Sparse Polynomial Arithmetic

Alex Brandt

ORCCA, Department of Computer Science
University of Western Ontario

UWORCS 2018

April 12, 2018

Introduction

L |
4

:B /"‘\&({

Basic Polynomial Algebra Subprograms

o High performance algorithms for sparse multivariate polynomial
arithmetic over the rational numbers and integers.

— Q is practical for use in polynomial system solving.
— 7 to compare against the leading high-performance
implementation.[112.33]

o With careful implementations, we outperform the same algorithms
(Z[X] arithmetic) implemented in Maple.

o Implementation: data structures, algorithmic tricks, and data locality.

Plan

@ Introduction

@ Polynomial Representations
@ Addition

@ Multiplcation

@ Division

@ Future Work

Introduction: Polynomial Definitions

A quick refresher of polynomials and related definitions...

o Variable - a symbol representing some number.
T, Y, 2, ...

©

Monomial - a product of variables, each to some exponent.
oyz3
o Coefficient - a numerical multiplicative factor of a monomial.

13, 7, 2.1463

o Term - a coefficient-monomial product.
1325y23

©

Polynomial - a summation of terms.
1323 + 7z + 9 (univariate)

132%y2% + T3y 4 11 (multivariate
9

Introduction: Sparse Polynomials

We are concerned with Sparse Polynomials. This is the natural
representation of polynomials and allows for computational
savings. Sparse here has a dual meaning:

o A polynomial is sparse if it has few non-zero coefficients.
2 +1 vs. 3xt4 723 +422+1

o A polynomial is represented sparsely if only its non-zero
coefficients are stored.

Txa? + 1529 vs. 1xz? + 0xa® + 0%z + ... + 1x20

Introduction: Notations

Throughout this presentation we use the following notation:

n m k
a:ZaiXai b:ZbiXﬁ" c:ZciX%
=1 =1 =1

o a, b, c are polynomials with n, m, k terms, respectively.
o a;, b;, ¢; are non-zero coefficients.

o «y, B;, i are Exponent Vectors, representing the exponents of a
multivariate monomial over a product of some variables, X.

o Im(a) = X* s the leading monomial of a.

o lt(a) = a1 X* is the leading term of a.

o Q[X]: multivariate polynomials with rational number coefficients.

o Z[X]: multivariate polynomials with integer coefficients.

A Note on Polynomial Ordering

To obtain a Canonical Representation of a polynomial it should
have its terms sorted in some way. Certain operations thus become
more efficient:

o Equality testing, leading coefficient, degree, etc.

Sorting uses some total ordering of monomials.

o Increasing or decreasing order is often arbitrary, depending on
the application and data structure.

We use decreasing lexicographical ordering for monomials. For a
variable ordering x > y we get the following monomial ordering:

n—1_ n

2yt SV s sy >e >yt >yl > >y

Q>

Sparse Polynomial Representation - Linked List

A simple scheme to encode a polynomial is a Linked List. Each
node represents a single term of the polynomial and these nodes
are strung together to form a list.

i [o5 [o7 e p{)

Advantages:

o Easy to insert or remove terms anywhere within the list
Disadvantages:
o Indexing, counting the number of terms, are O(n) operations.

o Poor data locality, latent memory accesses impact
performance.

Sparse Polynomial Representation - Alternating Arrays

In contrast, an Alternating Array provides a compact
representation with good data locality.

An alternating array alternates between a coefficient data element
and a monomial data element.

o Each term is encoded by a pair of array elements.

13 |22y3| 5 |2%y| 7 |y32

Some operations,like random insertion, are difficult, but memory
efficiency is more important for our arithmetic algorithms.

Maple implements a similar schemel® but is limited to integer
coefficients.

Sparse Polynomial Representation - Exponent Packing

The simplest way to represent a monomial is a list of integers: one
integer for each variable.

o Inefficient use of memory as exponents rarely approach the
maximum value of a 32-bit int (4294967295).

Exponent packing!*l®! uses bit-wise operations to store many
exponents in a single machine word, improving memory usage and
cache complexity. Consider the monomial 2°y223.

5 | 2

|0x005 | 0x00002 | 0x00000003 |

12 bits 20 bits 32 bits

Monomial comparison and multiplication now reduce to a single
instruction on one machine word.

Q>

Sparse Addition (1/2)

The simplest method for adding two polynomials together is to
iteratively add one term from one to the other while maintaining
the canonical, sorted order.

a+b= (a+b1X51) + b X2 4 by X 4
atb=(a+biX" 4+ bX%) £ by X 4.
a+b= (a+b1Xﬁl + by X P2 +b3X53) +...

o This process is analogous to insertion sort.

o Using alternating arrays, it is prohibitively poor performance
to insert at random positions.

o We can use the fact that both a and b are initially sorted. ..

Sparse Addition (2/2)

Solution: Model addition as one merge step of merge sort.

Just as in merge sort, a and b are each pre-sorted partitions to be
merged into a single partition.

o Walk left-to-right through a and b, taking the larger of the
two current terms.

o Append it to the end of the sum.

o If terms are equal then we combine like terms.

a=132%2 +52%y + TPz + ...
T c=132%° + 1122y +
b=6z%y +12z22 + 4% +...
T

The key idea here is that the terms in the sum are generated in
sorted order.

Sparse Addition: Benchmarks

Addition is a very simple algorithm.

o Very little arithmetic work.

o A memory bound problem; must access memory efficiently.

We compare linked lists, without exponent packing, against
alternating arrays with exponent packing.

Note: sparsity is quantified as the maximum difference between
exponents in successive monomials.

o This difference is done by viewing an exponent vector of v
variables as digits of a number in radix r:

r= ’(/sparsity X number of terms

Sparse Addition: Benchmarks

Q[z,y, z] Addition Running Time vs Number of Terms
Sparsity = 5

015 T T T T
—a— Linked List
—e— Alt. Array

e
=

0.05

Running Time (s)

O |
0.5 1 1.5 2 2.5 3 3.5 4 4.5
Number of Terms (n) 109

Q>

Sparse Multiplication (1/2)

The task of multiplying two polynomials is actually three in one.

@ Generate the terms of the multiplication,

@ Combine like-terms,
@ Sort the resulting terms in decreasing order.

The simplest multiplication involves distributing each term of the
multiplier (a) over the multiplicand (b), combining like-terms.

c=a-b=(a1x"" *xb) + (agx®? xb) + ...

o Produces all n - m terms regardless of combining like-terms.

o Terms must be sorted after combining.

Like addition, we should try to generate terms in sorted order.

Sparse Multiplication: (2/2)

Solution: An n-way merge of “streams” where each stream
represents a single term of a distributed over 5.

o Since b is sorted, and we multiply by a single term of a, the
resulting “stream” is also sorted.

(a1 % b1) XUTP1 4 (ay % by) XO1TP2 4 (ay xbg) X173
b (az*bl)XQT‘—ﬁl +(a2*b2)Xa2+ﬁ2 +(£L2*b3)Xﬂ2+B3 + ...
a-b=

(an % b1) X214 (@, % by) X TP2 4 (ay, % b3) XOn P

At each step we must choose the maximum among the head of all
streams and then move to the next term in that stream.

o Choosing the maximum from a repeatedly updated collection
is efficiently implemented using a Heap.

Heap Tricks: Memory Efficient Heap Elements

A heap relies on many comparisons of its elements and essentially
random memory access.

o Comparisons are already efficient due to exponent packing.

o It is necessary to only store the product exponent vector,
a1 + 51, and the index of the corresponding coefficients.
o Reduction of element size allows the entire heap to fit in
cache for efficient random random access.
72 bytes

(a1 * by) X1 th (ag * by) X2 th (as * by) X s +h

oo

a1+ P11 |as+ 61|21 |as+ 51|31

———;
16 bytes

Heap Tricks: Element Chains

In our application, heap elements (monomials) are frequently
equal. We can reduce the working size of the heap by chaining!®!
equal elements.

o Heap elements found to have the same exponent vector chain
together into a linked list instead of inserting a new element.

o Our heap becomes a heap of linked lists.

o Allows extracting many elements for the cost of one extraction.

Heap Elements Element Chains
(N
a1 + B . { 1] 1] e]
as + 51 . I 211 | e
ALY

Benchmarks: Z[X] with Varying Coefficient Size

Z|x,y, z] Multiplication Running Time vs Number of Terms
Varying # Coefficient Bits, Sparsity = 100

5 T T T T T
—a— Maple, 256
4l —a— Maple, 128 |
- —u—Maple, 32
o —e— BPAS, 256
E 3| e BPAS, 128 i
= —e—BPAS, 32
c
E 2 - |
c
=}
@
1 - |
| | | | |

|
%00 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

Number of Terms (n)

Benchmarks: Z[X] with Varying Sparsity

Z|x,y, z] Multiplication Running Time vs Number of Terms
Varying Sparsity, # Coefficient Bits = 128

5 T T T T
—a— Maple, 200
4l —a— Maple, 100 |
- —u—Maple, 50
o —e— BPAS, 200
E 3| |-e—BPAS, 100 il
= —e—BPAS, 50
c
E 2 - |
c
=}
@
1 - |
| | | | |

|
%00 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

Number of Terms (n)

Benchmarks: Q[X] with Varying Sparsity

Q[z,y, z] Multiplication Running Time vs Number of Terms
Varying Sparsity, # Coefficient Bits = 128

40 T T T T
—a— Maple, 100
—=— Maple, 50
< 30| |-=Maple, 10 a
o —e— BPAS, 100
E —e— BPAS, 50
20| |—e—BPAS, 10 1
£
c
=}
o 10 - |
——o—98—8

» ° ® @
050 100 150 200 250 300 350 400 450

Number of Terms (n)

Q>

Sparse Division: (1/2)

The goal of division is to, given ¢ and b, find a and r such that
¢ =a-b+r with Im(b) > Im(r).

For simplicity, a;, b;, and ¢; in the following discussion are terms.

Let's take the following example of basic long division:

bl+b2)61+62+63

Sparse Division: (1/2)
The goal of division is to, given ¢ and b, find a and r such that
¢ =a-b+r with Im(b) > Im(r).
For simplicity, a;, b;, and ¢; in the following discussion are terms.

Let's take the following example of basic long division:

a
bl+b2)61+62+63

Sparse Division: (1/2)
The goal of division is to, given ¢ and b, find a and r such that
¢ =a-b+r with Im(b) > Im(r).
For simplicity, a;, b;, and ¢; in the following discussion are terms.

Let's take the following example of basic long division:

B
bl+b2)61+62+63
—a1<b1 +b2)

Sparse Division: (1/2)

The goal of division is to, given ¢ and b, find a and r such that
¢ =a-b+r with Im(b) > Im(r).

For simplicity, a;, b;, and ¢; in the following discussion are terms.

Let's take the following example of basic long division:
B S
b1 + by)Cl +co+c3 = M
—aq (bl -+ bg)
NONNCINC

Sparse Division: (1/2)
The goal of division is to, given ¢ and b, find a and r such that
¢ =a-b+r with Im(b) > Im(r).
For simplicity, a;, b;, and ¢; in the following discussion are terms.

Let's take the following example of basic long division:

ai + a2
bi+ba)1+ o+ 3 = D)
—a1 (b1 + ba)
cgz) + 052) = c(2)
—ag(bl + 52)

2

Sparse Division: (1/2)
The goal of division is to, given ¢ and b, find a and r such that
¢ =a-b+r with Im(b) > Im(r).
For simplicity, a;, b;, and ¢; in the following discussion are terms.

Let's take the following example of basic long division:

ai + a2
bi+ba)1+ o+ 3 = D)
—a1 (b1 + ba)
cgz) + 052) = c(2)
—ag(bl + 52)

(3) _

i =T

Sparse Division: (1/2)
The goal of division is to, given ¢ and b, find a and r such that
¢ =a-b+r with Im(b) > Im(r).
For simplicity, a;, b;, and ¢; in the following discussion are terms.

Let's take the following example of basic long division:

mta oW =c
bi+ba)er + e+ 3 =l oai=c /b
—ai(by +b2) o) =@ —qg;p
2 2) ;
Cg) + Cé = 0(2) o r=c® When by cannot
—axlbr +b) divide

c§3) =r

Sparse Division: (1/2)
The goal of division is to, given ¢ and b, find a and r such that
¢ =a-b+r with Im(b) > Im(r).
For simplicity, a;, b;, and ¢; in the following discussion are terms.

Let's take the following example of basic long division:

ai + az oM =¢
— A1) i
bl+b2)61+62+63—c oaizcg)/(n
_a1(b(12)+ 6232) o cli+1) — () _ a;b
eyl = c? o r = ¢l when b; cannot
—az(by + b2) divide c!”
c§3) =r

At each step we calculate a full m (size of b) product terms from
a; - b and then perform a subtraction with those m terms.

Sparse Division: (2/2)

With some rearrangement of the previous recurrence relation we
obtain a simple equation for a;:

a; =1 C—Zajb / 1t(b)

This formula has many notable benefits:
o Terms of a are still produced in-order,
o Avoids repeated subtraction and updating of the dividend,

o Reuse multiplication algorithm to obtain Z;_:ll a;b terms
in-order.

Sparse Division: Algorithm

Sparse Division

a<+ 0
while true do
¢ < lt(c — ab)
if 1t(b) 1 ¢ then
break
a<a+ (¢/1td))
end while
r<c—ab
return (a,)

e A o A

o For It(c — ab) it is sufficient to keep track of which terms have
already been used instead of doing subtraction.

o Produce only enough terms of a - b to get the next leading
term, ¢, since a updates continually.

o a+ (¢/lIt(b)) is only an append as terms are in-order.

Benchmarks: Z[X] with Varying Sparsity

Z[z,y, z] Division Running Time vs Number of Dividend Terms

Running Time (s)

Number of Divisor Terms = n/2,
Varying Sparsity, # Coefficient Bits = 32

—a— Maple, 30
—a— Maple, 20
—a— Maple, 10
—e— BPAS, 30
—e— BPAS, 20
—e— BPAS, 10

200 400 600
Number of Dividend Terms (n)

|
800 1,000

Future Work

Future work is focused on improving performance and efficiency.

o Pseudo division (WIP).

o Improved integer arithmetic.
— Dynamic switching between machine-word and multi-precision
integers.13!
o Experiment with new exponent packing schemes.
o Investigate different heap implementations.
— Binary-tree heap, Fibonacci heap, Brodal queue
o Parallelization of algorithms.

References

1]

2]
(3]

[4]

(5]

[6]

M. Monagan and R. Pearce. “Sparse polynomial multiplication and
division in Maple 14". In: ACM Communications in Computer Algebra
44.3/4 (2011), pp. 205-2009.

M. Monagan and R. Pearce. “Sparse polynomial division using a heap”.
In: Journal of Symbolic Computation 46.7 (2011), pp. 807-822.

M. Monagan and R. Pearce. “The design of Maple's sum-of-products and
POLY data structures for representing mathematical objects”. In: ACM
Communications in Computer Algebra 48.3/4 (2015), pp. 166-186.

A. D. Hall Jr. “The ALTRAN system for rational function manipulation-a
survey”. In: Proceedings of the second ACM symposium on Symbolic and
algebraic manipulation. ACM. 1971, pp. 153-157.

M. Monagan and R. Pearce. “Polynomial division using dynamic arrays,
heaps, and packed exponent vectors”. In: International Workshop on
Computer Algebra in Scientific Computing. Springer. 2007, pp. 295-315.

S. C. Johnson. “Sparse polynomial arithmetic”. In: ACM SIGSAM
Bulletin 8.3 (1974), pp. 63-71.

QuestiOns?

«Or < Fr «=>»

«=

3

Q>

	Introduction
	Polynomial Representations
	Addition
	Multiplcation
	Division
	Future Work
	References
	References

