2021

Constraining the Ground Ring

At compile-time ensure that a polynomial’s coefficient ring is an actual
ring with template metaprogramming.

Derived_from<T, Base>: statically determines if T is a subclass of Base,
creating a compiler-error if not

= inheriting from Derived_from forces evaluation at compile-time
during template instantiation

= Coefficient ring must be a subclass of Ring

= Poly can assume CoefRing has a certain interface at minimum

template <class T, class Base>
class Derived_from {...};

template <class CoefRing, class Derived>
class Poly : Ring<Derived>,
Derived_from<CoefRing, Ring<CoefRing>> {...};

[R N N T N

Alex Brandt December 22, 2021

Adapting to Different Coefficient Rings (1/2)

Determine type of coefficient ring using compile-time introspection

= Conditional inheritance then determines correct algebraic type and
interface for polynomials over that ring

= “Dynamic” type creation via introspection, template instantiation

is_base_of<T, Base>::value
= compile-time Boolean value determines if T is a subclass of Base
conditional<Bool, T1, T2>::value

= A compile-time tertiary conditional operator for choosing types
= Bool ?7 T1 : T2

1 template <class CRing, class Derived>

2 class Poly : conditional< is_base_of<CRing, Field<CRing>>::value,
3 EuclidDomain<Derived>,

4 Ring<Derived>

5 >::value {...};

Alex Brandt December 22, 2021

Adapting to Different Coefficient Rings (2/2)

A chain of conditional’s create a case-discussion at compile-time
= Tester hierarchy separates introspection from actual interface
= Concrete classes inherit from Polynomial to automatically determine
their type and interface

e
A Ring,Derived |

Ring is not an integral domain

-

(I

BasePolynomial

|
\ Ring,Derived |

- - --
IntegralPoly Tester

Ring is not a|GCD domain

Ring, Derived |

=

Ring is an integral domain

(I

GCDDomain

_____ il | |
Ring, Derived | \ Ring,Derived |

[—— Ring is a GCD domain L - -
GCDDomainPoly |—<‘r

=

GCDPolyTester

Ring,Derived |

- - --
Polynomial

Alex Brandt December 1

