
Sparse Polynomial Arithmetic

Alex Brandt

ORCCA, Department of Computer Science
University of Western Ontario

UWORCS 2018

April 12, 2018



Introduction

High performance algorithms for sparse multivariate polynomial
arithmetic over the rational numbers and integers.

→ Q is practical for use in polynomial system solving.
→ Z to compare against the leading high-performance

implementation.[1],[2],[3]

With careful implementations, we outperform the same algorithms
(Z[X] arithmetic) implemented in Maple.

Implementation: data structures, algorithmic tricks, and data locality.



Plan

1 Introduction

2 Polynomial Representations

3 Addition

4 Multiplcation

5 Division

6 Future Work



Introduction: Polynomial Definitions

A quick refresher of polynomials and related definitions...

Variable - a symbol representing some number.
x, y, z, . . .

Monomial - a product of variables, each to some exponent.
x5yz3

Coefficient - a numerical multiplicative factor of a monomial.
13, 7

9 , 2.1463

Term - a coefficient-monomial product.
13x5yz3

Polynomial - a summation of terms.
13x3 + 7x+ 9 (univariate)

13x5yz3 + 7
9x

3y2 + 11 (multivariate)



Introduction: Sparse Polynomials

We are concerned with Sparse Polynomials. This is the natural
representation of polynomials and allows for computational
savings. Sparse here has a dual meaning:

A polynomial is sparse if it has few non-zero coefficients.

x9 + 1 vs. 3x4 + 7x3 + 4x2 + 1

A polynomial is represented sparsely if only its non-zero
coefficients are stored.

1 ∗ x9 + 1 ∗ x0 vs. 1 ∗ x9 + 0 ∗ x8 + 0 ∗ x7 + . . . + 1 ∗ x0



Introduction: Notations

Throughout this presentation we use the following notation:

a =

n∑
i=1

aiX
αi b =

m∑
i=1

biX
βi c =

k∑
i=1

ciX
γi

a, b, c are polynomials with n, m, k terms, respectively.

ai, bi, ci are non-zero coefficients.

αi, βi, γi are Exponent Vectors, representing the exponents of a
multivariate monomial over a product of some variables, X.

lm(a) = Xα1 is the leading monomial of a.

lt(a) = a1X
α1 is the leading term of a.

Q[X]: multivariate polynomials with rational number coefficients.

Z [X]: multivariate polynomials with integer coefficients.



A Note on Polynomial Ordering

To obtain a Canonical Representation of a polynomial it should
have its terms sorted in some way. Certain operations thus become
more efficient:

Equality testing, leading coefficient, degree, etc.

Sorting uses some total ordering of monomials.

Increasing or decreasing order is often arbitrary, depending on
the application and data structure.

We use decreasing lexicographical ordering for monomials. For a
variable ordering x > y we get the following monomial ordering:

xnyn > xn−1yn > · · · > xy > x > yn > yn−1 > · · · > y



Polynomial Representations



Sparse Polynomial Representation - Linked List

A simple scheme to encode a polynomial is a Linked List. Each
node represents a single term of the polynomial and these nodes
are strung together to form a list.

13 x2y3 5 x2y 7 y3z . . .

Advantages:

Easy to insert or remove terms anywhere within the list

Disadvantages:

Indexing, counting the number of terms, are O(n) operations.

Poor data locality, latent memory accesses impact
performance.



Sparse Polynomial Representation - Alternating Arrays

In contrast, an Alternating Array provides a compact
representation with good data locality.

An alternating array alternates between a coefficient data element
and a monomial data element.

Each term is encoded by a pair of array elements.

13 x2y3 5 x2y 7 y3z · · ·

Some operations,like random insertion, are difficult, but memory
efficiency is more important for our arithmetic algorithms.

Maple implements a similar scheme[3] but is limited to integer
coefficients.



Sparse Polynomial Representation - Exponent Packing

The simplest way to represent a monomial is a list of integers: one
integer for each variable.

Inefficient use of memory as exponents rarely approach the
maximum value of a 32-bit int (4294967295).

Exponent packing[4],[5] uses bit-wise operations to store many
exponents in a single machine word, improving memory usage and
cache complexity. Consider the monomial x5y2z3.

5 2 3

0x005 0x00002 0x00000003

12 bits 20 bits 32 bits

Monomial comparison and multiplication now reduce to a single
instruction on one machine word.



Addition



Sparse Addition (1/2)

The simplest method for adding two polynomials together is to
iteratively add one term from one to the other while maintaining
the canonical, sorted order.

a+ b =
(
a+ b1X

β1
)
+ b2X

β2 + b3X
β3 + . . .

a+ b =
(
a+ b1X

β1 + b2X
β2
)
+ b3X

β3 + . . .

a+ b =
(
a+ b1X

β1 + b2X
β2 + b3X

β3
)
+ . . .

This process is analogous to insertion sort.

Using alternating arrays, it is prohibitively poor performance
to insert at random positions.

We can use the fact that both a and b are initially sorted. . .



Sparse Addition (2/2)

Solution: Model addition as one merge step of merge sort.

Just as in merge sort, a and b are each pre-sorted partitions to be
merged into a single partition.

Walk left-to-right through a and b, taking the larger of the
two current terms.

Append it to the end of the sum.

If terms are equal then we combine like terms.

a = 13x2y3 + 5x2y + 7y3z + . . .
↑

b = 6x2y +12xz2 + 4y2 + . . .
↑

 c = 13x2y3 + 11x2y+
↑

The key idea here is that the terms in the sum are generated in
sorted order.



Sparse Addition: Benchmarks

Addition is a very simple algorithm.

Very little arithmetic work.

A memory bound problem; must access memory efficiently.

We compare linked lists, without exponent packing, against
alternating arrays with exponent packing.

Note: sparsity is quantified as the maximum difference between
exponents in successive monomials.

This difference is done by viewing an exponent vector of v
variables as digits of a number in radix r:

r = v
√

sparsity× number of terms



Sparse Addition: Benchmarks

0.5 1 1.5 2 2.5 3 3.5 4 4.5

·105

0

0.05

0.1

0.15

Number of Terms (n)

R
u

n
n

in
g

T
im

e
(s

)
Q[x, y, z] Addition Running Time vs Number of Terms

Sparsity = 5

Linked List
Alt. Array



Multiplcation



Sparse Multiplication (1/2)

The task of multiplying two polynomials is actually three in one.

1 Generate the terms of the multiplication,

2 Combine like-terms,

3 Sort the resulting terms in decreasing order.

The simplest multiplication involves distributing each term of the
multiplier (a) over the multiplicand (b), combining like-terms.

c = a · b = (a1x
α1 ∗ b) + (a2x

α2 ∗ b) + . . .

Produces all n ·m terms regardless of combining like-terms.

Terms must be sorted after combining.

Like addition, we should try to generate terms in sorted order.



Sparse Multiplication: (2/2)

Solution: An n-way merge of “streams” where each stream
represents a single term of a distributed over b.[6]

Since b is sorted, and we multiply by a single term of a, the
resulting “stream” is also sorted.

a · b =


(a1 ∗ b1)Xα1+β1 + (a1 ∗ b2)Xα1+β2 + (a1 ∗ b3)Xα1+β3 + . . .

(a2 ∗ b1)Xα2+β1 + (a2 ∗ b2)Xα2+β2 + (a2 ∗ b3)Xα2+β3 + . . .

...

(an ∗ b1)Xαn+β1 + (an ∗ b2)Xαn+β2 + (an ∗ b3)Xαn+β3 + . . .

At each step we must choose the maximum among the head of all
streams and then move to the next term in that stream.

Choosing the maximum from a repeatedly updated collection
is efficiently implemented using a Heap.



Heap Tricks: Memory Efficient Heap Elements

A heap relies on many comparisons of its elements and essentially
random memory access.

Comparisons are already efficient due to exponent packing.

It is necessary to only store the product exponent vector,
α1 + β1, and the index of the corresponding coefficients.

Reduction of element size allows the entire heap to fit in
cache for efficient random random access.

(a1 ∗ b1)Xα1+β1 (a2 ∗ b1)Xα2+β1 (a3 ∗ b1)Xα3+β1 . . .

α1 + β1 1 1 α2 + β1 2 1 α3 + β1 3 1 . . .

72 bytes

16 bytes



Heap Tricks: Element Chains

In our application, heap elements (monomials) are frequently
equal. We can reduce the working size of the heap by chaining [5]

equal elements.

Heap elements found to have the same exponent vector chain
together into a linked list instead of inserting a new element.

Our heap becomes a heap of linked lists.

Allows extracting many elements for the cost of one extraction.

α1 + β1

α2 + β1

. . .

1 1

2 1

1 2

Heap Elements Element Chains



Benchmarks: Z[X] with Varying Coefficient Size

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0

1

2

3

4

5

Number of Terms (n)

R
u

n
n

in
g

T
im

e
(s

)
Z[x, y, z] Multiplication Running Time vs Number of Terms

Varying # Coefficient Bits, Sparsity = 100

Maple, 256
Maple, 128
Maple, 32
BPAS, 256
BPAS, 128
BPAS, 32



Benchmarks: Z[X] with Varying Sparsity

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0

1

2

3

4

5

Number of Terms (n)

R
u

n
n

in
g

T
im

e
(s

)
Z[x, y, z] Multiplication Running Time vs Number of Terms

Varying Sparsity, # Coefficient Bits = 128

Maple, 200
Maple, 100
Maple, 50
BPAS, 200
BPAS, 100
BPAS, 50



Benchmarks: Q[X] with Varying Sparsity

50 100 150 200 250 300 350 400 450
0

10

20

30

40

Number of Terms (n)

R
u

n
n

in
g

T
im

e
(s

)
Q[x, y, z] Multiplication Running Time vs Number of Terms

Varying Sparsity, # Coefficient Bits = 128

Maple, 100
Maple, 50
Maple, 10
BPAS, 100
BPAS, 50
BPAS, 10



Division



Sparse Division: (1/2)

The goal of division is to, given c and b, find a and r such that
c = a · b+ r with lm(b) > lm(r).

For simplicity, ai, bi, and ci in the following discussion are terms.

Let’s take the following example of basic long division:

a1 + a2

b1 + b2
)
c1 + c2 + c3

= c(1)

−a1(b1 + b2)

c
(2)
1 + c

(2)
2 = c(2)

−a2(b1 + b2)

c
(3)
1 = r

c(1) = c

ai = c
(i)
1 / b1

c(i+1) = c(i) − aib
r = c(i) when b1 cannot
divide c

(i)
1

At each step we calculate a full m (size of b) product terms from
ai · b and then perform a subtraction with those m terms.



Sparse Division: (1/2)

The goal of division is to, given c and b, find a and r such that
c = a · b+ r with lm(b) > lm(r).

For simplicity, ai, bi, and ci in the following discussion are terms.

Let’s take the following example of basic long division:

a1

+ a2

b1 + b2
)
c1 + c2 + c3

= c(1)

−a1(b1 + b2)

c
(2)
1 + c

(2)
2 = c(2)

−a2(b1 + b2)

c
(3)
1 = r

c(1) = c

ai = c
(i)
1 / b1

c(i+1) = c(i) − aib
r = c(i) when b1 cannot
divide c

(i)
1

At each step we calculate a full m (size of b) product terms from
ai · b and then perform a subtraction with those m terms.



Sparse Division: (1/2)

The goal of division is to, given c and b, find a and r such that
c = a · b+ r with lm(b) > lm(r).

For simplicity, ai, bi, and ci in the following discussion are terms.

Let’s take the following example of basic long division:

a1

+ a2

b1 + b2
)
c1 + c2 + c3

= c(1)

−a1(b1 + b2)

c
(2)
1 + c

(2)
2 = c(2)

−a2(b1 + b2)

c
(3)
1 = r

c(1) = c

ai = c
(i)
1 / b1

c(i+1) = c(i) − aib
r = c(i) when b1 cannot
divide c

(i)
1

At each step we calculate a full m (size of b) product terms from
ai · b and then perform a subtraction with those m terms.



Sparse Division: (1/2)

The goal of division is to, given c and b, find a and r such that
c = a · b+ r with lm(b) > lm(r).

For simplicity, ai, bi, and ci in the following discussion are terms.

Let’s take the following example of basic long division:

a1

+ a2

b1 + b2
)
c1 + c2 + c3 = c(1)

−a1(b1 + b2)

c
(2)
1 + c

(2)
2 = c(2)

−a2(b1 + b2)

c
(3)
1 = r

c(1) = c

ai = c
(i)
1 / b1

c(i+1) = c(i) − aib
r = c(i) when b1 cannot
divide c

(i)
1

At each step we calculate a full m (size of b) product terms from
ai · b and then perform a subtraction with those m terms.



Sparse Division: (1/2)

The goal of division is to, given c and b, find a and r such that
c = a · b+ r with lm(b) > lm(r).

For simplicity, ai, bi, and ci in the following discussion are terms.

Let’s take the following example of basic long division:

a1 + a2

b1 + b2
)
c1 + c2 + c3 = c(1)

−a1(b1 + b2)

c
(2)
1 + c

(2)
2 = c(2)

−a2(b1 + b2)

c
(3)
1

= r

c(1) = c

ai = c
(i)
1 / b1

c(i+1) = c(i) − aib
r = c(i) when b1 cannot
divide c

(i)
1

At each step we calculate a full m (size of b) product terms from
ai · b and then perform a subtraction with those m terms.



Sparse Division: (1/2)

The goal of division is to, given c and b, find a and r such that
c = a · b+ r with lm(b) > lm(r).

For simplicity, ai, bi, and ci in the following discussion are terms.

Let’s take the following example of basic long division:

a1 + a2

b1 + b2
)
c1 + c2 + c3 = c(1)

−a1(b1 + b2)

c
(2)
1 + c

(2)
2 = c(2)

−a2(b1 + b2)

c
(3)
1 = r

c(1) = c

ai = c
(i)
1 / b1

c(i+1) = c(i) − aib
r = c(i) when b1 cannot
divide c

(i)
1

At each step we calculate a full m (size of b) product terms from
ai · b and then perform a subtraction with those m terms.



Sparse Division: (1/2)

The goal of division is to, given c and b, find a and r such that
c = a · b+ r with lm(b) > lm(r).

For simplicity, ai, bi, and ci in the following discussion are terms.

Let’s take the following example of basic long division:

a1 + a2

b1 + b2
)
c1 + c2 + c3 = c(1)

−a1(b1 + b2)

c
(2)
1 + c

(2)
2 = c(2)

−a2(b1 + b2)

c
(3)
1 = r

c(1) = c

ai = c
(i)
1 / b1

c(i+1) = c(i) − aib
r = c(i) when b1 cannot
divide c

(i)
1

At each step we calculate a full m (size of b) product terms from
ai · b and then perform a subtraction with those m terms.



Sparse Division: (1/2)

The goal of division is to, given c and b, find a and r such that
c = a · b+ r with lm(b) > lm(r).

For simplicity, ai, bi, and ci in the following discussion are terms.

Let’s take the following example of basic long division:

a1 + a2

b1 + b2
)
c1 + c2 + c3 = c(1)

−a1(b1 + b2)

c
(2)
1 + c

(2)
2 = c(2)

−a2(b1 + b2)

c
(3)
1 = r

c(1) = c

ai = c
(i)
1 / b1

c(i+1) = c(i) − aib
r = c(i) when b1 cannot
divide c

(i)
1

At each step we calculate a full m (size of b) product terms from
ai · b and then perform a subtraction with those m terms.



Sparse Division: (2/2)

With some rearrangement of the previous recurrence relation we
obtain a simple equation for ai:

ai = lt

c− i−1∑
j=1

ajb

 / lt(b)

This formula has many notable benefits:

Terms of a are still produced in-order,

Avoids repeated subtraction and updating of the dividend,

Reuse multiplication algorithm to obtain
∑i−1

j=1 ajb terms
in-order.



Sparse Division: Algorithm

Sparse Division

1: a← 0
2: while true do
3: c̃← lt(c− ab)
4: if lt(b) - c̃ then
5: break
6: a← a+ (c̃ / lt(b))
7: end while
8: r ← c− ab
9: return (a, r)

For lt(c− ab) it is sufficient to keep track of which terms have
already been used instead of doing subtraction.

Produce only enough terms of a · b to get the next leading
term, c̃, since a updates continually.

a+ (c̃/lt(b)) is only an append as terms are in-order.



Benchmarks: Z[X] with Varying Sparsity

200 400 600 800 1,000
0

2

4

Number of Dividend Terms (n)

R
u

n
n

in
g

T
im

e
(s

)
Z[x, y, z] Division Running Time vs Number of Dividend Terms

Number of Divisor Terms = n/2,

Varying Sparsity, # Coefficient Bits = 32

Maple, 30
Maple, 20
Maple, 10
BPAS, 30
BPAS, 20
BPAS, 10



Future Work

Future work is focused on improving performance and efficiency.

Pseudo division (WIP).

Improved integer arithmetic.

→ Dynamic switching between machine-word and multi-precision
integers.[3]

Experiment with new exponent packing schemes.

Investigate different heap implementations.

→ Binary-tree heap, Fibonacci heap, Brodal queue

Parallelization of algorithms.



References

[1] M. Monagan and R. Pearce. “Sparse polynomial multiplication and
division in Maple 14”. In: ACM Communications in Computer Algebra
44.3/4 (2011), pp. 205–209.

[2] M. Monagan and R. Pearce. “Sparse polynomial division using a heap”.
In: Journal of Symbolic Computation 46.7 (2011), pp. 807–822.

[3] M. Monagan and R. Pearce. “The design of Maple’s sum-of-products and
POLY data structures for representing mathematical objects”. In: ACM
Communications in Computer Algebra 48.3/4 (2015), pp. 166–186.

[4] A. D. Hall Jr. “The ALTRAN system for rational function manipulation-a
survey”. In: Proceedings of the second ACM symposium on Symbolic and
algebraic manipulation. ACM. 1971, pp. 153–157.

[5] M. Monagan and R. Pearce. “Polynomial division using dynamic arrays,
heaps, and packed exponent vectors”. In: International Workshop on
Computer Algebra in Scientific Computing. Springer. 2007, pp. 295–315.

[6] S. C. Johnson. “Sparse polynomial arithmetic”. In: ACM SIGSAM
Bulletin 8.3 (1974), pp. 63–71.



Thank you!

Questions?


	Introduction
	Polynomial Representations
	Addition
	Multiplcation
	Division
	Future Work
	References
	References

