# The Design and Implementation of a High-Performance Polynomial System Solver 

Alexander Brandt

PhD Research Topics Survey/Proposal<br>Department of Computer Science<br>University of Western Ontario

December 22, 2021

## Solving Systems of Equations

Find values of $x, y, z$ which satisfy $\quad F=\left\{\begin{array}{l}a(x, y, z)=0 \\ b(x, y, z)=0 \\ c(x, y, z)=0\end{array}\right.$

- Solving systems of equations is a fundamental problem in scientific computing
- Numerical methods are very efficient and useful in practice, but only find approximate solutions as floating point numbers
$\hookrightarrow$ Newton's method, Homotopy methods, Gradient descent
- Symbolic methods to find exact solutions are required in robotics, celestial mechanics, cryptography, signal processing [18]
$\hookrightarrow$ Particularly used to find a complete description of all solutions


## Solving a Linear System of Equations

## Step 1: triangularization

$$
\left\{\begin{array}{r}
x+3 y-2 z=6 \\
3 x+5 y+6 z=7 \\
2 x+4 y+3 z=8
\end{array}\right.
$$

(a) by elimination of variables:
$\left\{\begin{array}{r}x+3 y-2 z=6 \\ 3 x+5 y+6 z=7 \\ 2 x+4 y+3 z=8\end{array} \quad\right.$ solve for $x$ substitute $x$. $\left\{\begin{array}{r}x=5-3 y+2 z \\ -4 y+12 z=-8 \\ -2 y+7 z=-2\end{array} \quad\right.$ solve for $y$ substitute $y$ ( $\left\{\begin{array}{l}x=5+2 z-3 y \\ y=2+3 z \\ z=2\end{array}\right.$
(b) by Gaussian elimination:

$$
\left[\begin{array}{rrr|r}
1 & 3 & -2 & 5 \\
3 & 5 & 6 & 7 \\
2 & 4 & 3 & 8
\end{array}\right] \Longrightarrow\left[\begin{array}{rrr|r}
1 & 3 & -2 & 5 \\
0 & 1 & -3 & 2 \\
0 & -2 & 7 & -2
\end{array}\right] \Longrightarrow\left[\begin{array}{rrr|r}
1 & 3 & -2 & 5 \\
0 & 1 & -3 & 2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Step 2: back-substitution to find particular values for $x, y, z$

## Solving a Non-Linear System of Equations

Via Gröbner Basis we can "solve" a non-linear system

$$
\left\{\begin{array} { l } 
{ x ^ { 2 } + y + z = 1 } \\
{ x + y ^ { 2 } + z = 1 } \\
{ x + y + z ^ { 2 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{r}
x+y+z^{2}=1 \\
(y+z-1)(y-z)=0 \\
z^{2}\left(z^{2}+2 y-1\right)=0 \\
z^{2}\left(z^{2}+2 z-1\right)(z-1)^{2}=0
\end{array}\right.\right.
$$

"Solving" a system is not just about finding particular values, rather:

> "find a description of the solutions from which we can easily extract relevant data"

Why?

- A positive-dimensional system has infinitely many solutions
- Underdetermined linear systems, and most non-linear systems


## Decomposing a Non-Linear System

Many ways to "solve" a system

$$
\left\{\begin{array} { l } 
{ x ^ { 2 } + y + z = 1 } \\
{ x + y ^ { 2 } + z = 1 } \\
{ x + y + z ^ { 2 } = 1 }
\end{array} \quad \stackrel { \text { Gröbner Basis } } { \Longrightarrow } \quad \left\{\begin{array}{r}
x+y+z^{2}=1 \\
(y+z-1)(y-z)=0 \\
z^{2}\left(z^{2}+2 y-1\right)=0 \\
z^{2}\left(z^{2}+2 z-1\right)(z-1)^{2}=0
\end{array}\right.\right.
$$

Triangular Decomposition

$$
\left\{\begin{array}{r}
x-z=0 \\
y-z=0 \\
z^{2}+2 z-1=0
\end{array},\left\{\begin{array}{r}
x=0 \\
y=0 \\
z-1=0
\end{array}, \quad\left\{\begin{array}{r}
x=0 \\
y-1=0 \\
z=0
\end{array}, \quad\left\{\begin{array}{r}
x-1=0 \\
y=0 \\
z=0
\end{array}\right.\right.\right.\right.
$$

Both solutions are equivalent (via a union).

- by using triangular decomposition, multiple components are found, suggesting possible component-level parallelism


## Outline

1 Introduction

2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

## Incremental Decomposition of a Non-Linear System

Intersect one equation at a time with the current solution set


$$
\begin{aligned}
& F=\left\{\begin{array}{l}
x^{2}+y+z=1 \\
x+y^{2}+z=1 \\
x+y+z^{2}=1
\end{array}\right. \\
& F[1] \quad \begin{array}{c}
\varnothing \\
\downarrow
\end{array} \\
& \left\{x^{2}+y+z=1\right\} \\
& F[2] \quad \downarrow \\
& \left\{\begin{array}{r}
x+y^{2}+z=1 \\
y^{4}+(2 z-2) y^{2}+y+\left(z^{2}-z\right)=0
\end{array}\right\} \\
& F[3]
\end{aligned}
$$

## Solving polynomial systems symbolically is hard

- Algorithms are at least singly exponential $\mathcal{O}\left(d^{n}\right)$
$\hookrightarrow$ At least in $\mathcal{P S P A C E}$ but up to $\mathcal{E X} \mathcal{P S P A C E}$-complete [17, Ch. 21]
- Algorithms require complex code and vast dependencies: arbitrary-precision integers, GCDs, factorization, linear algebra
- Intermediate expression swell



## Motivations and Challenges

## Motivations:

- Solving symbolically is difficult but still desirable in many fields
- Algorithmic development [7] has come a long way; must now focus on implementation techniques, making the most of modern hardware
$\hookrightarrow$ Multicore processors, cache hierarchy
$\hookrightarrow$ Must apply parallel computing and data locality
Challenges:
- Study application of high-performance techniques to high-level geometric algorithms
- Potential parallelism is problem-dependent and not algorithmic
$\hookrightarrow$ Geometry may or may not split into different components
$\hookrightarrow$ Finding splittings is as difficulty as solving the problem
- Study how software design can manage maintainability and usability of highly complex mathematical code


## Unbalanced and Irregular Parallelism

Sys2913 Component Tree


- More parallelism exposed as more components found,
- Work unbalanced between branches; this is irregular parallelism
- Mechanism needed for adaptive, dynamic parallelism


## Previous Works

- Long history of theoretical and algorithmic development in triangular decomposition [3, 5, 7-9, 22, 26, 27]
- Parallelization of high-level algebraic and geometric algorithms was more common roughly 30 years ago
$\hookrightarrow$ Such as in Gröbner Bases [2, 6, 15] and CAD [24]
- Recent parallelism of low-level routines with regular parallelism:
$\hookrightarrow$ Polynomial arithmetic [16, 20]
$\hookrightarrow$ Modular methods for GCDs and Factorization [19, 21]
- Recently, high-level algorithms, often with irregular parallelism, have seen little progress in research or implementation
$\hookrightarrow$ The normalization algorithm of [4] finds components serially, then processes each component with a simple parallel map
$\hookrightarrow$ Early work on parallel triangular decomposition was limited by symmetric multi-processing and inter-process communication [23]


## Objectives

1 Investigate and evaluate component-level parallelism and other high-performance techniques for triangular decompositions

2 Examine the composition of parallelism between high-level and low-level algorithms in symbolic computation

3 Re-imagine dynamic evaluation in the context of triangular decomposition

4 Study how software design can be used to improve the maintainability and usability of the resulting highly optimized and complex code

## Preliminary Results



1 High-performance, parallel triangular decomposition in $\mathrm{C} / \mathrm{C}++$ with multiple simultaneous levels of parallelism

2 A library for composable and cooperative parallel programming with support for parallel patterns

3 An object-oriented class hierarchy encoding the algebraic hierarchy provides compile-time type safety and mathematical correctness

## Outline

## 1 Introduction

2 Mathematical Preliminaries

## 3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

## Polynomial Notations

- Let $\mathbb{K}$ be a perfect field (e.g. $\mathbb{Q}$ or $\mathbb{C}$ ) and $\overline{\mathbb{K}}$ its algebraic closure
- Let $\mathbb{K}[\underline{X}]$ be the set of multivariate polynomials (a polynomial ring) with $n$ ordered variables, $\underline{X}=X_{1}<\cdots<X_{n}$.
- For $p \in \mathbb{K}[\underline{X}]$ :
$\hookrightarrow$ the main variable of $p$ is the maximum variable with positive degree
$\hookrightarrow$ the initial of $p$ is the leading coeff. of $p$ with respect to its main variable
$\hookrightarrow$ the tail of $p$ is the terms leftover after setting its initial to 0

$$
(2 y+b a) x^{2}+(b y) x+a^{2} \quad \in \mathbb{Q}[b<a<y<x]
$$

- Any set of polynomials $F \subset \mathbb{K}[\underline{X}]$ can form a system of equations by setting $f=0$ for each $f \in F$.
- The zero set of $F$ is an algebraic variety-the geometric representation of its solutions

$$
\hookrightarrow V(F)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \overline{\mathbb{K}}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0, \forall f \in F\right\}
$$

## Triangular Sets and Regular Chains

A triangular set $T \subset \mathbb{K}[\underline{X}]$ is a collection of polynomials with pairwise different main variables

Example:


$$
\begin{aligned}
T & =\left\{\begin{array}{r}
(2 y+b a) x-b y+a^{2} \\
2 y^{2}-b y-a^{2} \\
a+b
\end{array}\right\} \\
& \subset \mathbb{Q}[b<a<y<x]
\end{aligned}
$$

A regular chain is a triangular set if:
(i) $T_{v}^{-}$is a regular chain, and
(ii) initial of $T_{v}(h)$ is regular with respect to $T_{v}^{-}$

In triangular decomposition, every component is a regular chain

## Regularity: Not all triangular sets are regular chains

$$
T_{1}=\left\{\begin{aligned}
y x-1 & =0 \\
y & =0 \\
z-1 & =0
\end{aligned}\right.
$$

$$
T_{2}=\left\{\begin{aligned}
(y+1) x^{2}-x & =0 \\
y^{2}-1 & =0 \\
z-1 & =0
\end{aligned}\right.
$$

- This set is inconsistent; there are no solutions
- Back-substituting $y=0$ into $y x-1=0$ yields $-1=0$
- $y$ has two solutions:

$$
y^{2}-1=(y+1)(y-1)
$$

- For $y=-1, x$ has 1 solution
- For $y=1, x$ has 2 solutions

A polynomial is regular (modulo a regular chain) if it is neither:
(i) zero (e.g. $y$ in $T_{1}$ ), nor
(ii) a zero-divisor (e.g. $(y+1)$ in $T_{2}$ )

## The foundation of splitting: regularity testing

To intersect a polynomial with an existing regular chain, it must have a regular initial, regularizing finds splittings via a case discussion

- either the initial is regular, or it is not regular

$$
\begin{aligned}
& f=(y+1) x^{2}-x \\
& T=\left\{\begin{array}{rl}
y^{2}-1=0 \\
z-1=0
\end{array} T_{1}=\left\{\begin{array}{l}
y+1=0 \\
z-1=0
\end{array} \quad \xrightarrow{f=x} \begin{array}{r}
x=0 \\
y+1=0 \\
z-1=0
\end{array}\right.\right. \\
& x_{0} T_{2}=\left\{\begin{array}{rl}
y-1=0 & f=2 x^{2}-x \\
z-1=0 & \\
\hline
\end{array} T_{4}=\left\{\begin{array}{r}
2 x^{2}-x=0 \\
y-1=0 \\
z-1=0
\end{array}\right.\right.
\end{aligned}
$$

This actually forms a direct product isomorphism:

$$
\mathbb{K}[x, y, z] / \operatorname{sat}(T) \cong \mathbb{K}[x, y, z] / \operatorname{sat}\left(T_{1}\right) \otimes \mathbb{K}[x, y, z] / \operatorname{sat}\left(T_{2}\right)
$$

## Ideal-Variety Correspondence

(i) $0 \in \mathcal{I}$,
$\mathcal{I} \subseteq \mathbb{K}[\underline{X}]$ is an ideal if: (ii) for $f, g \in \mathcal{I}, f+g \in \mathcal{I}$, and
(iii) for $f \in \mathcal{I}, r \in \mathbb{K}[\underline{X}], r f \in \mathcal{I}$

For $f, g \in \mathbb{K}[\underline{X}],\langle f, g\rangle=\langle f\rangle+\langle g\rangle=\left\{r_{1} f+r_{2} g \mid r_{1}, r_{2} \in \mathbb{K}[\underline{X}]\right\}$
$\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}=F \subset \mathbb{K}[\underline{X}],\langle F\rangle$ is all polynomial consequences of $F$ :
$\hookrightarrow$ that is, all results which follow from $f_{1}=f_{2}=\cdots=f_{k}=0$.
$\hookrightarrow V(F)=V(\langle F\rangle)$

$$
\begin{aligned}
\text { Sum: } & V(\mathcal{I}+\mathcal{J})=V(\mathcal{I}) \cap V(\mathcal{J}) \\
\text { Product: } & V(\mathcal{I} \mathcal{J})=V(\mathcal{I} \cap \mathcal{J})=V(\mathcal{I}) \cup V(\mathcal{J}) \\
\text { Saturation: } & V\left(\mathcal{I}: \mathcal{J}^{\infty}\right)=\overline{V(\mathcal{I}) \backslash V(\mathcal{J})}
\end{aligned}
$$

Note: for $S \subset \overline{\mathbb{K}}^{n}, \bar{S}$ is its closure: the smallest variety $V$ such that $S \subseteq V$

## Regular Chains and Triangular Decomposition

Let $T$ be a regular chain and $h_{T}=\prod_{p \in T} \operatorname{initial}(p)$
Saturated ideal of a regular chain:

- $\operatorname{sat}(T)=\langle T\rangle: h_{T}^{\infty}$
- $\operatorname{sat}(\varnothing)=\langle 0\rangle$

Quasi-component of a regular chain:

- $W(T):=V(T) \backslash V\left(h_{T}\right) \quad$ • $\overline{W(T)}=V(\operatorname{sat}(T))$

A triangular decomposition of an input system $F \subseteq \mathbb{K}[\underline{X}]$ is a set of regular chains $T_{1}, \ldots, T_{e}$ such that:
(Kalkbrener decomposition) $\quad V(F)=\bigcup_{i=1}^{e} \overline{W\left(T_{i}\right)}$, or
(Lazard-Wu decomposition) $\quad V(F)=\bigcup_{i=1}^{e} W\left(T_{i}\right)$
Note: Some $T_{i}$ may be redundant; $\exists j W\left(T_{i}\right) \subseteq W\left(T_{j}\right)$

## All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of mutually recursive functions do the heavy-lifting.
$\hookrightarrow$ In all cases, polynomials are forced to be regular and splittings are (possibly) found via Regularize


## Outline

## 1 Introduction

## 2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

## Map

- Simultaneously execute a function on each data item in a collection
- If more data items than threads, apply the pattern block-wise: partition the collection and apply one thread to each partition
- Often simplified as just a parallel_for loop
- Where multiple map steps are performed in a row, they must operate in lockstep



## Workpile

- Workpile generalizes map pattern to a queue of tasks
- Tasks in-flight can add new tasks to input queue
- Threads take tasks from queue until it is empty
- Very similar in structure to a thread pool
- Can be seen as a parallel_while loop



## Triangularize: Incremental Triangular Decomposition

```
Algorithm 1 Triangularize \((F)\)
Input: a finite set \(F \subseteq \mathbb{K}[\underline{X}]\)
Output: regular chains \(T_{1}, \ldots, T_{e} \subseteq \mathbb{K}[\underline{X}]\) such that \(V(F)=W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right)\)
    1: \(\mathcal{T}:=\{\varnothing\}\)
    2: for \(p \in F\) do
    3: \(\quad \mathcal{T}^{\prime}:=\varnothing\)
    4: parallel_for \(T \in \mathcal{T} \quad \triangleright\) map Intersect over the current components
    5: | \(\quad \mathcal{T}^{\prime}:=\mathcal{T}^{\prime} \cup \operatorname{Intersect}(p, T)\)
    6: end for
    7: \(\quad \mathcal{T}:=\operatorname{RemoveRedundantComponents}\left(\mathcal{T}^{\prime}\right) \quad \triangleright\) prune redundancies each step
    8: return \(\mathcal{T}\)
```

- Coarse-grained parallelism: each Intersect represents substantial work
- At each "level" there $|\mathcal{T}|$ components with which to intersect, yielding $|\mathcal{T}|-1$ additional threads
- Performs a breadth-first search, with synchronization at each level


## Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks $(F)$
Input: a finite set $F \subseteq \mathbb{K}[\underline{X}]$
Output: regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbb{K}[\underline{X}]$ such that $V(F)=W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right)$
1: Tasks := $\{(F, \varnothing)\} ; \mathcal{T}:=\varnothing$
2: while $\mid$ Tasks $\mid>0$ do
3: $\quad(P, T):=$ pop a task from Tasks
4: $\quad$ Choose a polynomial $p \in P ; P^{\prime}:=P \backslash\{p\}$
5: $\quad$ for $T^{\prime}$ in $\operatorname{Intersect}(p, T)$ do
6: $\quad \mid \quad$ if $\left|P^{\prime}\right|=0$ then $\mathcal{T}:=\mathcal{T} \cup\left\{T^{\prime}\right\}$ else Tasks:= Tasks $\cup\left\{\left(P^{\prime}, T^{\prime}\right)\right\}$
8: return RemoveRedundantComponents $(\mathcal{T})$

- Performs a depth-first search
- Tasks is essentially a data structure for a task scheduler
- Tasks create more tasks, workers pop Tasks until none remain.
- Adaptive to load-balancing, no inter-task synchronization


## Producer-Consumer, Asynchronous Generators

- Two functions connected by a queue, executing concurrently
- The producer produces data items, pushing them to the queue
- The consumer processes data items, pulling them from the queue

- Producer may be considered as an iterator or generator
$\hookrightarrow$ special kinds of coroutines which yield data items one at a time, rather than many as a collection
- If generation of data is expensive, generator may execute asynchronously, fulfilling the role of producer


## Intersect as a Generator

## Algorithm 3 Intersect $(p, T)$

Input: $p \in \mathbb{K}[\underline{X}] \backslash \mathbb{K}, v:=\operatorname{mvar}(p)$, a regular chain $T$ s.t. $T=T_{v}^{-} \cup T_{v}$
Output: regular chains $T_{1}, \ldots, T_{e}$ satisfying specs.
1: for $\left(g_{i}, T_{i}\right) \in \operatorname{RegularGCD}\left(p, T_{v}, v, T_{v}^{-}\right)$do
2: if $\operatorname{dim}\left(T_{i}\right) \neq \operatorname{dim}\left(T_{v}^{-}\right)$then
3: $\quad$ for $T_{i, j} \in \operatorname{Intersect}\left(p, T_{i}\right)$ do
4: $\quad \mid \quad$ yield $T_{i, j}$
5: else
$6:$
if $g_{i} \notin \mathbb{K}$ and $\operatorname{deg}\left(g_{i}, v\right)>0$ then
yield $T_{i} \cup\left\{g_{i}\right\}$
for $T_{i, j} \in \operatorname{Intersect}\left(\operatorname{lc}\left(g_{i}, v\right), T_{i}\right)$ do for $T^{\prime} \in \operatorname{Intersect}\left(p, T_{i, j}\right)$ do | yield $T^{\prime}$

- yield "produces" a single data item, and then continues computation
- each for loop iteration consumes one data item from a generator


## Pipeline

- A sequence of stages where the output of one stage is used as the input to another
- Two consecutive stages form a producer-consumer pair
- Internal stages are both producer and consumer
- Typically, a pipeline is constructed statically through code organization
- Pipelines can be created dynamically and implicitly with asynchronous generators and the call stack



## Triangularize Subroutine Pipeline



- all subroutines as generators allows pipeline to evolve dynamically with the call stack.
- data streams between subroutines; all soubroutines are effectively non-blocking
- call stack forms a tree as several generators invoked by one consumer
- pipeline creates fine-grained parallelism since work diminishes with each recursive call


## Outline

## 1 Introduction

## 2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

## 5 Future Work

6 Appendix: Additional Details

## Thread-level parallelism

Multithreading: using (software) threads—multiple independent control flows in one process-for concurrency

Hardware enables parallelism by executing multiple threads simultaneously on independent processors (i.e. hardware threads)

Parallel overheads:
$\hookrightarrow$ software threads > hardware threads $\Longrightarrow$ over-subscription
$\hookrightarrow$ spawning and joining threads
$\hookrightarrow$ load imbalance: unevenly distributed work between threads; some are left idle while others are still executing
$\hookrightarrow$ inter-thread communication and synchronization

C ++11 Thread Support Library supports object-oriented multithreading

## Thread Pools



- A fixed number of threads are spawned, only once, at the beginning of the program
- Threads remain active for the program lifetime
- Threads receive tasks, code blocks or functions, to execute as needed
- Threads return to the pool upon completing their task
- Services requests from multiple client codes enabling cooperation


## ExecutorThreadPool

- A pool of ExecutorThreads able to execute any function object
- AsyncObjectStream implements producer-consumer pattern to stream objects between threads
$\hookrightarrow$ includes function objects, and later, objects for generators
- Allows for thread cooperation: (normal) tasks vs. priority tasks
$\hookrightarrow$ If all normal threads busy, new "priority thread" spawned to immediately launch a priority task
$\hookrightarrow$ A returning thread is retired to avoid over-subscription
$\hookrightarrow$ Limits total number priority threads; after limit, priority tasks pushed to the front of queue
- Enables optional parallelism: user specifies areas for concurrency in code, runtime dynamically chooses which to execute in parallel


## AsyncGenerator and AsyncObjectStream

We want an object-oriented approach to create and use generators
$\hookrightarrow$ AsyncGenerator acts as interface between producer and consumer
$\hookrightarrow$ Use AsyncObjectStream as producer-consumer queue

- The consumer constructs the AsyncGenerator, passing the constructor the producer's function and arguments
- The AsyncGenerator inserts itself into the producer's list of arguments so that it has reference to the generator object
- The producer's signature should be:

```
1 void producerFunction(..., AsyncGenerator<Object>&);
```

- If ExecutorThreadPool not empty producer executes asynchronously, otherwise execute serially on consumer's thread


## AsyncGenerator Example

```
void FibonacciGen(int n, AsyncGenerator<int>& gen) {
    int Fn_1 = 0;
    int Fn = 1;
    for (int i = 0; i < n; ++i) {
        gen.generateObject(Fn_1); //yield Fn_1 and continue
        Fn = Fn + Fn_1;
        Fn_1 = Fn - Fn_1;
    }
    gen.setComplete();
}
void Fib() {
    int n, fib;
    std::cin >> n;
    AsyncGenerator<int> gen(FibonacciGen, n);
    //get one integer at a time until generator is finished
    while (gen.getNextObject(fib)) {
        std::cerr << fib << std::endl;
    }
}
```


## Outline

## 1 Introduction

## 2 Mathematical Preliminaries

## 3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

## Improved Parallel Performance, Avoiding Redundancies

- TriangularizeByTasks improved parallelism but could not intermittently remove redundancies
$\hookrightarrow$ we will investigate a hybrid approach: depth-first search with task cancellation to prune redundant branches
- Parallelize low-level routines to add parallelism and load-balance when there is little to no component-level parallelism to exploit
- Memoization of subroutines
$\hookrightarrow$ Typical of (mutually-)recursive algorithms
$\hookrightarrow$ Different branches of computation deriving from the same regular chain are very likely to share geometric and algebraic features
$\hookrightarrow$ Caching the results of operations in, e.g., a hash table will avoid redundant re-computation


## Dynamic Evaluation and Avoiding Redundant Computation

Dynamic Evaluation: an automatic case discussion based on choices of particular values on parameters [13, 14]

Regularity testing:

$$
T=\left\{\begin{array}{rr}
y^{2}-1=0 & y+1=0 \\
z-1=0 & T_{1}=\left\{\begin{array}{l}
y+1=0 \\
z-1=0
\end{array}\right. \\
y_{1 \times 0} & T_{2}=\left\{\begin{array}{l}
y-1=0 \\
z-1=0
\end{array}\right.
\end{array}\right.
$$

Two branches are likely to share geometric and algebraic features

$$
T_{5}=\left\{\begin{array}{l}
a(y, z) \\
b(z) c(z)
\end{array} \quad T_{6}=\left\{\begin{array}{l}
d(y, z) \\
b(z) c(z)
\end{array}\right.\right.
$$

- $T_{5}$ splitting into $\{a(y, z), b(z)\}$ and $\{a(y, z), c(z)\}$ should automatically split $T_{6}$ into $\{d(y, z), b(z)\}$ and $\{d(y, z), c(z)\}$
- Requires a universal view and shared data structure [10]


## Polymorphic Regular Chains

- Triangular decomposition, in theory, works over any perfect field
- Current implementation limited to the field of rationals $\mathbb{Q}$
- Working over a finite field enables additional component-level parallelism as components more easily split [23]
- Solving over finite fields is itself useful in practice and is required as a modular method to solve very hard problems [11]
- Our regular chains code requires refactoring to properly use a generic multivariate polynomial interface, and thus rely on polymorphism


## References

[1] J. Abbott and A. M. Bigatti. CoCoALib: a C++ library for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it/cocoalib.
[2] G. Attardi and C. Traverso. "Strategy-Accurate Parallel Buchberger Algorithms". In: Journal of Symbolic Computation 22 (1996), pp. 1-15.
[3] P. Aubry, D. Lazard, and M. Moreno Maza. "On the Theories of Triangular Sets". In: Journal of Symbolic Computation 28.1-2 (1999), pp. 105-124.
[4] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S. Steidel. "Parallel algorithms for normalization". In: J. Symb. Comput. 51 (2013), pp. 99-114.
[5] F. Boulier, F. Lemaire, and M. Moreno Maza. "Well known theorems on triangular systems and the D5 principle". In: Transgressive Computing 2006, Proceedings. Granada, Spain, 2006.
[6] B. Buchberger. "The parallelization of critical-pair/completion procedures on the L-Machine". In: Japanese Symposium on Functional Pogramming, Proceedings. 1987, pp. 54-61.
[7] C. Chen and M. Moreno Maza. "Algorithms for computing triangular decomposition of polynomial systems". In: Journal of Symbolic Computation 47.6 (2012), pp. 610-642.
[8] C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. "Triangular decomposition of semi-algebraic systems". In: Journal of Symbolic Computation 49 (2013), pp. 3-26.
[9] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. "Comprehensive Triangular Decomposition". In: Computer Algebra in Scientific Computing, CASC 2007, Proceedings. 2007, pp. 73-101.
[10] C. Chen and M. Moreno Maza. "An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions". In: Asian Symposium on Computer Mathematics, ASCM 2012, Proceedings. Springer, 2012, pp. 199-221.
[11] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. "Lifting techniques for triangular decompositions". In: International Symposium on Symbolic and Algebraic Computation, ISSAC 2005, Proceedings. 2005, pp. 108-115.
[12] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-1-1 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. 2018.
[13] J. D. Dora, C. Dicrescenzo, and D. Duval. "About a New Method for Computing in Algebraic Number Fields". In: European Conference on Computer Algebra, EUROCAL 1985, Proceedings Volume 2: Research Contributions. Vol. 204. Lecture Notes in Computer Science. Springer, 1985, pp. 289-290.
[14] D. Duval. "Algebraic Numbers: An Example of Dynamic Evaluation". In: Journal of Symbolic Computation 18.5 (1994), pp. 429-445.
[15] J. C. Faugere. "Parallelization of Gröbner Basis". In: Parallel Symbolic Computation, PASCO 1994, Proceedings. Vol. 5. World Scientific. 1994, p. 124.
[16] M. Gastineau and J. Laskar. "Parallel sparse multivariate polynomial division". In: Parallel Symbolic Computation, PASCO 2015, Proceedings. 2015, pp. 25-33.
[17] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. 3rd ed. NY, USA: Cambridge University Press, 2013.
[18] J. Grabmeier, E. Kaltofen, and V. Weispfenning, eds. Computer algebra handbook. Springer-Verlag, 2003.
[19] J. Hu and M. B. Monagan. "A Fast Parallel Sparse Polynomial GCD Algorithm". In: International Symposium on Symbolic and Algebraic Computation, ISSAC 2016, Proceedings. 2016, pp. 271-278.
[20] M. B. Monagan and R. Pearce. "Parallel sparse polynomial multiplication using heaps". In: International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, Proceedings. ACM, 2009, pp. 263-270.
[21] M. B. Monagan and B. Tuncer. "Sparse Multivariate Hensel Lifting: A High-Performance Design and Implementation". In: Mathematical Software - ICMS 2018, Proceedings. 2018, pp. 359-368.
[22] M. Moreno Maza. On Triangular Decompositions of Algebraic Varieties. Tech. rep. TR 4/99. Presented at the MEGA-2000 Conference, Bath, England. Oxford, UK: NAG Ltd, 1999.
[23] M. Moreno Maza and Y. Xie. "Component-level parallelization of triangular decompositions". In: Parallel Symbolic Computation, PASCO 2007, Proceedings. ACM. 2007, pp. 69-77.
[24] B. D. Saunders, H. R. Lee, and S. K. Abdali. "A parallel implementation of the cylindrical algebraic decomposition algorithm". In: International Symposium on Symbolic and Algebraic Computation, ISSAC 1989, Proceedings. Vol. 89. 1989, pp. 298-307.
[25] The LinBox group. LinBox. v1.6.3. 2019. URL: http://github.com/linbox-team/linbox.
[26] W. Wu. "A zero structure theorem for polynomial equations solving". In: MM Research Preprints 1 (1987), pp. 2-12.
[27] W. Wu. "On zeros of algebra equations—an application of Ritt principle". In: Kexeu Tongbao 31.1 (1986), pp. 1-5.

## Outline

## 1 Introduction

## 2 Mathematical Preliminaries

3 Parallel Patterns and Triangular Decomposition

4 Cooperative Multithreading and Parallel Patterns

5 Future Work

6 Appendix: Additional Details

## BPAS vs RegularChains in Maple



## Parallel Speedup



SRC: Subresultant chain computations, RRC: removal of redundant components

## Speedup for each parallel scheme individually



## Fork-Join



- Fork: divide problem and execute separate calls in parallel
- Join: merge parallel execution back into serial
- Recursively applying fork-join can easily parallelize a divide-and-conquer algorithm


## Divide-and-Conquer and Fork-Join

Remove redundancies from a list of regular chains with DnC:

- Recursively and concurrently obtain two irredundant lists, then merge.
- Merge can be done as a map

Algorithm 4 RemoveRedundantComponents $(\mathcal{T})$
Input: a finite set $\mathcal{T}=\left\{T_{1}, \ldots, T_{e}\right\}$ of regular chains
Output: an irredundant set $\mathcal{T}^{\prime}$ with the same algebraic set as $\mathcal{T}$
if $e=1$ then return $\mathcal{T}$
$\ell:=\lceil e / 2\rceil ; \mathcal{T}_{\leq \ell}:=\left\{T_{1}, \ldots, T_{\ell}\right\} ; \mathcal{T}_{>\ell}:=\left\{T_{\ell+1}, \ldots, T_{e}\right\}$
$\mathcal{T}_{1}:=$ spawn RemoveRedundantComponents $\left(\mathcal{T}_{\leq \ell}\right)$
$\mathcal{T}_{2}:=$ RemoveRedundantComponents $\left(\mathcal{T}_{>\ell}\right)$
sync
$\mathcal{T}_{1}^{\prime}:=\varnothing ; \quad \mathcal{T}_{2}^{\prime}:=\varnothing$
parallel_for $T_{1} \in \mathcal{T}_{1}$
if $\forall T_{2}$ in $\mathcal{T}_{2}$ IsNotIncluded $\left(T_{1}, T_{2}\right)$ then $\mathcal{T}_{1}^{\prime}:=\mathcal{T}_{1}^{\prime} \cup\left\{T_{1}\right\}$
parallel_for $T_{2} \in \mathcal{T}_{2}$
if $\forall T_{1}$ in $\mathcal{T}_{1}^{\prime}$ IsNotIncluded $\left(T_{2}, T_{1}\right)$ then $\mathcal{T}_{2}^{\prime}:=\mathcal{T}_{2}^{\prime} \cup\left\{T_{2}\right\}$
return $\mathcal{T}_{1}^{\prime} \cup \mathcal{T}_{2}^{\prime}$

## Threading Primitives

C ++11 introduced the Thread Support Library
■ std::thread
$\hookrightarrow$ C++ class encapsulating a thread (often a pthread) and its low-level spawn and join

■ std: :mutex
$\hookrightarrow$ shared object between threads to indicate mutual exclusion to a critical region.
$\hookrightarrow$ mutex is locked or owned by at most one thread at a time.
■ std::lock_guard, std::unique_lock
$\hookrightarrow$ temporary object wrapping a mutex whose object lifetime automatically locks and unlocks the mutex.
$\hookrightarrow$ the constructor blocks and only returns once the shared mutex is successfully owned by the calling thread.

■ std::condition_variable
$\hookrightarrow$ blocks the current thread and temporarily releases a lock
$\hookrightarrow$ receives notification from another thread to awaken the blocked thread

## std::function

## Functors, function objects, callable objects

- First-class objects which are callable using normal function syntax
- Are often constructed by passing function names, function pointers
- std: :bind binds arguments to a function or function object, returning a function object which requires fewer arguments

```
void printInteger(int a) {
    std::cout << a << std::endl;
}
//Function object from function name
std::function<void(int)> f_printInt(printInteger);
f_printInt(12);
//Function object binding arguments to function name
std::function<void()> f_print42( std::bind(printInteger,42) );
f_print42();
```


## Function Executor Thread: Implementation

```
class FunctionExecutorThread {
    AsyncObjectStream<std:: function<void() >> requestQueue;
    std::thread m_worker;
    std::mutex m_mutex;
    std::condition_variable m_cv;
    FunctionExecutorThread() {
        //member functions require pointer to member
        m_worker = std::thread(
            &FunctionExecutorThread:: eventLoop, this);
    }
    //NOTE: copy constructor and copy operator are deleted
    void eventLoop();
    void sendRequest(std:: function<void()>);
    void waitForThread();
}
```


## AsyncObjectStream

1 a synchronized producer-consumer queue of objects, and
2 a blocking mechanism to keep the ExecutorThread alive and idle when waiting for tasks

```
template <class Object>
class AsyncObjectStream {
    //Producer: add an object to the queue
    void addResult(Object& res);
    //Producer: close the producer end of stream,
    // no more objects to produce
    void resultsFinished();
    //Consumer: wait for an object from the queue, return true
    // iff stream is open and objects available
    bool getNextObject(Object& res);
    //Consumer: determine if queue is currently empty
    void streamEmpty();
};
```


## AsyncObjectStream: getNextObject

```
bool getNextObject(Object& res) {
    std::unique_lock<std::mutex> lk(m_mutex);
    if (finished && retObjs.empty()) {
            lk.unlock();
                return false;
    }
    //Wait in a loop in case of spurious wake ups
    while (!finished && retObjs.empty() {
        m_cv.wait(lk);
    }
    if (finished && retObjs.empty()) {
        lk.unlock();
        return false;
    } else {
            res = retObjs.front();
            retObjs.pop();
            lk.unlock();
            return true;
    }
}
```


## ExecutorThreadPool

- A thread pool built using FunctionExecutorThreads
- An internal queue of tasks and queue of threads
- When threads are busy, they are temporarily removed from the pool
- When all threads busy, tasks are added to task queue

```
class ExecutorThreadPool {
private:
    std::deque<FunctionExecutorThread*> threadPool;
    std::deque<std::function<void() >> taskPool;
    std::mutex m_mutex;
    std::condition_variable m_cv; //used in waitForThreads
    void tryPullTask();
    void putBackThread(FunctionExecutorThread* t);
public:
    void addTask(std:: function<void() > f);
    void waitForThreads();
}
```


## ExecutorThreadPool: Flexible Usage (1/2)

- In support of certain parallel patterns, clients can (temporarily) obtain ownership of threads from the pool, rather than using addTask
- Abstract away actual threads through thread IDs
- Once thread obtained, repeat Steps 2-3 as often as necessary

```
class ExecutorThreadPool {
    //Storage for threads removed from pool by obtainThread
    std::vector<FunctionExecutorThread*> occupiedThreads;
    //Step 1: obtain a thread's ID, removing it from the pool
    void obtainThread(threadID& id);
    //Step 2: execute a task on a particular thread
    void executeTask(threadID id, std:: function<void() >& f);
    //Step 3 (optional): wait for thread to become idle
    void waitForThread(threadID id);
    //Step 4: return thread to pool (waits before returning)
    void returnThread(threadID id);
}
```


## ExecutorThreadPool: Flexible Usage (2/2)

- In support of certain parallel patterns, clients can (temporarily) obtain ownership of threads from the pool, rather than using addTask
- Can obtain one thread at a time (previous slide), or multiple threads at a time

```
1
2
3
4
5
6
7
8
9
```

class ExecutorThreadPool {

```
class ExecutorThreadPool {
    //Step 1: obtain threadIDs, removing them from the pool
    //Step 1: obtain threadIDs, removing them from the pool
    void obtainThreads(std::vector<threadID>& ids);
    void obtainThreads(std::vector<threadID>& ids);
    //Step 2: execute a task on a particular thread
    //Step 2: execute a task on a particular thread
    void executeTask(threadID id, std:: function<void()>& f);
    void executeTask(threadID id, std:: function<void()>& f);
    //Step 3 (optional): wait for threads to become idle
    //Step 3 (optional): wait for threads to become idle
    void waitForThreads(std: : vector<threadID>& ids);
    void waitForThreads(std: : vector<threadID>& ids);
    //Step 4: return threads to pool (waits before returning)
    //Step 4: return threads to pool (waits before returning)
    void returnThreads(std::vector<threadID>& ids);
    void returnThreads(std::vector<threadID>& ids);
}
```

}

```

\section*{Motivation: Usability}

BPAS is concerned with accessibility, interoperability, and usability.
- Open-source and written in \(\mathrm{C} / \mathrm{C}++\) provides the former two.

To achieve usability, we consider best practices for its interface.
1 Natural: a symmetric encoding of the algebraic hierarchy
field \(\subset\) Euclidean domain \(\subset\) GCD domain \(\subset\) integral domain \(\subset\) ring
2 Easy to use: an object-oriented design with well-defined interfaces. A so-called algebraic class hierarchy: rings are classes and elements of a ring are objects

3 Encapsulation: hide complexity of low-level code; class interfaces
4 Extensible: adaptable to new (user-created) types, type composition
5 Type safe: compile-time type safety and mathematical type safety

\section*{Motivation: Type Safety}

A naive implementation of the algebraic hierarchy as a class hierarchy creates mathematically unsafe operations via polymorphism.


\section*{Existing Solutions}

In other compiled libraries, mathematical type safety is only a runtime property maintained through runtime value checks.
- In Singular's libpolys [12], all algebraic types are a single class. Instance variables (Booleans, enums) store properties of rings
- In CoCoA [1] rings and elements of a ring are separate classes. Elements hold references to their "owning" ring which are compared at runtime and errors thrown if not identical.
- In LinBox [25] rings and elements are again distinct, with references to abstract ring elements being downcasted for operations.

Our Goal: provide both compile-time mathematical type safety and a natural, extensible object-oriented hierarchy for the algebraic hierarchy

\section*{Algebraic Class Hierarchy}

The algebraic hierarchy as a class hierarchy with mathematical type safety
Solution: an abstract class template hierarchy.
- abstract classes: well-defined interfaces, default behaviour
- inheritance incrementally extends/builds interface
- template parameter modifies interface to restrict method parameters
```

template <class Derived>
class Ring {...};
template <class Derived>
class IntegralDomain : Ring<Derived> {...};
template <class Derived>
class GCDDomain : IntegralDomain<Derived> {...};
template <class Derived>
class EuclidDomain : GCDDomain<Derived> {
Derived remainder(Derived\& divisor);
}

```

\section*{Algebraic Class Hierarchy: Static Polymorphism}

Static polymorphism via Curiously Recurring Template Pattern: concrete class is used as template parameter of super class.
- function resolution occurs at compile-time
- method declaration restricts params to be compile-time compatible
```

template <class Derived>
class EuclidDomain : GCDDomain<Derived> {
Derived remainder(const Derived\& divisor);
};
class Integer : EuclidDomain<Integer> {...}; //CRTP
//Integer remainder(const Integer\& divisor);
class RationalPoly : EuclidDomain<RatonalPoly> {...}; //CRTP
//RationalPoly remainder(const RationalPoly\& divisor);
Integer x; RationalPoly p;
//compiler error: EuclidDomain<RationalPoly>::remainder
// takes RationalPoly as parameter
RationalPoly r = p.remainder(x);

```

\section*{Algebraic Class Hierarchy with Polynomials}

Extend abstract class template hierarchy to include polynomials
- parameterize polynomial abstract classes by coefficient ring
```

template <class Derived>
class Ring {...};
template <class CoefRing, class Derived>
class Poly : Ring<Derived> {...};
class RationalPoly : Poly<RationalNumber, RationalPoly> {...};

```

Problem: What if CoefRing is not actually a ring?
- e.g. Poly<std::string> or Poly::<Apple>

Problem: polynomial rings form different algebraic types depending on the ground ring
- e.g. \(\mathbb{Q}[x]\) is a Euclidean domain, \(\mathbb{Z}[x]\) is an integral domain

\section*{Constraining the Ground Ring}

At compile-time ensure that a polynomial's coefficient ring is an actual ring with template metaprogramming.

Derived_from<T, Base>: statically determines if \(T\) is a subclass of Base, creating a compiler-error if not
- inheriting from Derived_from forces evaluation at compile-time during template instantiation
- Coefficient ring must be a subclass of Ring
- Poly can assume CoefRing has a certain interface at minimum
```

template <class T, class Base>
class Derived_from {...};
template <class CoefRing, class Derived>
class Poly : Ring<Derived>,
Derived_from<CoefRing, Ring<CoefRing>> {...};

```

\section*{Adapting to Different Coefficient Rings (1/2)}

Determine type of coefficient ring using compile-time introspection
- Conditional inheritance then determines correct algebraic type and interface for polynomials over that ring
- "Dynamic" type creation via introspection, template instantiation
is_base_of<T, Base>::value
- compile-time Boolean value determines if \(T\) is a subclass of Base conditional<Bool, T1, T2>::value
- A compile-time tertiary conditional operator for choosing types
- Bool ? T1 : T2
```

template <class CRing, class Derived>
class Poly : conditional< is_base_of<CRing, Field<CRing>>::value,
EuclidDomain<Derived>,
Ring<Derived>
>::value {...};

```

\section*{Adapting to Different Coefficient Rings \((2 / 2)\)}

A chain of conditional's create a case-discussion at compile-time
- Tester hierarchy separates introspection from actual interface
- Concrete classes inherit from Polynomial to automatically determine their type and interface
```

