

1

CS 2033
Multimedia and Communications

Lab 09: Modern Website Features

- Website Development -

REMEMBER TO BRING YOUR MEMORY STICK TO EVERY LAB!

2

MODERN FEATURES

Now that you are an expert in HTML, CSS, and JS, you are ready to modernize your website! This

lab will give you a taste of three modern features and how to use them effectively.

Parallax is a popular feature to add aesthetic appeal to websites. Even though it doesn't add any

functionality, it provides a beautiful visual effect that attracts users and makes your site look

modern and relevant.

Scrollfire is another aesthetic feature that users tend to appreciate. Again there is no need for it

as it doesn't provide any functionality or do anything useful, but it looks pleasing and modern.

Responsiveness, on the other hand, is less about aesthetics and more about functionality. Now

that phones and tablets take up a huge part of the online market, we can no longer create a

website that only works on our own computer monitor. Sites must work across all (or most)

platforms and screen sizes ranging from phones to tablets to laptops to monitors and even TVs.

EXERCISE 1: PARALLAX

What you will learn in this exercise:

 Adding simple parallax with background-attachment:fixed

 Using JS to enhance the parallax

 Applying algebra (linear equation) to calculate parallax shift

1. Navigate to your USB folder (F:) and into the cs2033 subfolder (should have been created

in a previous lab).

2. Create a folder called lab09 inside cs2033. Within lab09 create two subfolders, one called

img and one called css.

3. Open http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09/img/, download all the images,

and move them into lab09 > img.

4. Open http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09/css/, download main-

styles.css, and move it into lab09 > css.

5. Open http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09/, download exer1.html, and

move it into lab09.

6. Open exer1.html in Brackets and immediately save it in the same folder as

exer1_complete.html. All work in this exercise should be done in exer1_complete.html

unless otherwise specified.

http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09/img/
http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09/css/
http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09

3

7. Open exer1_complete.html in Chrome as well to see how it looks from the start. You should

see this if everything was saved in the correct folders.

8. This site looks decent but not amazing. We want to add a little spice to it with parallax.

There is an image in the img folder called salmon.jpg which we will use as the background

image for the parallax.

9. Rather than inserting the picture as an img element, we will create a div that has this image

embedded as the background. Let's place it between the breakfast and lunch sections.

10. Click between these two sections and add a few lines. In there, create a div with the class

"parallax-img" and the ID "para" (we need an ID because we'll be using JS to access it

shortly). The code around that area should look like this (the provided breakfast and lunch

sections are partially shown for context):

11. Refresh the browser. Nothing changes because we haven't yet done anything to this div.

12. In the head section of this page, create a style tag so that we can begin customizing our

parallax div:

<style type="text/css">

</style>

4

13. Within that style tag, create a rule-set to apply to the class "parallax-img" and within it, set

the width to 100% and the height to 300px. We also want to add space around the bottom

so it's away from the food sections, so add another style to change margin-bottom to 30px.

14. Refresh the browser. You should now see empty space between the breakfast and lunch

sections.

15. Now we have to set the background image in the div. Go back into the ruleset for .parallax-

img. Set the background-image property to url("img/salmon.jpg"). The ruleset should

currently look like this:

16. Save the file and refresh the browser and you should the top of the image appearing. Notice

it's only a small section because our div is only the width of the wrapper and the height of

300px. Also note that it doesn't show the whole image and stretch it to these dimensions

the way an img element would be shown with the same width and height given.

17. Add another style in the ruleset that sets the background-size to 'cover' (quotations not

needed in CSS). This indicates that we want the full size of the image shown which just

makes a subtle difference if you save and refresh the browser.

18. We do not yet have any parallax. If you scroll up and down the site, this image just sits

there like any other element.

19. The next step is to set the background-attachment to 'fixed' (again no quotations) within

the ruleset. This means that the image should remain fixed in place when you scroll rather

than shifting with everything else. The ruleset should now look like this:

20. Save the file and refresh the browser. Scroll up and down several times and watch the

salmon picture as you do. Notice that you only see 300px of the image's height at any given

time and yet you can see the entire height of the picture from scrolling up and down

because it is stationary "behind" the webpage. This is the basic form of parallax!

Enhancing the parallax

21. This current type of parallax is a great start and some websites have this type alone so it's

not bad. However, we're feeling adventurous so let's enhance it with some JS code!

22. In the head section of the same HTML file, add a section for internal JS:

<script type="text/javascript">

</script>

5

23. Within this JS area, create a function called scroll() that takes no input parameters:

24. Inside this function, create a variable called t and assign it the value of window.scrollY

(scrollX is the amount scrolled horizontally and scrollY is the amount scrolled vertically – we

only want the vertical amount).

25. Then create another variable, this one called para. Use document.getElementById() to get

the element with ID "para" and store it in this new variable.

26. We need to calculate what the background position will be so that it will shift as a function

of the scroll amount. It should shift linearly, so use the equation of a line: y = mx+b. Before

we code it, it's important to understand the equation and how to use it for parallax.

y = background position in the div (this will shift as we scroll to create the parallax effect)

x = how far we've scrolled from the top in pixels (this is our variable called t)

m = how quickly to shift the image position

b = the background position when x=0 (no scrolling)

27. Now we can begin applying this to calculate the y value (the new background position).

Create the following two variables: m and b. Give m a value of 0.5 to begin, but we'll tweak

this later. Give b a value of 0 since this is the default background position before scrolling.

28. Create another variable, called newY, and give it the value calculated from the linear

equation using t (as the x), m, and b (note you need the asterisk * for multiplication):

var newY = m*t + b

29. The last step for this function is to assign the new background position to the para element.

There are x and y positions for horizontal and vertical shifts respectively. In our case, we

only need to shift it vertically so we'll change the backgroundPositionY style from JS. Add

the following line to complete the scroll() function:

para.style.backgroundPositionY = newY + "px";

30. Your scroll() function should now look like this:

31. Now the function is complete but we aren't calling it yet so this is the last step. We want the

background position to change for the parallax effect as we scroll so we'll need to add an

onscroll event handler to the body tag. Update the body tag as shown here:

<body onscroll="scroll();">

32. Now save the file and refresh the browser. Scroll up and down and watch the salmon picture

shift within its div. You might notice something strange occurring. The image shifts quickly

and then it cycles around again. The reason for this is that background-images are tiled by

default, and by changing the position of the background, we see the bottom of one tile and

the top of the next, thus creating this ugly cycling effect. Even though this is technically

parallax, it doesn't currently have the aesthetic appeal that parallax normally has. We can

fix it easily though by changing the m parameter.

6

33. Go back up to the scroll function and change the value of m to -0.25. Save the file and

refresh the browser. Scroll up and down again and watch the smooth motion of the salmon

picture as you scroll. That's much better!

Note: the m value should be negative to make the image shift up as you scroll down; if m is

positive, then it shifts down when you scroll down, which looks incorrect.

34. Play around with this m value and see how it changes the effect of the parallax shift. Once

you have tried a few different values, revert it to a value of -0.25 and save it before going

on to exercise 2.

EXERCISE 2: SCROLLFIRE

What you will learn in this exercise:

 Examining scroll position to highlight current section link

 Using scroll position to grow (scale) an image

 Using scroll position to slide in text

 Seeing what else is doable through online examples

Pre-exercise

Before beginning this exercise, familiarize yourself with some of the forms of scrollfire events that

modern websites use. Open http://scrollmagic.io/examples/basic/simple_tweening.html in Chrome

and scroll down and up to see what occurs. Then use the dropdown menus at the top to switch to

the next "Basic" example and see how that works. Continue doing this to view all the Basic and

Advanced examples on the site (don't worry about looking at the Expert ones unless you want to!).

1. Navigate to your USB folder (F:) and into the cs2033 > lab09 subfolder.

2. Open http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09/, download exer2.html, and

save it into lab09.

3. Open exer2.html in Brackets and immediately save it in the same folder as

exer2_complete.html. All work in this exercise will be done in exer2_complete.html.

4. Open exer2_complete.html in Chrome as well to see what it looks like before coding. Notice

that the navigation bar sticks to the top as you scroll past it. This is called sticky and it is

something that can be done with JS or just with CSS. In this case, it is done with CSS.

Highlighting the current section link

5. Click in the head section of exer2_complete.html and create a JavaScript tag:

<script type="text/javascript">

</script>

6. Within the JS area, create a function called scroll() that takes 0 input parameters. All the JS

in this exercise will go in this function.

http://scrollmagic.io/examples/basic/simple_tweening.html
http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09

7

7. Create a variable called t and give it the window.scrollY value just like in exercise 1.

8. Create another variable and call it nav. Use document.getElementById with the id "nav" to

store that element in the new nav variable. The JS should currently look like this:

9. Before we can do much else, we need to create a lot of variables that hold the HTML

elements: the 4 links, the 4 sections, and then the vertical positions of those 4 sections.

Start by creating a variable called l1 (that is a lower case L followed by a number 1) and it

will hold the l1 element obtained from document.getElementById("l1").

10. Repeat the previous step 3 more times but change l1 in both the variable name and the

getElementById parameter to l2, l3, and l4 respectively. It should look like this:

11. Next, create another 4 variables called s1, s2, s3, and s4 which will each be obtained from

document.getElementById with the IDs that match the variable names, i.e. s1 is the

element with ID "s1". These four lines simply look like this:

12. The s1-s4 elements represent the breakfast, lunch, dinner, and desserts sections within the

website. We want to add an underline on the corresponding links at the top as we scroll past

each of these sections in the page. In order to do this, we need to see if our scroll position

(t) is greater than the position of each of the sections in the page. We can use the property

called offsetTop from each section to retrieve its position in pixels from the top of the page:

var t1 = s1.offsetTop;

13. Repeat the above line 3 more times for t2, t3, and t4 (getting the offsetTop of s2, s3, and

s4 respectively). These variables look like this:

14. Using simple conditionals we can now check which section we are in based on the scroll

position (t) compared to each of the section positions (t1-t4). To simplify the code, we will

start by looking at t4, followed by t3, then t2, and t1 last. This is important because if we

started by checking if t > t1 (meaning we scrolled into the section 1 area), it would be true

for any scrolling below that area too which would throw off the whole conditional

(remember only the first conditional that is satisfied will execute even if multiple are true).

8

15. So we'll add these in reverse order like so:

16. Just to re-explain this, as we scroll down the page, one of these conditionals may be

triggered. When we're near the bottom of the page, all 4 conditionals would technically be

true because our t wil be greater than t1, t2, t3, and t4. We only want the t4 section to be

triggered so that the corresponding link, l4, will be underlined. Similarly when we're in the

3rd section (dinner), the t value would be greater than t1, t2, and t3 (but not t4 because

that section would be lower down) – but we only want the 3rd link to be underlined. For this

reason, we have the conditionals in the reverse order here so that only the correct section is

being triggered.

17. Within each of these 4 conditionals, we want to underline the corresponding link. We can

simply access the CSS of the link and change borderBottomColor to gold. Within the t4

portion, add the following code:

l4.style.borderBottomColor = "gold";

18. Follow the same format for t3, t2, and t1 but change the link variable in each to match (l3,

l2, and l1 respectively). This entire conditional section should now look like this:

19. Now, there's a minor problem with this code. When we scroll down past each section, the

corresponding link will be given a gold underline. However, these underlines are never

removed so all 4 would have a golden underline at the same time when you scroll to the

bottom. We need to reset them all to black underlines before the above conditional. Click

just above the conditional and add the following line to reset link l1 to black:

l1.style.borderBottomColor = "black";

20. Repeat the above line 3 more times for l2, l3, and l4 respectively (the order of these doesn't

matter as long as they are all done before the conditional).

21. The last step for this portion is to add the event listener so that this function is called as we

scroll down. Like the parallax exercise, add an onscroll listener to the body tag like so:

<body onscroll="scroll();">

22. Save the file and reload Chrome. As you scroll down and back up, pay attention to the

underlines in the navigation bar at the top.

9

Transitions on scrolling

23. You may have noticed a bowl of soup in the webpage after the 4 sections. We are going to

make this image grow when we scroll near it. There is also a message hidden on the side

that will slide in to the middle of the page when we scroll to that area.

24. Go back into the scroll() function we've been working on. After the conditional in there for

the underlines, create a new variable called soup that is the element with ID "soup".

25. Right after that, add a single if-statement that checks if we have scroll into/past the area

where that soup image is (around 2400px from the top):

26. Now we want to access soup's CSS within this JS to make it larger when we scroll into the

2400 range. There's a CSS style called transform with a sub-property called scale which is

used to resize images larger or smaler. We'll use this to double the image's size. Within the

t > 2400 conditional, add the following line to grow the image:

soup.style.transform = "scale(2, 2)";

27. Below that conditional, create another variable called msg to hold the element "msg".

28. Create another if-statement like the previous one which checks if t > 3000. In this

conditional, we want to set the marginLeft property of msg to 0px (it is 2000px by default

from the CSS, putting it off screen). These last few steps should look like this:

29. Save this file and refresh the browser. Make sure you are scrolled to the very top and

refresh again. Now slowly scroll down and watch the soup bowl grow when you approach it.

A little further down, you should see the message slide in from the right side into the middle

of the screen.

EXERCISE 3: RESPONSIVE

What you will learn in this exercise:

 Using JS to load different stylesheets

 Adding media queries in the <link> tags

 Adding media queries in the stylesheets

 Tips on layout structures between different devices/screens

 Using Chrome's developer tools to help with responsive design

10

1. Navigate to your USB folder (F:) and into the cs2033 > lab09 subfolder.

2. Open http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09/, download exer3.html, and

save it into lab09.

3. Open exer3.html in Brackets and immediately save it in the same folder as

exer3_complete.html. Most work will be done in exer3_complete.html and some will be

done in additional CSS files as specified.

4. Before you begin adding any code, open exer3_complete.html in Chrome and resize the

browser big and small width-wise (don't worry about resizing its height). As you resize,

make a mental note of what happens to the site, i.e. what gets cut off at various sizes.

Creating responsive styles

5. Create a new file in Brackets and immediately save it into cs2033 > lab09 > css with the

name mob-styles.css (styles for small mobile screens).

6. Repeat step 10 but name this one tab-styles.css (styles for tablet/medium screens).

7. Open both mob-styles.css and tab-styles.css in Brackets.

8. Go into mob-styles.css so we can add mobile styles. The first responsive style change is

giving the wrapper class a %-based width. Start by adding the following CSS rule-set:

.wrapper {

 width:100%;

}

9. Next we need the box class to have display:block so that they are single-column instead of

inline-block which creates a 2-column layout on a computer screen. Add the following CSS:

.box {

 display:block;

}

10. The banner at the top of the site also needs to change to a %-based width:

.banner img {

 width:100%;

}

11. Each of the 4 menu sections (breakfast, lunch, dinner, and desserts) has a big image of one

of the items in the corresponding menu. These images are being reduced to single column

from the above box class rule-set, however it also needs to be resized to fill the window:

.sect-img {

 width:100%

}

12. Another major style change for responsiveness is the navigation menu layout. Rather than a

horizontal navbar, mobile screens should show the links stacked on top of one another in a

vertical structure. We'll add a rule-set next to change 4 styles in the nav list items:

ul.nav li {

 font-size:28px;

 width:100%;

 height:40px;

 line-height:40px;

}

13. Lastly, each of the menu sections also has a list of meals in a bulleted list. These use the

menu-group class, which has a width of 450px for computer screens, but cannot be that

large on mobile screens. To be safe, we'll use width:auto which means it can be as big as it

needs to be to include the text content within it but it won't go beyond the edge of the

screen. We also need to remove the left margin here. This rule-set looks like this:

.menu-group {

 width:auto;

http://www.csd.uwo.ca/~bsarlo/cs2033b/labs/Lab09

11

 margin-left:0;

}

14. Save mob-styles.css. Now select all 6 rule-sets you just added into this stylesheet, copy it

all (Edit > Copy or Ctrl+C), and then go into tab-styles.css and paste it there (Edit > Paste

or Ctrl+V). We're doing this because most of these rule-sets can now be used for both

mobile and tablets alike. Only one minor change needs to occur for the tablet stylesheet.

15. Let's make this one small change now. In tab-styles.css, click into the wrapper class at the

top and change the width to 90%. Then add a new line within the same rule-set and give it

a top margin of 5% so that the banner isn't tight to the top. The wrapper class in tab-

styles.css should now look like this:

.wrapper {

 width:90%;

 margin-top:5%;

}

16. That's it for creating the responsive stylesheets! They won't be applied yet though as we

haven't loaded these files into the HTML page. The two screenshots here show you what the

completed responsive stylesheets should now look like:

mob-styles.css

tab-styles.css

12

JavaScript-loaded stylesheets

17. Click in the head section of exer3_complete.html below the <title> tag. Create a script tag

for holding JavaScript:

<script type="text/javascript">

</script>

18. In that JS area, create a variable called w and give it the value window.innerWidth;

19. Then add a 2-part conditional that first checks if w <= 640, and if not, then it checks if w

<= 1020 (because this comes second, it will only trigger if w is between 641 and 1020).

20. One global stylesheet was loaded directly in HTML at the top of the head section and it

contains styles that apply to the whole page. For the responsiveness, we will now load a

different secondary stylesheet for each of the screen size ranges. For <= 640px it will be

mob-styles.css and for 641px to 1020px it will be tab-styles.css. These are done just like a

regular HTML <link> tag to load a CSS file but they are put within the document.write()

function so that the JavaScript executes these lines.

21. The JavaScript portion should look something like this (although you don't need to add the

comments that I included):

22. Save the file and refresh Chrome. Resize the browser as small as it will go width-wise. Does

the website change at all? No. While it's at this small size, refresh again. Now you should

see the mobile styles take effect. Scroll down to observe all the contents/elements and see

how they have changed to a single column.

23. Now resize the window to somewhere in the medium range (roughly between 1/3 and 1/2

the width of the entire screen). Again you won't see anything change right away so refresh

again at this size and now you should see that the top banner is pushed down a bit and

there are margins along the sides as well. Most of the other elements follow the same

vertical structure that you observed in the smallest window size in the previous step.

24. Finally, resize your window to be large again – either full screen or close to it. Once again

the styles won't be changed upon resizing so you will have to refresh to let them take

effect. When you do, you should see what you saw before adding any responsiveness to the

site: 2 columns for the menu sections (picture on the left side and menu header and list on

the right side) and a horizontal navigation bar.

25. Now the website works at several different sizes so it is responsive! However, this

JavaScript approach is not very efficient as you may have noticed. You had to refresh the

browser for it to take effect because the JavaScript code runs as the page loads so it has to

retrieve the new width each time and load a stylesheet accordingly. Theoretically we could

use an onresize event handler to load the stylesheets as we resize, but this is very

inefficient as it would be loading those files repeatedly and eating up memory in the

computer. There are better options directly in CSS without using JS. Before continuing,

comment out the JavaScript code here. The easiest way to do this is click in the line just

above the opening <script> tag and add the characters <!-- and then click in the line just

after the closing </script> tag and add -->. You should see everything between there is

13

now grayed out to indicate that it's commented out and won't be executed anymore.

HTML media queries

26. In exer3_complete.html, click at the end of the <link> line that is loading main-styles.css

and hit Enter a few times to create more space.

27. Just after that <link> line, add two new <link> lines that are similar to the first one but

these will load css/mob-styles.css and css/tab-styles.css respectively (you may copy and

paste that first line to create these next two lines more quickly, but make sure you change

the filenames).

28. The original <link> loads main-styles.css and this file will apply to the site at any screen

size so it's fine as is. The new two links are only meant to load if the screen (or browser

window) is small. We can add media queries as attributes within these tags to indicate the

size ranges that they should apply to.

29. In the <link> line that's loading mob-styles.css, add the following attribute:

media="(max-width: 640px)"

30. In the <link> line that's loading tab-styles.css, add the following attribute:

media="(min-width: 641px) and (max-width: 1020px)"

31. The three <link> lines in the HTML should now look like this:

32. Save the file and refresh your browser. Now resize the browser to as small as it goes, then

to medium width, and then to large. You should notice that the responsive styles from mob-

styles.css and tab-styles.css ar taking effect immedately as you resize so you don't have to

refresh! This is a much more clean and efficient approach to loading the different

stylesheets for responsiveness.

CSS media queries

33. The last approach to responsiveness is similar to the previous one, but it is done directly in

CSS rather than in the HTML. Media queries are still used here but rather than loading a

different stylesheet for each size range, here we can load one larger stylesheet that

contains both sets of media queries.

14

34. Before beginning this portion, comment out the two link lines added in the previous steps

again using the <!—and --> characters and ensure they are grayed out.

35. Create a new file in Brackets and immediately save it in cs2033 > lab09 > css with the

name mq-styles.css.

36. We'll start by creating a media query for small mobile devices in mq-styles.css. These are

similar to the media queries that went into the HTML <link> tags in the previous portion in

that the min-width and max-width can be specified. Here the media queries are CSS

structures with curly brackets { and } that will contain rule-sets that only take effect if the

media query conditional is met.

37. Create the first media query (for mobile devices) with the following CSS:

@media (max-width: 600px) {

}

38. Below that, create the second media query (for tablets/medium screens):

@media (min-width: 641px) and (max-width: 1020px) {

}

39. Click into mob-styles.css, select everything in there, and copy it. Now click back into mq-

styles.css and into the first media query structure you created above and paste the code

that was copied from mob-styles.css.

40. Click into tab-styles.css, select everything in there, and copy it. Now click back into mq-

styles.css and into the second media query structure you created above and paste the code

that was copied from tab-styles.css. Save mq-styles.css.

41. The last step is to load this file from the HTML page so go back into exer3_complete.html.

Select the <link> line that loads css/main-styles.css and paste it immediately below that

line so there are two identical lines. Now change the second line to load css/mq-styles.css.

42.

43. Save mq-styles.css and refresh the browser. Resize the window to very small, then to

medium width, and then to large. At each size range, notice that the styles are changing

just like they did in the previous portion (HTML media queries) so you don't have to refresh

for the site to respond to resizing.

Note: these CSS media queries could even be put into main-styles.css after all the global rule-sets

and it would work the same as this. We are using mq-styles.css to hold the media queries for

simplicity so the file doesn't get too large and messy, but it would still work the same in one file.

Google Chrome's responsive mode

44. In this final portion of the lab you will use a tool built in to Google Chrome that helps with

testing your site for responsiveness. It's essentially an emulator which means it acts like

other devices so you can see what the website looks like on the different devices very

easily. They have a bunch of common phones and tablets pre-loaded in the emulator and

they also provide options to customize the screen to any size you want.

15

45. In Chrome, click the icon of 3 vertically stacked dots in the top-right corner. In that menu,

hover your cursor over "More tools" and then in the sub-menu, click on "Developer tools".

46. You should now see a panel open on the right side of the browser. There are numerous tools

in there that help with website development. We just want to use the Device Toolbar so

click on the little icon with the phone and tablet near the top of this panel. If you hover over

it, you should see the label "Toggle device toolbar". When you click that to toggle it on, the

left part of this toolbar changes, reducing the size of the screen's viewport.

47. At the top of this area, there are several form inputs that you can change. Firstly there is a

select dropdown menu where you can choose from various phone or tablet models. Try

changing the device in that list and watch as the emulator changes size for each one. You

should see that the responsive styles you added in mq-styles.css are being applied so the

selected device's size is triggering the respective media query styles.

48. There are several other parameters and settings you can change in here, like toggling the

device frame (only works for some of the devices), toggling the media queries as coloured

rectangles above the device, and toggling rulers to see the dimensions more clearly. Some

of these settings are hidden in the menu under the three dots icon (NOT the one you clicked

16

in step 44, but it looks the same! This one is in the upper-right corner of the left panel).

49. Play around with these different device models and the settings for a few minutes until you

are comfortable with how it all works.

This concludes this lab session. Call your TA over to check your work and receive your mark for this

lab.

REMEMBER TO REMOVE YOUR MEMORY STICK

FROM YOUR MACHINE AND PUT IT IN YOUR
BACKPACK! (don’t forget it)!

