
On The Parallelization of Triangular Decompositions

Mohammadali Asadi, Alexander Brandt,
Robert H.C. Moir, Marc Moreno Maza

Ontario Research Center for Computer Algebra
Department of Computer Science

University of Western Ontario, Canada

Wednesday April 10, 2019

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 1 / 35

A First Triangular Decomposition

A triangular decomposition is an of analogue Gaussian elimination for
polynomial systems; a method for solving systems of polynomial equations.

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

2𝑥 + 𝑦 + 𝑧 = 1
𝑥 + 2𝑦 + 𝑧 = 1
𝑥 + 𝑦 + 2𝑧 = 1

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐸𝑙𝑖𝑚.Ô⇒

⎨⎝⎝⎝⎝⎝⎝⎪

2 1 1 1
0 3

2
1
2

1
2

0 0 4
3

1
3

⎬⎠⎠⎠⎠⎠⎠⎮

𝑇 𝑟𝑖. 𝐷𝑒𝑐𝑜𝑚𝑝.Ô⇒
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 1
4 = 0

𝑦 − 1
4 = 0

𝑧 − 1
4 = 0

The decomposition has a triangular shape by its pair-wise different main
variables Ô⇒ Triangular Set.

ë Main var: the largest variable in a polynomial, given an order (e.g. 𝑥 > 𝑦 > 𝑧)

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 2 / 35

A Decomposition of a Non-Linear System

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

𝐺𝑟ö𝑏𝑛𝑒𝑟 𝐵𝑎𝑠𝑖𝑠Ô⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2 + 2𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

The Gröbner bases solution is equivalent (via a union) of the solutions of
its decomposition into four triangular sets.

ë This system decomposes into multiple components.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 3 / 35

Outline

1 Some Mathematical Background

2 The Foundations of Parallelism

3 Implementation

4 Experimentation

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 4 / 35

Introductory Definitions

A polynomial belongs to a polynomial ring composed of a ground
ring and an (ordered) set of variables.

ë e.g. K(︀𝑥1 < 𝑥2 < . . . < 𝑥𝑣⌋︀
ë K is the ground ring, say Q, 𝑥1, . . . , 𝑥𝑣 are variables.
ë 𝑋 can be short-hand for 𝑥1, . . . , 𝑥𝑣.

A set of polynomials 𝐹 ⊂ K(︀𝑥1 < 𝑥2 < . . . < 𝑥𝑣⌋︀ can form system of
equations by setting 𝑓 = 0 for each 𝑓 ∈ 𝐹 .

The algebraic variety of 𝐹 is the geometric sense of the set of
solutions of F.

ë 𝑉 (𝐹) = {(𝑎1, . . . , 𝑎𝑣) ∈ K𝑛 ⋃︀ 𝑓(𝑎1, . . . , 𝑎𝑣) = 0 ∀ 𝑓 ∈ 𝐹}
ë This assumes K is algebraically closed.
ë e.g. 𝑥2 + 1 = 0 has no solution in R but does in C.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 5 / 35

Some Notations

A polynomial 𝑝 has:
ë a main variable, mvar(𝑝), and
ë an initial, init(𝑝), which is the leading coefficient of 𝑝 with respect to

the main variable.
ë a tail, tail(𝑝), the terms left after setting its initial to 0.
ë e.g. for 𝑥 > 𝑦 > 𝑧, 𝑝 = 𝑦𝑥2 + 𝑥2 + 𝑧

mvar(𝑝) = x, init(𝑝) = 𝑦 + 1, tail(𝑝) = 𝑧.

A triangular set 𝑇 is an ordered set of polynomials 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑣}
where 𝑡𝑖 are ordered by their (pairwise distinct) main variables.

ë 𝑇𝑥 “picks out” the polynomial in 𝑇 with main variable 𝑥.
ë mvar(𝑇) is the set of main variables of the polynomials in 𝑇 .

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 6 / 35

Triangular Sets and Regular Chains

𝐹1 =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑦𝑥 − 1 = 0
𝑦 = 0

𝑧 − 1 = 0
𝐹2 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

(𝑦 + 1)𝑥2 − 𝑥 = 0
𝑦2 − 1 = 0
𝑧 − 1 = 0

This set is inconsistent;
there are no solutions.
Back-substituting 𝑦 = 0
yields −1 = 0.

For 𝑦 = −1, 𝑥 has 1 solution.
For 𝑦 = 1, 𝑥 has 2 solutions.

Both are triangular sets, neither are regular chains. Regular Chains are
special triangular sets without these “issues”.

ë In a regular chain the leading coefficients (initials) of each polynomial
must not be zero (e.g. 𝐹1) nor a zero-divisor (e.g. 𝐹2).

ë e.g. the initial of 𝑦𝑥 − 1 is 𝑦, the initial of (𝑦 + 1)𝑥2 − 𝑥 is 𝑦 + 1.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 7 / 35

Regular Chains

A triangular set 𝑇 = {𝑇1 < 𝑇2 < . . . < 𝑇𝑛}, ordered by main variable, is a
regular chain if the initial of every polynomial in the set is regular with
respect to the polynomials less than (“below”) it.

ë More mathematically, a TS is a RC if the initial of polynomial 𝑇𝑖 is
regular modulo the saturated ideal of 𝑇1, . . . , 𝑇𝑖−1 for 𝑖 = 2, . . . , 𝑛.

A polynomial is regular modulo ∐︀𝐹 ̃︀ if it is neither 0 nor a zero-divisor
modulo ∐︀𝐹 ̃︀.

A polynomial 𝑝 is a zero-divisor modulo ∐︀𝐹 ̃︀ if there exists 𝑞 such that
𝑝𝑞 ∈ ∐︀𝐹 ̃︀ but 𝑝, 𝑞 ⇑∈ ∐︀𝐹 ̃︀. e.g.:

𝐹 = { 𝑦2 − 1
𝑧 − 1 , 𝑝 = 𝑦 + 1, 𝑞 = 𝑦 − 1 Ô⇒ 𝑝𝑞 = 𝑦2 − 1 = 0 mod ∐︀𝐹 ̃︀

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 8 / 35

Outline

1 Some Mathematical Background

2 The Foundations of Parallelism

3 Implementation

4 Experimentation

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 9 / 35

Incremental Solving

𝐹 (1) = { 𝑥2 + 𝑦 + 𝑧 = 1 𝐹 (2) = { 𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1 𝐹 (3) =

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 10 / 35

Incremental Solving in Triangular Decomposition

𝑇 (1) = Intersect(∅, 𝑥2 + 𝑦 + 𝑧 = 1)
𝑇 (1) = { 𝑥2 + 𝑦 + 𝑧 = 1

𝑇 (2) = Intersect(𝑇 (1), 𝑥 + 𝑦2 + 𝑧 = 1)

𝑇 (2) = { 𝑥 + 𝑦2 + 𝑧 = 1
𝑦4 + (2𝑧 − 2)𝑦2 + 𝑦 + (𝑧2 − 𝑧) = 0

𝑇 (3) = Intersect(𝑇 (2), 𝑥 + 𝑦 + 𝑧2 = 1)

𝑇
(3)
1 =

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 = 1
𝑦2 − 𝑦 = 0

𝑧 = 0
𝑇
(3)
2 =

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

2𝑥 + 𝑧2 = 1
2𝑦 + 𝑧2 = 1

𝑧3 + 𝑧2 − 3𝑧 = −1

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 11 / 35

Triangularization by Intersection

Triangularize(𝐹)
Input: 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}, Output: a triangular decomposition of 𝐹 .

1: 𝒯 ← {∅}
2: for 𝑖 = 1 .. 𝑛 do
3: 𝒯 ′ ← ∅
4: for 𝑇 ∈ 𝒯 do
5: 𝒯 ′ ← 𝒯 ′ ∪ Intersect(𝑓𝑖, 𝑇)
6: end for
7: 𝒯 ← 𝒯 ′
8: end for
9: return 𝒯

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 12 / 35

An Intersect Which Splits
To Intersect(𝑓 , 𝑇), we must first regularize 𝑓 .

Since 𝑥 ⇑∈ mvar(𝑇) we regularize init(𝑓) = 𝑦 + 1.
Via GCD computation we discover 𝑦 + 1 is a zero-divisor modulo 𝑇 .
Since 𝑇𝑦 = 𝑔(𝑇𝑦⇑𝑔), 𝑇 splits into:

ë 𝑇1 (replacing 𝑇𝑦 with 𝑔 = gcd(init(𝑓), 𝑇𝑦) = 𝑦 + 1, and
ë 𝑇2 (replacing 𝑇𝑦 by its quotient with 𝑔).
ë We can then work with 𝑇1 and 𝑇2 independently due to the Chinese

remaindering theorem: K(︀𝑋⌋︀⇑∐︀𝑇 ̃︀ ≃ K(︀𝑋⌋︀⇑∐︀𝑇1̃︀⊕K(︀𝑋⌋︀⇑∐︀𝑇2̃︀

𝑓 = (𝑦 + 1)𝑥2 − 𝑥

𝑇 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦2 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

2𝑥2 − 𝑥 = 0
𝑦 − 1 = 0
𝑧 − 1 = 0

𝑦 +
1 =

0

𝑦 + 1 ≠ 0

𝑓

𝑓

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 13 / 35

A Simple Intersect
IntersectFree(𝑓 , 𝑇)
Input: 𝑓 a polynomial, 𝑇 a regular chain, mvar(𝑓) ⇑∈ mvar(𝑇)
Output: 𝑇1, . . . , 𝑇𝑒 such that ⋃𝑒

𝑖=1 𝑇𝑖 “encode the solutions” of 𝑓 together with 𝑇 .
1: for 𝑝, 𝐶 ∈ Regularize(init(𝑓), 𝑇) do
2: if 𝑝 = 0 then yield Intersect(tail(𝑓), 𝐶)
3: else
4: yield 𝐶 ∪ 𝑓
5: for 𝐷 ∈ Intersect(init(𝑓), C) do
6: yield 𝒯 ∪ Intersect(tail(𝑓), E)

𝑓 = (𝑦 + 1)𝑥2 − 𝑥

𝑇 = { 𝑦2 − 1 = 0
𝑧 − 1 = 0

𝑇1 = {
𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 = {
𝑦 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

2𝑥2 − 𝑥 = 0
𝑦 − 1 = 0
𝑧 − 1 = 0

𝑦 +
1 =

0

𝑦 + 1 ≠ 0

𝑓

𝑓

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 14 / 35

Opportunities For Parallelization
Regular chains may split due to:

Case discussions from zero-divisors or factorizations.

𝑇 = { 𝑦2 − 3𝑦 + 2 = 0
𝑧 − 1 = 0 Ô⇒ { 𝑦 − 2 = 0

𝑧 − 1 = 0 ∪ { 𝑦 − 1 = 0
𝑧 − 1 = 0

The geometry of the problem. Triangularize intersects in parallel.

0.1608 0.2713 0.4542

Time (s)

1

2

3

4
Le

ve
l-W

is
e
Co

m
po

ne
nt
 N

um
be

r

3 0

0

1

2

0

1

0

0

Regular Chain Component Tree

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 15 / 35

Parallelization Challenges (1/2)

0.170 1.479

Time (s)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Le
ve

l-W
is
e

Co
m

po
ne

nt
 N

um
be

r

2

0
0

0
0

1

0
0

0
0

0
0

0
0

0
0

Regular Chain Component Tree

0.166 1.553

Time (s)

1

2

3

4

5

6

7

8

Le
ve

l-W
is
e
Co

m
po

ne
nt
 N

um
be

r

2

1

1

1

0

0

0

0

0

0

0

Regular Chain Component Tree

Computations may not split until the very end.
Splitting may be very unbalanced.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 16 / 35

Parallelization Challenges (2/2)
The sub-algorithms for triangular decomposition are highly recursive, and
mutually dependent.

Triangularize

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 17 / 35

Parallelism Adaptive to Geometry
The parallelization must be dynamic and adaptive to the geometry of the
problem currently being solved.

No simple “divide-and-conquer”.

Coarse-grained parallelism in the top-level Triangularize algorithm as it
calls Intersect.

ë One thread for one branch of the solution space.
ë But what about load balancing? One branch has all the work?

Triangularize(𝐹)

1: 𝒯 ← {∅}
2: for 𝑖 = 1 .. 𝑛 do
3: 𝒯

′
← ∅

4: for 𝑇 ∈ 𝒯 do
5: 𝒯

′
← 𝒯

′
∪ Intersect(𝑓𝑖, 𝑇)

6: end for
7: 𝒯 ← 𝒯

′

8: end for
9: return 𝒯

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 18 / 35

Parallelism Adaptive to Load-Balancing

Regularize is the core function which actually causes splits.
ë But, all roads lead to regularize.
ë Hence, all methods return a list of components.

Preferably, each method would return a stream of components, one
by one, as they are computed.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 19 / 35

Outline

1 Some Mathematical Background

2 The Foundations of Parallelism

3 Implementation

4 Experimentation

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 20 / 35

Basic Polynomial Algebra Subprograms

Our triangular decomposition algorithm is implemented within the
open-source BPAS library.

Low-level routines written in C for efficiency.
A clean user interface is provided via a C++ wrapper.
BPAS provides low-level parallelism in polynomial arithmetic, but here
we only discuss parallelism within triangular decompositions.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 21 / 35

Coarse-Grained Parallelism
Coarse-grained parallelism is achieved by spawning threads as
required.
At one “level” we have one polynomial to intersect with 𝑘
components, yielding 𝑘 − 1 threads and 𝑘 concurrent runs.
InterParallel takes a thread-safe container 𝒯 ′ to accumulate results.
Our implementation uses pthreads.

TriangularizeParallel(𝐹)
Input: 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}, Output: a triangular decomposition of 𝐹 .

1: 𝒯 ← {∅}
2: for 𝑖 = 1 .. 𝑛 do
3: 𝒯 ′ ← ∅; 𝑘 ← ⋃︀𝒯 ⋃︀
4: for 𝑖 = 1 .. 𝑘 − 1 do
5: spawn InterParallel(𝑓𝑖,𝒯 (︀𝑖⌋︀,𝒯 ′)
6: InterParallel(𝑓𝑛,𝒯 (︀𝑘⌋︀,𝒯 ′)
7: join()
8: return 𝒯

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 22 / 35

Fine-Grained Parallelism

Each low-level routine should stream components between themselves
rather than accumulating them all into a single list before returning.

ë This is only beneficial if different routines can execute simultaneously.

We implement each algorithm as a coroutine (i.e. generator).
Use commonly in cooperative tasks, iterators, pipes.
A generalization of the classic producer-consumer paradigm.
Every method is both a producer and a consumer, and at different
levels of recursion.
Each coroutine (potentially) runs asynchronously, returning
components one at a time.
The caller can continue processing one component while the
callee accumulates more components.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 23 / 35

The AsyncGenerator class

1 template <class Object >
2 class AsyncGenerator {
3
4 /* Create a generator from a function call . */
5 AsyncGenerator (Function f, Args.. args);
6
7 /* Add a new object to the generated . */
8 virtual void generateObject (Object obj) = 0;
9

10 /**
11 * Finalize the AsyncGenerator by declaring it has
12 * finished generating all possible objects .
13 */
14 virtual void setComplete () = 0;
15
16 /**
17 * Obtain the next Object which was generated by reference .
18 * returns false iff no more objects available
19 */
20 virtual bool getNextObject (Object obj) = 0;
21
22 };

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 24 / 35

Inner-Workings of AsyncGenerator
General design:

The consumer creates the AsyncGenerator by passing it a function
and its arguments.
The AsyncGenerator inserts itself into the function call arguments.
The AsyncGenerator (possibly) spawns a thread to call function.
The producer produces output via the AsyncGenerator parameter.

1 void Regularize (Poly p, RegChain T, AsyncGen <Poly , RegChain > res) {
2 //...
3 res. generatreObject (next);
4 }
5
6 void IntersectFree (Poly p, RegChain T, AsyncGen <RegChain > res) {
7 AsyncGen <Poly , RegChain > regularRes (Regularize , p. initial () , T);
8 Poly , RegChain next;
9 while (regularRes . getNextObject (next)) {

10 //...
11 }
12 }

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 25 / 35

Optimizing The Generators

Due to the highly recursive nature of these algorithms, we look to mitigate
the cost of continuously creating and joining threads for each method call.

In large examples, tens of thousands of inner functions calls occur.
A thread-pool is a classic solution.
We create a thread pool of FunctionExectors.
When pool is dry, execute serially.

Each FunctionExecutor implements an event loop, waiting for function
objects to be passed to it and executed on that thread.

Functions are not first-class objects C/C++.
Function pointers are not generic enough.
With C++11 finagling we can make it work.
std::bind unifies functions arguments.
std::function wraps functions pointers.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 26 / 35

Outline

1 Some Mathematical Background

2 The Foundations of Parallelism

3 Implementation

4 Experimentation

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 27 / 35

Experimentation Setup

Thanks to Maple, an industrial partner and computer algebra system, we
have a collection of over 3000 real-world systems.

Systems come from actual user data, literature, bug reports.

These experiments are run on a node with 2x6-core Intel Xeon X560
processors at 2.67 GHz, 32KB L1 data ache, 256KB L2 cache, 48 GB of
RAM.

Important to note, these problems do not necessarily scale with the
number of processors.

Potential speed-up is fully dictated by the geometry of the problem.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 28 / 35

A First Comparison
Coarse- and fine-grained parallelism vs coarse-grained parallelism alone.

“P” stands for with AsyncGenerator thread pool.

Sys3295 Sys2032 Sys1952 Sys1898 Sys3142 Sys2893 Jirstrand24
0

1

2

3

4

5
BP-Speedup
B-Speedup

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 29 / 35

A Real-World System

Sys2893, “Fee-1”.

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

−2𝑞𝑝 − 2𝑝2 − 2𝑞 + 8𝑝 − 2

−3𝑞𝑐𝑝 + 2𝑞𝑝𝑑 + 4𝑝2𝑑 + 3𝑐𝑝 + 𝑞𝑑 − 7𝑝𝑑

𝑞2𝑐2 − 2𝑞2𝑐𝑑 − 2𝑞𝑐𝑝𝑑 + 𝑞2𝑑2 + 2𝑞𝑝𝑑2 + 𝑝2𝑑2 − 2𝑞𝑐2 + 4𝑞𝑐𝑝 + 2𝑞𝑐𝑑 + 2𝑐𝑝𝑑
−4𝑞𝑑2 − 4𝑝𝑑2 + 𝑐2 + 2𝑞𝑝 + 10𝑝2 − 4𝑐𝑑 + 4𝑑2 − 2𝑞 − 8𝑝 + 2

3𝑞2𝑐2 + 12𝑞𝑐𝑝𝑑 − 3𝑞2𝑑2 + 6𝑞𝑝𝑑2 − 3𝑝2𝑑2 − 6𝑞𝑐2 + 12𝑞𝑐𝑑 + 12𝑐𝑝𝑑
−4𝑞2 + 3𝑐2 + 5𝑝2 − 12𝑐𝑑 + 12𝑑2 − 6𝑝 + 5

It’s solution has 3 components, polynomials with 1000-bit coefficients and
100 terms.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 30 / 35

Inspecting the Geometry: Sys2893

0.1682 0.3204 0.6974 1.1308

Time (s)

1

2

3

4

5

6
Le

ve
l-W

is
e

Co
m

po
ne

nt
 N

um
be

r

0

0

04

0

0

3

1

2

2

2

2

1

1

1

1

2

1

2

Regular Chain Component Tree

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 31 / 35

A First Comparison (Again)
Coarse- and fine-grained parallelism vs coarse-grained parallelism alone.

“P” stands for with AsyncGenerator thread pool.

Sys3295 Sys2032 Sys1952 Sys1898 Sys3142 Sys2893 Jirstrand24
0

1

2

3

4

5
BP-Speedup
B-Speedup

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 32 / 35

Inspecting the Geometry: Sys3142

0.1619 0.1972 0.2361 0.3094 0.3793

Time (s)

1

2

3

4
Le

ve
l-W

is
e
Co

m
po

ne
nt
 N

um
be

r

0

15

0

0

0

2

1

3

42

3

Regular Chain Component Tree

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 33 / 35

Future Work

Explore further opportunities in parallelizing low-level operations like
GCD computations, factorizations, and polynomial arithmetic.

Examine patterns in the geometry of solutions of different systems to
categorize systems and assign various decomposition flavours.

Continue the tuning of parallelism and performance, particularly in
data transfer between threads and coroutines.

ë Polynomials are not small objects.

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 34 / 35

Thank you!

Questions?

Alex Brandt On The Parallelization of Triangular Decompositions Wednesday April 10, 2019 35 / 35

