
2/21/2020

1

CS 2033

Multimedia &

Communications II
LECTURE 7 – JAVASCRIPT

1 Announcements

 Assignment 2 is due this Friday

night. Upload it in advance to

ensure everything works!

 Review the instructions to check

that you followed them properly.

 TAs have consulting hours this week

so see them if you have any

questions.

2

Announcements

 Quiz 2 will be open next week on

Wednesday, March 4th and

Thursday, March 5th.

Questions from Lectures 5, 6, and 7:
HTML, CSS, and JavaScript.

 Final Exam is scheduled for April 14th

at 2pm. Location TBD.

3 JavaScript

 So far our websites have been

static. What if we want to make the

website dynamic and interactive?

 HTML and CSS are limited.

 We can do so much more by

adding JavaScript code.

 It is simple to incorporate JS

(JavaScript) in websites.

4

JavaScript

 Benefits of JavaScript:

 User input (mouse, keyboard, etc.)

 Modify HTML elements and CSS
dynamically (change styles, etc.)

 Analyze data like user input (validating
form input, etc.)

 Change content based on specific

conditions (different message for
students vs. teachers, etc.)

5 JavaScript

 First JavaScript commands:

 alert("Hello world");

 alert(______) will open a popup window to
display the given text.

 document.write("Hello world");

 document.write(______) will add the given

text directly in the webpage.

6

2/21/2020

2

JavaScript

 Variables make it easy to store

items that are reused.

var course = "CS2033";

 Now we can use this variable by

using its name.

alert(course);

document.write(course);

7 JavaScript

 Variable values can be changed

after they are first created.

 var course = "CS1033";

document.write(course);

course = "CS2033";

document.write(course);

 Code is executed in top-to-bottom

order, so this would first write

"CS1033" and then "CS2033".

8

Notice var is needed

when you create it

but not when you
change its value.

JavaScript

 There are several types of variables:

 String – text, surrounded by quotations

 x = "hello";

 Integer – whole number

 x = 13;

 Float/Double – decimal number

 x = 7.3

 Array – list of multiple items

 x = [2, 7, 4, 8, 1];

9 JavaScript

 Arrays are indexed such that each

item has a position, starting at 0.

 Access individual elements using

square brackets and an index.

 x = [2, 7, 4, 8, 1];

alert(x[0]); // Displays 2.

x[4] = 3; // Changes last item to 3.

10

JS and CSS

 A major benefit of JS is its ability to

interact with HTML and CSS.

 Directly change elements' styles.

 Change classes or IDs.

 Advanced animations / transitions.

 Content can also be changed.

 And more!

11 JS and CSS

 How do we change a style?

 First, we must select/get the HTML

element(s) in JS.

 Several ways to do this:

 document.getElementById(id);

 document.getElementsByTagName(tag);

 document.getElementsByClassName(class);

12

Notice the id getter

is singular while the

tag and class getters
are plural.

2/21/2020

3

JS and CSS

 The ID element getter is typically

the best one to use since it returns

one specific object.

 Getting elements by tag or class

may be helpful in specific cases in

which an array of elements need to

be accessed at once.

13 JS and CSS

 Suppose you have an HTML div with

the ID "mydiv".

 Access that element in JS with:

 document.getElementById("mydiv");

 Simplify the code by storing this

element in a variable.

 var md = document.getElementById("mydiv");

14

JS and CSS

 Now the styles can be modified.

 JS uses dot notation for accessing

levels of properties.

 style is a property in HTML elements.

CSS styles are properties within style.

 Type the element (dot) style (dot),

then a style property to access it.

 i.e. md.style.width

15 JS and CSS

 To modify a style, use the dot

notation on the element.

 After specifying a style, simply use

an equal sign and set the new

value in quotation marks.

md.style.width = "100px";

md.style.margin = "5px";

md.style.color = "red";

16

JS and CSS

 Style properties that contained a
hyphen in CSS are defined
differently in JavaScript.

 Instead, the words are back to
back and the initial of each word
(except the first) is capitalized.

 i.e. backgroundColor (not
background-color)

 This is called camel case.

17 JS and CSS

 box.style.backgroundColor = "red";

 box.style.color = "rgb(100,78,19)";

 mydiv.style.width = "400px";

 mydiv.style.borderColor = "black";

 mydiv.style.borderWidth = "3px";

 mydiv.style.left = "50%";

 tb.style.display = "block";

 tb.style.display = "none";

18

2/21/2020

4

JS and CSS

 If several styles need to be

changed, it's inefficient to do each

one individually.

 A better option is to change the

class on the object within JS.

 In CSS, an element can have

multiple classes. It's the same in JS.

19 JS and CSS

 Get the element the same way:

 var tb = document.getElementById("topbox");

 Use dot notation to access

className or id on the object.

 It's safer to leave the id alone and

just change classes.

20

JS and CSS

 HTML:

 <div id="tb" class="box"></div>

 JS:

 var tb = document.getElementById("tb");

 tb.className = "newbox"; // Single class.

 tb.className = "box newbox"; // 2 classes.

21 JS and CSS

 Notice the difference between the

two class change options.

 Single class is usually a replacement.

 Multiple classes are usually additions.

Retain original class styles.

Additional class(es) provide new or

modified styles.

22

JS and CSS

 We can now add and remove CSS
animations dynamically with JS.

 Create a CSS class selector that
triggers an animation.

 Use JS to add/remove the class to
an element.

Adding the class starts the
animation.

Removing the class stops it.

23 JS and CSS

 JS can also change the content

within an HTML element.

 Use dot notation to access the

innerHTML property of an element.

 tb.innerHTML = "Text shown in div.";

 As its name suggests, this supports

HTML as well.

 tb.innerHTML = "<p>Hi there!</p>";

24

2/21/2020

5

Event handling

 Style/content changes will typically

be done as a result of an event.

 Events are a huge part of JS!

User input events

Mouse-based

Keyboard-based

 Load event

 Timer events

25 Event handling

 Events are handled with event

listeners applied to HTML elements.

 Event listeners are always watching

for specific events to occur.

 When an awaited event occurs,

the listener detects it and triggers

the event's code.

26

Event handling

 There are two main ways to add

event listeners to elements.

 Inline: attach the event listener as an
attribute in the HTML element tag.

 Dot Notation: use the addEventListener

function as a property on the element
using dot notation.

27 Event handling

 Inline event listeners are the easiest.

 Although inline CSS and JS is

generally frowned upon, event

listeners are a different story!

 Inline event listeners start with "on"

followed by an event name

(sometimes abbreviated).

 All lowercase, no spaces or hyphens.

28

Event handling

 Common mouse events:

Click: onclick

Double click: ondblclick

Mouse over: onmouseover

Mouse out: onmouseout

 Focus a form field: onfocus

 Leave a form field: onblur

Change a form value: onchange

29 Event handlers

 Keyboard events:

Key press: onkeypress

Key down: onkeydown

Key up: onkeyup

 Differentiate keypress, keydown,

and keyup events.

30

2/21/2020

6

Event handlers

 <div id="box"

onclick="document.getElementByI

d('box').style.width = '300px'"></div>

 In this example, the style change

applies to the element itself, so we

can use a shortcut: this

 <div id="box" onclick="

this.style.width = '300px'"></div>

31 Event handlers

 Dot notation is the other method

for creating event listeners.

 This can go in internal or external

JavaScript code (after the element

is created!)

 box.addEventListener("click",

function() { this.style.width = "300px"

});

32

Other events

 We talked about mouse events

and keyboard events already.

 There are two other common event

types in JS: the loading of the

webpage and custom timers.

 The loading is simple. Just attach

an onload listener to the body and

it will trigger when everything loads.

33 Other events

 There are two types of timers.

 Timeout: trigger a function once

after a specified time has elapsed.

 Interval: trigger a function

repeatedly in intervals of the

specified time.

 Start them with setTimeout(function,

ms) or setInterval(function, ms)

34

Other events

 Examples of various events:

 http://www.csd.uwo.ca/~bsarlo/cs

2033b/samples/lec7/

35 JavaScript

 Most lines of code end with a semi-

colon ;

 There are structures of code that

may contain multiple lines in a

sequence.

 The first and last line of those

structures end with a curly bracket {

or } instead of a semi-colon.

36

http://www.csd.uwo.ca/~bsarlo/cs2033b/samples/lec7/

2/21/2020

7

Conditionals

 Conditionals are an important

structure in programming.

 Portions of code will only execute if

specific conditions are met.

 For example, checking if a number

is less than 10

 The if-else statement is used for

conditionals in JavaScript.

37 Conditionals

 if (condition) {
// do stuff;

}

 The condition can be anything that
boils down to a True or False value
(this is called a Boolean variable).

 x > 5 (greater than)

 x == 1 (note the double equal signs)

course != "CS2033" (not equal)

38

Conditionals

 We can add multiple conditionals

using the else if operator.

 if (x == 1) {

// do stuff.

} else if (x == 2) {

// do different stuff.

} else if (x == 3) {

// do other different stuff.

}

39 Conditionals

 The else operator is a catch-all for

any cases not yet accounted for.

 if (x == 1) {

// do stuff.

} else if (x == 2) {

// do different stuff.

} else {

// do other different stuff.

}

40

Conditionals

 Note that once a condition is

satisfied, the "else-if" statements

below it will not be checked.

 x = 2;

if (x < 5) {

// do stuff.

} else if (x < 10) {

// do different stuff.

}

41 Conditionals

 Suppose we received the user's

age online and then checked if the

user was allowed to buy booze…

 if (age >= 19) {

canDrink = true;

} else {

canDrink = false;

}

42

2/21/2020

8

Conditionals

 Conditionals might be composed
of multiple sub-conditions that all
have to be met.

 We combine them with the &&
(and) operator.

 if (age >= 19 && pregnant != true) {
canDrink = true;

} else {
canDrink = false;

}

43 Conditionals

 There also might be sub-conditions

such that at least one must be met.

 In this case, use the || (or)

operator.

 if (age >= 19 || allowed == true) {

canDrink = true;

} else {

canDrink = false;

}

44

Functions

 Another common structure in code

is a function.

 A function is a process that can be

executed at any time, and any

number of times.

 Great for routine processes that

need to be used multiple times.

45 Functions

 function myFunction() {

// code here.

// code here.

}

 The above code creates a function

but does not actually call (run) the

function. Calling it looks like this:

myFunction();

46

Functions

 Many functions have input

parameters which are placed

within the parentheses.

 Parameters make the function

reusable and flexible to work in

different scenarios.

 To call a function with parameters,

include the parameter values in the

function call parentheses.

47 Functions

 function average(x, y) {

var z = (x + y) / 2;

document.write("Result: " + z);

}

 This has 2 parameters: x and y.

 Call this function:

 average(5,9); // Result: 7

 average(10,20); // Result: 15

48

2/21/2020

9

Loops

 Another special code structure is

the loop. This is used to run code

repeatedly in a row.

 There are two main types of loops:

while-loop and for-loop but we will

focus on the for-loop.

 They contain 3 parts: variable

initialization, condition, increment.

49 Loops

 for (x = 0; x < 5; x++) {

alert(x);
}

 They also work great with arrays.

 data = [9, 4, 7, 3];

for (x = 0; x < data.length; x++) {

alert(data[x]);

}

50

Closing remarks

 Next week we will continue with

JavaScript.

 We'll focus on using JavaScript for

form validation.

 Have a good week!

51

