
The Design and Implementation of a
High-Performance Polynomial System Solver

Alexander Brandt

PhD Research Topics Survey/Proposal

Department of Computer Science
University of Western Ontario

December 22, 2021

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 1 / 66

Solving Systems of Equations

Find values of 𝑥, 𝑦, 𝑧 which satisfy 𝐹 =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑎(𝑥, 𝑦, 𝑧) = 0
𝑏(𝑥, 𝑦, 𝑧) = 0
𝑐(𝑥, 𝑦, 𝑧) = 0

• Solving systems of equations is a fundamental problem in scientific
computing

• Numerical methods are very efficient and useful in practice, but only
find approximate solutions as floating point numbers

ë Newton’s method, Homotopy methods, Gradient descent

• Symbolic methods to find exact solutions are required in robotics,
celestial mechanics, cryptography, signal processing [18]

ë Particularly used to find a complete description of all solutions

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 2 / 66

Solving a Linear System of Equations

Step 1: triangularization

(a) by elimination of variables:
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 3𝑦 − 2𝑧 = 6
3𝑥 + 5𝑦 + 6𝑧 = 7
2𝑥 + 4𝑦 + 3𝑧 = 8

solve for 𝑥Ð→
substitute 𝑥

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 = 5 − 3𝑦 + 2𝑧
−4𝑦 + 12𝑧 = −8
−2𝑦 + 7𝑧 = −2

solve for 𝑦Ð→
substitute 𝑦

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 = 5 + 2𝑧 − 3𝑦
𝑦 = 2 + 3𝑧
𝑧 = 2

(b) by Gaussian elimination:

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
3 5 6 7
2 4 3 8

⎬⎠⎠⎠⎠⎠⎮
Ô⇒

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
0 1 −3 2
0 −2 7 −2

⎬⎠⎠⎠⎠⎠⎮
Ô⇒

⎨⎝⎝⎝⎝⎝⎪

1 3 −2 5
0 1 −3 2
0 0 1 2

⎬⎠⎠⎠⎠⎠⎮

Step 2: back-substitution to find particular values for 𝑥, 𝑦, 𝑧

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 3𝑦 − 2𝑧 = 6
3𝑥 + 5𝑦 + 6𝑧 = 7
2𝑥 + 4𝑦 + 3𝑧 = 8

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 3 / 66

Solving a Non-Linear System of Equations

Via Gröbner Basis we can “solve” a non-linear system

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Ô⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

“Solving” a system is not just about finding particular values, rather:

“find a description of the solutions from which we can easily
extract relevant data”

Why?
• A positive-dimensional system has infinitely many solutions
• Underdetermined linear systems, and most non-linear systems

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 4 / 66

Decomposing a Non-Linear System
Many ways to “solve” a system

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Gröbner BasisÔ⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2 + 2𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

Both solutions are equivalent (via a union).
• by using triangular decomposition, multiple components are found,

suggesting possible component-level parallelism

Ô
⇒ Triangular Decomposition

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 5 / 66

Outline

1 Introduction

2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 6 / 66

Incremental Decomposition of a Non-Linear System
Intersect one equation at a time with the current solution set

𝐹 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

∅
𝐹 (︀1⌋︀ ↓
{𝑥2 + 𝑦 + 𝑧 = 1}

𝐹 (︀2⌋︀ ↓

{ 𝑥 + 𝑦2 + 𝑧 = 1
𝑦4 + (2𝑧 − 2)𝑦2 + 𝑦 + (𝑧2 − 𝑧) = 0 (︀

𝐹 (︀3⌋︀ ↙ ↙ ↘ ↘
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2 + 2𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 7 / 66

Solving polynomial systems symbolically is hard
• Algorithms are at least singly exponential 𝒪(𝑑𝑛)

ë At least in 𝒫𝒮𝒫𝒜𝒞ℰ but up to ℰ𝒳𝒫𝒮𝒫𝒜𝒞ℰ-complete [17, Ch. 21]

• Algorithms require complex code and vast dependencies:
arbitrary-precision integers, GCDs, factorization, linear algebra

• Intermediate expression swell

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 8 / 66

Motivations and Challenges
Motivations:

• Solving symbolically is difficult but still desirable in many fields

• Algorithmic development [7] has come a long way; must now focus on
implementation techniques, making the most of modern hardware

ë Multicore processors, cache hierarchy
ë Must apply parallel computing and data locality

Challenges:
• Study application of high-performance techniques to high-level

geometric algorithms

• Potential parallelism is problem-dependent and not algorithmic
ë Geometry may or may not split into different components
ë Finding splittings is as difficulty as solving the problem

• Study how software design can manage maintainability and usability
of highly complex mathematical code

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 9 / 66

Unbalanced and Irregular Parallelism

• More parallelism exposed as more components found,
• Work unbalanced between branches; this is irregular parallelism
• Mechanism needed for adaptive, dynamic parallelism

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 10 / 66

Previous Works
• Long history of theoretical and algorithmic development in triangular

decomposition [3, 5, 7–9, 22, 26, 27]

• Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

ë Such as in Gröbner Bases [2, 6, 15] and CAD [24]

• Recent parallelism of low-level routines with regular parallelism:
ë Polynomial arithmetic [16, 20]
ë Modular methods for GCDs and Factorization [19, 21]

• Recently, high-level algorithms, often with irregular parallelism, have
seen little progress in research or implementation

ë The normalization algorithm of [4] finds components serially, then
processes each component with a simple parallel map

ë Early work on parallel triangular decomposition was limited by
symmetric multi-processing and inter-process communication [23]

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 11 / 66

Objectives

1 Investigate and evaluate component-level parallelism and other
high-performance techniques for triangular decompositions

2 Examine the composition of parallelism between high-level and
low-level algorithms in symbolic computation

3 Re-imagine dynamic evaluation in the context of triangular
decomposition

4 Study how software design can be used to improve the maintainability
and usability of the resulting highly optimized and complex code

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 12 / 66

Preliminary Results

1 High-performance, parallel triangular decomposition in C/C++
with multiple simultaneous levels of parallelism

2 A library for composable and cooperative parallel programming with
support for parallel patterns

3 An object-oriented class hierarchy encoding the algebraic hierarchy
provides compile-time type safety and mathematical correctness

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 13 / 66

Outline

1 Introduction

2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 14 / 66

Polynomial Notations
• Let K be a perfect field (e.g. Q or C) and K its algebraic closure

• Let K(︀𝑋⌋︀ be the set of multivariate polynomials (a polynomial ring)
with 𝑛 ordered variables, 𝑋 = 𝑋1 < ⋯ < 𝑋𝑛.

• For 𝑝 ∈ K(︀𝑋⌋︀:
ë the main variable of 𝑝 is the maximum variable with positive degree
ë the initial of 𝑝 is the leading coeff. of 𝑝 with respect to its main variable
ë the tail of 𝑝 is the terms leftover after setting its initial to 0

(2𝑦 + 𝑏𝑎)𝑥2 + (𝑏𝑦)𝑥 + 𝑎2 ∈ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

• Any set of polynomials 𝐹 ⊂ K(︀𝑋⌋︀ can form a system of equations
by setting 𝑓 = 0 for each 𝑓 ∈ 𝐹 .

• The zero set of 𝐹 is an algebraic variety—the geometric
representation of its solutions

ë 𝑉 (𝐹) = {(𝑎1, . . . , 𝑎𝑛) ∈ K
𝑛 ⋃︀ 𝑓(𝑎1, . . . , 𝑎𝑛) = 0, ∀𝑓 ∈ 𝐹}

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 15 / 66

Triangular Sets and Regular Chains
A triangular set 𝑇 ⊂ K(︀𝑋⌋︀ is a collection of polynomials with pairwise
different main variables

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑇𝑣 = ℎ 𝑣𝑑 + tail(𝑇𝑣)

𝑇−

𝑣 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ K(︀𝑋⌋︀

Example:

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(2𝑦 + 𝑏𝑎)𝑥 − 𝑏𝑦 + 𝑎2

2𝑦2 − 𝑏𝑦 − 𝑎2

𝑎 + 𝑏

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

A regular chain is a triangular set if:
(𝑖) 𝑇−

𝑣 is a regular chain, and
(𝑖𝑖) initial of 𝑇𝑣 (ℎ) is regular with respect to 𝑇−

𝑣

In triangular decomposition, every component is a regular chain
Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 16 / 66

Regularity: Not all triangular sets are regular chains

𝑇1 =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑦𝑥 − 1 = 0
𝑦 = 0

𝑧 − 1 = 0
𝑇2 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

(𝑦 + 1)𝑥2 − 𝑥 = 0
𝑦2 − 1 = 0
𝑧 − 1 = 0

• This set is inconsistent;
there are no solutions

• Back-substituting 𝑦 = 0 into
𝑦𝑥 − 1 = 0 yields −1 = 0

• 𝑦 has two solutions:
𝑦2 − 1 = (𝑦 + 1)(𝑦 − 1)

• For 𝑦 = −1, 𝑥 has 1 solution
• For 𝑦 = 1, 𝑥 has 2 solutions

A polynomial is regular (modulo a regular chain) if it is neither:
(𝑖) zero (e.g. 𝑦 in 𝑇1), nor

(𝑖𝑖) a zero-divisor (e.g. (𝑦 + 1) in 𝑇2)

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 17 / 66

The foundation of splitting: regularity testing
To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion

• either the initial is regular, or it is not regular

𝑓 = (𝑦 + 1)𝑥2 − 𝑥

𝑇 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦2 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 − 1 = 0
𝑧 − 1 = 0

𝑇3 =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇4 =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

2𝑥2 − 𝑥 = 0
𝑦 − 1 = 0
𝑧 − 1 = 0

𝑦 +
1 =

0

𝑦 + 1 ≠ 0

𝑓 = 𝑥

𝑓 = 2𝑥2 − 𝑥

This actually forms a direct product isomorphism:
K(︀𝑥, 𝑦, 𝑧⌋︀⇑sat(𝑇) ≅ K(︀𝑥, 𝑦, 𝑧⌋︀⇑sat(𝑇1) ⊗ K(︀𝑥, 𝑦, 𝑧⌋︀⇑sat(𝑇2)

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 18 / 66

Ideal-Variety Correspondence

ℐ ⊆ K(︀𝑋⌋︀ is an ideal if:
(𝑖) 0 ∈ ℐ,
(𝑖𝑖) for 𝑓, 𝑔 ∈ ℐ, 𝑓 + 𝑔 ∈ ℐ, and
(𝑖𝑖𝑖) for 𝑓 ∈ ℐ, 𝑟 ∈ K(︀𝑋⌋︀, 𝑟𝑓 ∈ ℐ

For 𝑓, 𝑔 ∈ K(︀𝑋⌋︀, ∐︀𝑓, 𝑔̃︀ = ∐︀𝑓̃︀ + ∐︀𝑔̃︀ = {𝑟1𝑓 + 𝑟2𝑔 ⋃︀ 𝑟1, 𝑟2 ∈ K(︀𝑋⌋︀}

{𝑓1, 𝑓2, . . . , 𝑓𝑘} = 𝐹 ⊂ K(︀𝑋⌋︀, ∐︀𝐹 ̃︀ is all polynomial consequences of 𝐹 :
ë that is, all results which follow from 𝑓1 = 𝑓2 = ⋯ = 𝑓𝑘 = 0.
ë 𝑉 (𝐹) = 𝑉 (∐︀𝐹 ̃︀)

Sum: 𝑉 (ℐ + 𝒥) = 𝑉 (ℐ) ∩ 𝑉 (𝒥)
Product: 𝑉 (ℐ 𝒥) = 𝑉 (ℐ ∩ 𝒥) = 𝑉 (ℐ) ∪ 𝑉 (𝒥)

Saturation: 𝑉 (ℐ ∶ 𝒥∞) = 𝑉 (ℐ) ∖ 𝑉 (𝒥)

Note: for 𝑆 ⊂ K𝑛, 𝑆 is its closure: the smallest variety 𝑉 such that 𝑆 ⊆ 𝑉

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 19 / 66

Regular Chains and Triangular Decomposition

Let 𝑇 be a regular chain and ℎ𝑇 = ∏
𝑝 ∈𝑇

initial(𝑝)

Saturated ideal of a regular chain:
• sat(𝑇) = ∐︀𝑇 ̃︀ ∶ ℎ∞𝑇 • sat(∅) = ∐︀0̃︀

Quasi-component of a regular chain:
• 𝑊 (𝑇) ∶= 𝑉 (𝑇) ∖ 𝑉 (ℎ𝑇) • 𝑊 (𝑇) = 𝑉 (sat(𝑇))

A triangular decomposition of an input system 𝐹 ⊆ K(︀𝑋⌋︀ is a set of
regular chains 𝑇1, . . . , 𝑇𝑒 such that:

(Kalkbrener decomposition) 𝑉 (𝐹) = ⋃𝑒
𝑖=1 𝑊 (𝑇𝑖), or

(Lazard-Wu decomposition) 𝑉 (𝐹) = ⋃𝑒
𝑖=1 𝑊 (𝑇𝑖)

Note: Some 𝑇𝑖 may be redundant; ∃𝑗 𝑊 (𝑇𝑖) ⊆ 𝑊 (𝑇𝑗)

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 20 / 66

All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

ë In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize RemoveReundancies

Intersect
IntersectFree

CleanChain

IntersectAlgebraicRegularize

RegularGCD

Extend

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 21 / 66

Outline

1 Introduction

2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 22 / 66

Map

• Simultaneously execute a function on each data item in a collection

• If more data items than threads, apply the pattern block-wise:
partition the collection and apply one thread to each partition

• Often simplified as just a parallel_for loop

• Where multiple map steps are performed in a row,
they must operate in lockstep

Input

Output

Data Item

Function Execution

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 23 / 66

Workpile

• Workpile generalizes map pattern to a queue of tasks

• Tasks in-flight can add new tasks to input queue

• Threads take tasks from queue until it is empty

• Very similar in structure to a thread pool

• Can be seen as a parallel_while loop

...

...

...

Input

Output

Function Execution

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 24 / 66

Triangularize: Incremental Triangular Decomposition
Algorithm 1 Triangularize(𝐹)
Input: a finite set 𝐹 ⊆ K(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ K(︀𝑋⌋︀ such that 𝑉 (𝐹) = 𝑊 (𝑇1)∪⋯∪𝑊 (𝑇𝑒)
1: 𝒯 ∶= {∅}
2: for 𝑝 ∈ 𝐹 do
3: 𝒯 ′ ∶= ∅
4: parallel_for 𝑇 ∈ 𝒯 ▷ map Intersect over the current components
5: 𝒯 ′ ∶= 𝒯 ′∪ Intersect(𝑝, 𝑇)
6: end for
7: 𝒯 ∶= RemoveRedundantComponents(𝒯 ′) ▷ prune redundancies each step
8: return 𝒯

• Coarse-grained parallelism: each Intersect represents substantial work

• At each “level” there ⋃︀𝒯 ⋃︀ components with which to intersect,
yielding ⋃︀𝒯 ⋃︀ − 1 additional threads

• Performs a breadth-first search, with synchronization at each level

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 25 / 66

Triangularize: a task-based approach
Algorithm 2 TriangularizeByTasks(𝐹)
Input: a finite set 𝐹 ⊆ K(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ K(︀𝑋⌋︀ such that 𝑉 (𝐹) = 𝑊 (𝑇1)∪⋯∪𝑊 (𝑇𝑒)
1: Tasks ∶= { (𝐹,∅) }; 𝒯 ∶= ∅
2: while ⋃︀Tasks ⋃︀ > 0 do
3: (𝑃, 𝑇) ∶= pop a task from Tasks
4: Choose a polynomial 𝑝 ∈ 𝑃 ; 𝑃 ′ ∶= 𝑃 ∖ {𝑝}
5: for 𝑇 ′ in Intersect(𝑝, 𝑇) do
6: if ⋃︀𝑃 ′⋃︀ = 0 then 𝒯 ∶= 𝒯 ∪ {𝑇 ′}
7: else Tasks ∶= Tasks ∪ {(𝑃 ′, 𝑇 ′)}
8: return RemoveRedundantComponents(𝒯)

• Performs a depth-first search

• Tasks is essentially a data structure for a task scheduler

• Tasks create more tasks, workers pop Tasks until none remain.
• Adaptive to load-balancing, no inter-task synchronization
Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 26 / 66

Producer-Consumer, Asynchronous Generators

• Two functions connected by a queue, executing concurrently

• The producer produces data items, pushing them to the queue

• The consumer processes data items, pulling them from the queue

...

Data QueueProducer Consumer

• Producer may be considered as an iterator or generator
ë special kinds of coroutines which yield data items one at a time,

rather than many as a collection

• If generation of data is expensive, generator may execute
asynchronously, fulfilling the role of producer

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 27 / 66

Intersect as a Generator

Algorithm 3 Intersect(𝑝, 𝑇)
Input: 𝑝 ∈ K(︀𝑋⌋︀ ∖K, 𝑣 ∶= mvar(𝑝), a regular chain 𝑇 s.t. 𝑇 = 𝑇 −

𝑣 ∪ 𝑇𝑣

Output: regular chains 𝑇1, . . . , 𝑇𝑒 satisfying specs.
1: for (𝑔𝑖, 𝑇𝑖) ∈ RegularGCD(𝑝, 𝑇𝑣, 𝑣, 𝑇 −

𝑣) do
2: if dim(𝑇𝑖) ≠ dim(𝑇 −

𝑣) then
3: for 𝑇𝑖,𝑗 ∈ Intersect(𝑝, 𝑇𝑖) do
4: yield 𝑇𝑖,𝑗

5: else
6: if 𝑔𝑖 ⇑∈ K and deg(𝑔𝑖, 𝑣) > 0 then
7: yield 𝑇𝑖 ∪ {𝑔𝑖}
8: for 𝑇𝑖,𝑗 ∈ Intersect(lc(𝑔𝑖, 𝑣), 𝑇𝑖) do
9: for 𝑇 ′ ∈ Intersect(𝑝, 𝑇𝑖,𝑗) do

10: yield 𝑇 ′

• yield “produces” a single data item, and then continues computation
• each for loop iteration consumes one data item from a generator

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 28 / 66

Pipeline

• A sequence of stages where the output of one stage is used as the
input to another

• Two consecutive stages form a producer-consumer pair

• Internal stages are both producer and consumer

• Typically, a pipeline is constructed statically through code
organization

• Pipelines can be created dynamically and implicitly with
asynchronous generators and the call stack

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 29 / 66

Triangularize Subroutine Pipeline
Triangularize

Intersect
IntersectFree

CleanChain
IntersectAlgebraicRegularize

RegularGCD
Extend

• all subroutines as generators allows pipeline to evolve dynamically
with the call stack.

• data streams between subroutines; all soubroutines are effectively
non-blocking

• call stack forms a tree as several generators invoked by one consumer

• pipeline creates fine-grained parallelism since work diminishes with
each recursive call

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 30 / 66

Outline

1 Introduction

2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 31 / 66

Thread-level parallelism

Multithreading: using (software) threads—multiple independent control
flows in one process—for concurrency

Hardware enables parallelism by executing multiple threads simultaneously
on independent processors (i.e. hardware threads)

Parallel overheads:
ë software threads > hardware threads Ô⇒ over-subscription

ë spawning and joining threads
ë load imbalance: unevenly distributed work between threads; some

are left idle while others are still executing
ë inter-thread communication and synchronization

C++11 Thread Support Library supports object-oriented multithreading
Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 32 / 66

Thread Pools

• A fixed number of threads are spawned, only once, at the beginning
of the program

• Threads remain active for the program lifetime

• Threads receive tasks, code blocks or functions, to execute as needed

• Threads return to the pool upon completing their task

• Services requests from multiple client codes enabling cooperation
Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 33 / 66

ExecutorThreadPool

• A pool of ExecutorThreads able to execute any function object

• AsyncObjectStream implements producer-consumer pattern to
stream objects between threads

ë includes function objects, and later, objects for generators

• Allows for thread cooperation: (normal) tasks vs. priority tasks

ë If all normal threads busy, new “priority thread” spawned to
immediately launch a priority task

ë A returning thread is retired to avoid over-subscription
ë Limits total number priority threads; after limit,

priority tasks pushed to the front of queue

• Enables optional parallelism: user specifies areas for concurrency in
code, runtime dynamically chooses which to execute in parallel

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 34 / 66

AsyncGenerator and AsyncObjectStream

We want an object-oriented approach to create and use generators
ë AsyncGenerator acts as interface between producer and consumer
ë Use AsyncObjectStream as producer-consumer queue

• The consumer constructs the AsyncGenerator, passing the
constructor the producer’s function and arguments

• The AsyncGenerator inserts itself into the producer’s list of
arguments so that it has reference to the generator object

• The producer’s signature should be:
1 void producerFunction (..., AsyncGenerator <Object >&);

• If ExecutorThreadPool not empty producer executes
asynchronously, otherwise execute serially on consumer’s thread

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 35 / 66

AsyncGenerator Example
1 void FibonacciGen (int n, AsyncGenerator <int >& gen) {
2 int Fn_1 = 0;
3 int Fn = 1;
4 for (int i = 0; i < n; ++i) {
5 gen. generateObject (Fn_1); // yield Fn_1 and continue
6 Fn = Fn + Fn_1;
7 Fn_1 = Fn - Fn_1;
8 }
9 gen. setComplete ();

10 }
11
12 void Fib () {
13 int n, fib;
14 std :: cin >> n;
15 AsyncGenerator <int > gen(FibonacciGen , n);
16
17 // get one integer at a time until generator is finished
18 while (gen. getNextObject (fib)) {
19 std :: cerr << fib << std :: endl;
20 }
21 }

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 36 / 66

Outline

1 Introduction

2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 37 / 66

Improved Parallel Performance, Avoiding Redundancies

• TriangularizeByTasks improved parallelism but could not
intermittently remove redundancies

ë we will investigate a hybrid approach: depth-first search with task
cancellation to prune redundant branches

• Parallelize low-level routines to add parallelism and load-balance when
there is little to no component-level parallelism to exploit

• Memoization of subroutines
ë Typical of (mutually-)recursive algorithms
ë Different branches of computation deriving from the same regular chain

are very likely to share geometric and algebraic features
ë Caching the results of operations in, e.g., a hash table will avoid

redundant re-computation

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 38 / 66

Dynamic Evaluation and Avoiding Redundant Computation
Dynamic Evaluation: an automatic case discussion based on choices of
particular values on parameters [13, 14]

Regularity testing:

𝑇 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦2 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 − 1 = 0
𝑧 − 1 = 0

𝑦 + 1 = 0

𝑦 + 1 ≠ 0

Two branches are likely to share geometric and algebraic features

𝑇5 = {
𝑎(𝑦, 𝑧)
𝑏(𝑧)𝑐(𝑧) 𝑇6 = {

𝑑(𝑦, 𝑧)
𝑏(𝑧)𝑐(𝑧)

• 𝑇5 splitting into {𝑎(𝑦, 𝑧), 𝑏(𝑧)} and {𝑎(𝑦, 𝑧), 𝑐(𝑧)} should
automatically split 𝑇6 into {𝑑(𝑦, 𝑧), 𝑏(𝑧)} and {𝑑(𝑦, 𝑧), 𝑐(𝑧)}

• Requires a universal view and shared data structure [10]
Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 39 / 66

Polymorphic Regular Chains

• Triangular decomposition, in theory, works over any perfect field

• Current implementation limited to the field of rationals Q

• Working over a finite field enables additional component-level
parallelism as components more easily split [23]

• Solving over finite fields is itself useful in practice and is required as a
modular method to solve very hard problems [11]

• Our regular chains code requires refactoring to properly use a generic
multivariate polynomial interface, and thus rely on polymorphism

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 40 / 66

References
[1] J. Abbott and A. M. Bigatti. CoCoALib: a C++ library for doing Computations in Commutative

Algebra. Available at http://cocoa.dima.unige.it/cocoalib.

[2] G. Attardi and C. Traverso. “Strategy-Accurate Parallel Buchberger Algorithms”. In: Journal of
Symbolic Computation 22 (1996), pp. 1–15.

[3] P. Aubry, D. Lazard, and M. Moreno Maza. “On the Theories of Triangular Sets”. In: Journal of
Symbolic Computation 28.1-2 (1999), pp. 105–124.

[4] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S. Steidel. “Parallel algorithms for
normalization”. In: J. Symb. Comput. 51 (2013), pp. 99–114.

[5] F. Boulier, F. Lemaire, and M. Moreno Maza. “Well known theorems on triangular systems and the
D5 principle”. In: Transgressive Computing 2006, Proceedings. Granada, Spain, 2006.

[6] B. Buchberger. “The parallelization of critical-pair/completion procedures on the L-Machine”. In:
Japanese Symposium on Functional Pogramming, Proceedings. 1987, pp. 54–61.

[7] C. Chen and M. Moreno Maza. “Algorithms for computing triangular decomposition of polynomial
systems”. In: Journal of Symbolic Computation 47.6 (2012), pp. 610–642.

[8] C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. “Triangular
decomposition of semi-algebraic systems”. In: Journal of Symbolic Computation 49 (2013), pp. 3–26.

[9] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. “Comprehensive Triangular
Decomposition”. In: Computer Algebra in Scientific Computing, CASC 2007, Proceedings. 2007,
pp. 73–101.

[10] C. Chen and M. Moreno Maza. “An Incremental Algorithm for Computing Cylindrical Algebraic
Decompositions”. In: Asian Symposium on Computer Mathematics, ASCM 2012, Proceedings.
Springer, 2012, pp. 199–221.

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 41 / 66

[11] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. “Lifting techniques for triangular
decompositions”. In: International Symposium on Symbolic and Algebraic Computation, ISSAC 2005,
Proceedings. 2005, pp. 108–115.

[12] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-1-1 — A computer algebra
system for polynomial computations. http://www.singular.uni-kl.de. 2018.

[13] J. D. Dora, C. Dicrescenzo, and D. Duval. “About a New Method for Computing in Algebraic
Number Fields”. In: European Conference on Computer Algebra, EUROCAL 1985, Proceedings
Volume 2: Research Contributions. Vol. 204. Lecture Notes in Computer Science. Springer, 1985,
pp. 289–290.

[14] D. Duval. “Algebraic Numbers: An Example of Dynamic Evaluation”. In: Journal of Symbolic
Computation 18.5 (1994), pp. 429–445.

[15] J. C. Faugere. “Parallelization of Gröbner Basis”. In: Parallel Symbolic Computation, PASCO 1994,
Proceedings. Vol. 5. World Scientific. 1994, p. 124.

[16] M. Gastineau and J. Laskar. “Parallel sparse multivariate polynomial division”. In: Parallel Symbolic
Computation, PASCO 2015, Proceedings. 2015, pp. 25–33.

[17] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. 3rd ed. NY, USA: Cambridge
University Press, 2013.

[18] J. Grabmeier, E. Kaltofen, and V. Weispfenning, eds. Computer algebra handbook. Springer-Verlag,
2003.

[19] J. Hu and M. B. Monagan. “A Fast Parallel Sparse Polynomial GCD Algorithm”. In: International
Symposium on Symbolic and Algebraic Computation, ISSAC 2016, Proceedings. 2016, pp. 271–278.

[20] M. B. Monagan and R. Pearce. “Parallel sparse polynomial multiplication using heaps”. In:
International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, Proceedings. ACM,
2009, pp. 263–270.

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 42 / 66

http://www.singular.uni-kl.de

[21] M. B. Monagan and B. Tuncer. “Sparse Multivariate Hensel Lifting: A High-Performance Design and
Implementation”. In: Mathematical Software - ICMS 2018, Proceedings. 2018, pp. 359–368.

[22] M. Moreno Maza. On Triangular Decompositions of Algebraic Varieties. Tech. rep. TR 4/99.
Presented at the MEGA-2000 Conference, Bath, England. Oxford, UK: NAG Ltd, 1999.

[23] M. Moreno Maza and Y. Xie. “Component-level parallelization of triangular decompositions”. In:
Parallel Symbolic Computation, PASCO 2007, Proceedings. ACM. 2007, pp. 69–77.

[24] B. D. Saunders, H. R. Lee, and S. K. Abdali. “A parallel implementation of the cylindrical algebraic
decomposition algorithm”. In: International Symposium on Symbolic and Algebraic Computation,
ISSAC 1989, Proceedings. Vol. 89. 1989, pp. 298–307.

[25] The LinBox group. LinBox. v1.6.3. 2019. url: http://github.com/linbox-team/linbox.

[26] W. Wu. “A zero structure theorem for polynomial equations solving”. In: MM Research Preprints 1
(1987), pp. 2–12.

[27] W. Wu. “On zeros of algebra equations—an application of Ritt principle”. In: Kexeu Tongbao 31.1
(1986), pp. 1–5.

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 43 / 66

http://github.com/linbox-team/linbox

Outline

1 Introduction

2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 44 / 66

BPAS vs RegularChains in Maple

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 45 / 66

Parallel Speedup

SRC: Subresultant chain computations, RRC: removal of redundant components

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 46 / 66

Speedup for each parallel scheme individually

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 47 / 66

Fork-Join

Fork

Join

• Fork: divide problem and
execute separate calls in
parallel

• Join: merge parallel
execution back into serial

• Recursively applying
fork-join can easily
parallelize a
divide-and-conquer
algorithm

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 48 / 66

Divide-and-Conquer and Fork-Join
Remove redundancies from a list of regular chains with DnC:

• Recursively and concurrently obtain two irredundant lists, then merge.
• Merge can be done as a map

Algorithm 4 RemoveRedundantComponents(𝒯)
Input: a finite set 𝒯 = {𝑇1, . . . , 𝑇𝑒} of regular chains
Output: an irredundant set 𝒯 ′ with the same algebraic set as 𝒯

if 𝑒 = 1 then return 𝒯
ℓ ∶= [︂𝑒⇑2⌉︂; 𝒯≤ℓ ∶= {𝑇1, . . . , 𝑇ℓ}; 𝒯>ℓ ∶= {𝑇ℓ+1, . . . , 𝑇𝑒}
𝒯1 ∶= spawn RemoveRedundantComponents(𝒯≤ℓ)
𝒯2 ∶= RemoveRedundantComponents(𝒯>ℓ)
sync
𝒯 ′1 ∶= ∅; 𝒯 ′2 ∶= ∅
parallel_for 𝑇1 ∈ 𝒯1

if ∀𝑇2 in 𝒯2 IsNotIncluded (𝑇1, 𝑇2) then 𝒯 ′1 ∶= 𝒯 ′1 ∪ {𝑇1}
parallel_for 𝑇2 ∈ 𝒯2

if ∀𝑇1 in 𝒯 ′1 IsNotIncluded (𝑇2, 𝑇1) then 𝒯 ′2 ∶= 𝒯 ′2 ∪ {𝑇2}
return 𝒯 ′1 ∪ 𝒯 ′2

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 49 / 66

Threading Primitives
C++11 introduced the Thread Support Library
∎ std::thread

ë C++ class encapsulating a thread (often a pthread) and its low-level
spawn and join

∎ std::mutex
ë shared object between threads to indicate mutual exclusion to a

critical region.
ë mutex is locked or owned by at most one thread at a time.

∎ std::lock_guard, std::unique_lock
ë temporary object wrapping a mutex whose object lifetime

automatically locks and unlocks the mutex.
ë the constructor blocks and only returns once the shared mutex is

successfully owned by the calling thread.
∎ std::condition_variable

ë blocks the current thread and temporarily releases a lock
ë receives notification from another thread to awaken the blocked thread

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 50 / 66

std::function
Functors, function objects, callable objects

• First-class objects which are callable using normal function syntax
• Are often constructed by passing function names, function pointers
• std::bind binds arguments to a function or function object,

returning a function object which requires fewer arguments

1 void printInteger (int a) {
2 std :: cout << a << std :: endl;
3 }
4
5 // Function object from function name
6 std :: function <void(int)> f_printInt (printInteger);
7 f_printInt (12);
8
9 // Function object binding arguments to function name

10 std :: function <void () > f_print 42(std :: bind(printInteger ,42));
11 f_print 42();

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 51 / 66

Function Executor Thread: Implementation
1 class FunctionExecutorThread {
2 AsyncObjectStream <std :: function <void () >> requestQueue ;
3 std :: thread m_worker ;
4
5 std :: mutex m_mutex ;
6 std :: condition_variable m_cv;
7
8 FunctionExecutorThread () {
9 // member functions require pointer to member

10 m_worker = std :: thread (
11 &FunctionExecutorThread :: eventLoop , this);
12 }
13
14 // NOTE: copy constructor and copy operator are deleted
15
16 void eventLoop ();
17
18 void sendRequest (std :: function <void () >);
19
20 void waitForThread ();
21 }

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 52 / 66

AsyncObjectStream

1 a synchronized producer-consumer queue of objects, and
2 a blocking mechanism to keep the ExecutorThread alive and idle

when waiting for tasks

1 template <class Object >
2 class AsyncObjectStream {
3 // Producer : add an object to the queue
4 void addResult (Object& res);
5
6 // Producer : close the producer end of stream ,
7 // no more objects to produce
8 void resultsFinished ();
9

10 // Consumer : wait for an object from the queue , return true
11 // iff stream is open and objects available
12 bool getNextObject (Object& res);
13
14 // Consumer : determine if queue is currently empty
15 void streamEmpty ();
16 };

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 53 / 66

AsyncObjectStream: getNextObject
1 bool getNextObject (Object& res) {
2 std :: unique_lock <std :: mutex > lk(m_mutex);
3 if (finished && retObjs . empty ()) {
4 lk. unlock ();
5 return false ;
6 }
7
8 // Wait in a loop in case of spurious wake ups
9 while (! finished && retObjs . empty () {

10 m_cv.wait(lk);
11 }
12
13 if (finished && retObjs . empty ()) {
14 lk. unlock ();
15 return false ;
16 } else {
17 res = retObjs . front ();
18 retObjs .pop ();
19 lk. unlock ();
20 return true;
21 }
22 }

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 54 / 66

ExecutorThreadPool

• A thread pool built using FunctionExecutorThreads
• An internal queue of tasks and queue of threads
• When threads are busy, they are temporarily removed from the pool
• When all threads busy, tasks are added to task queue

1 class ExecutorThreadPool {
2
3 private :
4 std :: deque < FunctionExecutorThread *> threadPool ;
5 std :: deque <std :: function <void () >> taskPool ;
6 std :: mutex m_mutex ;
7 std :: condition_variable m_cv; // used in waitForThreads
8
9 void tryPullTask ();

10 void putBackThread (FunctionExecutorThread * t);
11
12 public :
13 void addTask (std :: function <void () > f);
14 void waitForThreads ();
15 }

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 55 / 66

ExecutorThreadPool: Flexible Usage (1/2)
• In support of certain parallel patterns, clients can (temporarily)

obtain ownership of threads from the pool, rather than using addTask
• Abstract away actual threads through thread IDs
• Once thread obtained, repeat Steps 2–3 as often as necessary

1 class ExecutorThreadPool {
2 // Storage for threads removed from pool by obtainThread
3 std :: vector < FunctionExecutorThread *> occupiedThreads ;
4
5 // Step 1: obtain a thread ’s ID , removing it from the pool
6 void obtainThread (threadID& id);
7
8 // Step 2: execute a task on a particular thread
9 void executeTask (threadID id , std :: function <void () >& f);

10
11 // Step 3 (optional): wait for thread to become idle
12 void waitForThread (threadID id);
13
14 // Step 4: return thread to pool (waits before returning)
15 void returnThread (threadID id);
16 }

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 56 / 66

ExecutorThreadPool: Flexible Usage (2/2)

• In support of certain parallel patterns, clients can (temporarily)
obtain ownership of threads from the pool, rather than using addTask

• Can obtain one thread at a time (previous slide), or multiple threads
at a time

1 class ExecutorThreadPool {
2
3 // Step 1: obtain threadIDs , removing them from the pool
4 void obtainThreads (std :: vector <threadID >& ids);
5
6 // Step 2: execute a task on a particular thread
7 void executeTask (threadID id , std :: function <void () >& f);
8
9 // Step 3 (optional): wait for threads to become idle

10 void waitForThreads (std :: vector <threadID >& ids);
11
12 // Step 4: return threads to pool (waits before returning)
13 void returnThreads (std :: vector <threadID >& ids);
14 }

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 57 / 66

Motivation: Usability

BPAS is concerned with accessibility, interoperability, and usability.
• Open-source and written in C/C++ provides the former two.

To achieve usability, we consider best practices for its interface.
1 Natural: a symmetric encoding of the algebraic hierarchy

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring

2 Easy to use: an object-oriented design with well-defined interfaces.
A so-called algebraic class hierarchy: rings are classes and elements
of a ring are objects

3 Encapsulation: hide complexity of low-level code; class interfaces

4 Extensible: adaptable to new (user-created) types, type composition

5 Type safe: compile-time type safety and mathematical type safety

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 58 / 66

Motivation: Type Safety
A naive implementation of the algebraic hierarchy as a class hierarchy
creates mathematically unsafe operations via polymorphism.

Ring

IntegralDomain

GCDDomain

EuclidDomain

remainder(divisor): EuclidDomain

Field

Z mod 17

Q[x]

1 class EuclidDomain {
2 EuclidDomain remainder (EuclidDomain& divisor);
3 }
4
5 Zmod17 a;
6 RationalPoly b;
7 EuclidDomain r = a. remainder (b);

• Z⇑17Z and Q(︀𝑥⌋︀ are Euclidean domains

• the code is valid via polymorphism

• could compile, but then issues at runtime.

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 59 / 66

Existing Solutions

In other compiled libraries, mathematical type safety is only a runtime
property maintained through runtime value checks.

• In Singular’s libpolys [12], all algebraic types are a single class.
Instance variables (Booleans, enums) store properties of rings

• In CoCoA [1] rings and elements of a ring are separate classes.
Elements hold references to their “owning” ring which are compared
at runtime and errors thrown if not identical.

• In LinBox [25] rings and elements are again distinct, with references
to abstract ring elements being downcasted for operations.

Our Goal: provide both compile-time mathematical type safety and a
natural, extensible object-oriented hierarchy for the algebraic hierarchy

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 60 / 66

Algebraic Class Hierarchy
The algebraic hierarchy as a class hierarchy with mathematical type safety

Solution: an abstract class template hierarchy.
• abstract classes: well-defined interfaces, default behaviour
• inheritance incrementally extends/builds interface
• template parameter modifies interface to restrict method parameters

1 template <class Derived >
2 class Ring {...};
3
4 template <class Derived >
5 class IntegralDomain : Ring <Derived > {...};
6
7 template <class Derived >
8 class GCDDomain : IntegralDomain <Derived > {...};
9

10 template <class Derived >
11 class EuclidDomain : GCDDomain <Derived > {
12 Derived remainder (Derived& divisor);
13 }

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 61 / 66

Algebraic Class Hierarchy: Static Polymorphism
Static polymorphism via Curiously Recurring Template Pattern: concrete
class is used as template parameter of super class.

• function resolution occurs at compile-time
• method declaration restricts params to be compile-time compatible

1 template <class Derived >
2 class EuclidDomain : GCDDomain <Derived > {
3 Derived remainder (const Derived& divisor);
4 };
5
6 class Integer : EuclidDomain <Integer > {...}; // CRTP
7 // Integer remainder (const Integer& divisor);
8
9 class RationalPoly : EuclidDomain <RatonalPoly > {...}; // CRTP

10 // RationalPoly remainder (const RationalPoly& divisor);
11
12 Integer x; RationalPoly p;
13
14 // compiler error : EuclidDomain <RationalPoly >:: remainder
15 // takes RationalPoly as parameter
16 RationalPoly r = p. remainder (x);

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 62 / 66

Algebraic Class Hierarchy with Polynomials

Extend abstract class template hierarchy to include polynomials
• parameterize polynomial abstract classes by coefficient ring

1 template <class Derived >
2 class Ring {...};
3
4 template <class CoefRing , class Derived >
5 class Poly : Ring <Derived > {...};
6
7 class RationalPoly : Poly <RationalNumber , RationalPoly > {...};

Problem: What if CoefRing is not actually a ring?
• e.g. Poly<std::string> or Poly::<Apple>

Problem: polynomial rings form different algebraic types depending on
the ground ring

• e.g. Q(︀𝑥⌋︀ is a Euclidean domain, Z(︀𝑥⌋︀ is an integral domain

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 63 / 66

Constraining the Ground Ring

At compile-time ensure that a polynomial’s coefficient ring is an actual
ring with template metaprogramming.

Derived_from<T, Base>: statically determines if T is a subclass of Base,
creating a compiler-error if not

• inheriting from Derived_from forces evaluation at compile-time
during template instantiation

• Coefficient ring must be a subclass of Ring

• Poly can assume CoefRing has a certain interface at minimum

1 template <class T, class Base >
2 class Derived_from {...};
3
4 template <class CoefRing , class Derived >
5 class Poly : Ring <Derived >,
6 Derived_from <CoefRing , Ring <CoefRing >> {...};

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 64 / 66

Adapting to Different Coefficient Rings (1/2)
Determine type of coefficient ring using compile-time introspection

• Conditional inheritance then determines correct algebraic type and
interface for polynomials over that ring

• “Dynamic” type creation via introspection, template instantiation

is_base_of<T, Base>::value
• compile-time Boolean value determines if T is a subclass of Base

conditional<Bool, T1, T2>::value
• A compile-time tertiary conditional operator for choosing types
• Bool ? T1 : T2

1 template <class CRing , class Derived >
2 class Poly : conditional < is_base_of <CRing , Field <CRing >>:: value ,
3 EuclidDomain <Derived >,
4 Ring <Derived >
5 >:: value {...};

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 65 / 66

Adapting to Different Coefficient Rings (2/2)
A chain of conditional’s create a case-discussion at compile-time

• Tester hierarchy separates introspection from actual interface
• Concrete classes inherit from Polynomial to automatically determine

their type and interface

Ring is a GCD domain

Ring is an integral domain

Ring is not an integral domain
BasePolynomial

Ring,Derived

IntegralDomainPoly

Ring,Derived

GCDDomainPoly

Ring,Derived

IntegralPolyTester

Ring,Derived

GCDPolyTester

Ring,Derived

Polynomial

Ring,Derived

Ring is not a GCD domain

Ring

IntegralDomain

GCDDomain

Alex Brandt Design & Implementation of a High-Performance System Solver December 22, 2021 66 / 66

