
2/21/2020

1

CS 2033

Multimedia &

Communications II
LECTURE 7 – JAVASCRIPT

1 Announcements

 Assignment 2 is due this Friday

night. Upload it in advance to

ensure everything works!

 Review the instructions to check

that you followed them properly.

 TAs have consulting hours this week

so see them if you have any

questions.

2

Announcements

 Quiz 2 will be open next week on

Wednesday, March 4th and

Thursday, March 5th.

Questions from Lectures 5, 6, and 7:
HTML, CSS, and JavaScript.

 Final Exam is scheduled for April 14th

at 2pm. Location TBD.

3 JavaScript

 So far our websites have been

static. What if we want to make the

website dynamic and interactive?

 HTML and CSS are limited.

 We can do so much more by

adding JavaScript code.

 It is simple to incorporate JS

(JavaScript) in websites.

4

JavaScript

 Benefits of JavaScript:

 User input (mouse, keyboard, etc.)

 Modify HTML elements and CSS
dynamically (change styles, etc.)

 Analyze data like user input (validating
form input, etc.)

 Change content based on specific

conditions (different message for
students vs. teachers, etc.)

5 JavaScript

 First JavaScript commands:

 alert("Hello world");

 alert(______) will open a popup window to
display the given text.

 document.write("Hello world");

 document.write(______) will add the given

text directly in the webpage.

6

2/21/2020

2

JavaScript

 Variables make it easy to store

items that are reused.

var course = "CS2033";

 Now we can use this variable by

using its name.

alert(course);

document.write(course);

7 JavaScript

 Variable values can be changed

after they are first created.

 var course = "CS1033";

document.write(course);

course = "CS2033";

document.write(course);

 Code is executed in top-to-bottom

order, so this would first write

"CS1033" and then "CS2033".

8

Notice var is needed

when you create it

but not when you
change its value.

JavaScript

 There are several types of variables:

 String – text, surrounded by quotations

 x = "hello";

 Integer – whole number

 x = 13;

 Float/Double – decimal number

 x = 7.3

 Array – list of multiple items

 x = [2, 7, 4, 8, 1];

9 JavaScript

 Arrays are indexed such that each

item has a position, starting at 0.

 Access individual elements using

square brackets and an index.

 x = [2, 7, 4, 8, 1];

alert(x[0]); // Displays 2.

x[4] = 3; // Changes last item to 3.

10

JS and CSS

 A major benefit of JS is its ability to

interact with HTML and CSS.

 Directly change elements' styles.

 Change classes or IDs.

 Advanced animations / transitions.

 Content can also be changed.

 And more!

11 JS and CSS

 How do we change a style?

 First, we must select/get the HTML

element(s) in JS.

 Several ways to do this:

 document.getElementById(id);

 document.getElementsByTagName(tag);

 document.getElementsByClassName(class);

12

Notice the id getter

is singular while the

tag and class getters
are plural.

2/21/2020

3

JS and CSS

 The ID element getter is typically

the best one to use since it returns

one specific object.

 Getting elements by tag or class

may be helpful in specific cases in

which an array of elements need to

be accessed at once.

13 JS and CSS

 Suppose you have an HTML div with

the ID "mydiv".

 Access that element in JS with:

 document.getElementById("mydiv");

 Simplify the code by storing this

element in a variable.

 var md = document.getElementById("mydiv");

14

JS and CSS

 Now the styles can be modified.

 JS uses dot notation for accessing

levels of properties.

 style is a property in HTML elements.

CSS styles are properties within style.

 Type the element (dot) style (dot),

then a style property to access it.

 i.e. md.style.width

15 JS and CSS

 To modify a style, use the dot

notation on the element.

 After specifying a style, simply use

an equal sign and set the new

value in quotation marks.

md.style.width = "100px";

md.style.margin = "5px";

md.style.color = "red";

16

JS and CSS

 Style properties that contained a
hyphen in CSS are defined
differently in JavaScript.

 Instead, the words are back to
back and the initial of each word
(except the first) is capitalized.

 i.e. backgroundColor (not
background-color)

 This is called camel case.

17 JS and CSS

 box.style.backgroundColor = "red";

 box.style.color = "rgb(100,78,19)";

 mydiv.style.width = "400px";

 mydiv.style.borderColor = "black";

 mydiv.style.borderWidth = "3px";

 mydiv.style.left = "50%";

 tb.style.display = "block";

 tb.style.display = "none";

18

2/21/2020

4

JS and CSS

 If several styles need to be

changed, it's inefficient to do each

one individually.

 A better option is to change the

class on the object within JS.

 In CSS, an element can have

multiple classes. It's the same in JS.

19 JS and CSS

 Get the element the same way:

 var tb = document.getElementById("topbox");

 Use dot notation to access

className or id on the object.

 It's safer to leave the id alone and

just change classes.

20

JS and CSS

 HTML:

 <div id="tb" class="box"></div>

 JS:

 var tb = document.getElementById("tb");

 tb.className = "newbox"; // Single class.

 tb.className = "box newbox"; // 2 classes.

21 JS and CSS

 Notice the difference between the

two class change options.

 Single class is usually a replacement.

 Multiple classes are usually additions.

Retain original class styles.

Additional class(es) provide new or

modified styles.

22

JS and CSS

 We can now add and remove CSS
animations dynamically with JS.

 Create a CSS class selector that
triggers an animation.

 Use JS to add/remove the class to
an element.

Adding the class starts the
animation.

Removing the class stops it.

23 JS and CSS

 JS can also change the content

within an HTML element.

 Use dot notation to access the

innerHTML property of an element.

 tb.innerHTML = "Text shown in div.";

 As its name suggests, this supports

HTML as well.

 tb.innerHTML = "<p>Hi there!</p>";

24

2/21/2020

5

Event handling

 Style/content changes will typically

be done as a result of an event.

 Events are a huge part of JS!

User input events

Mouse-based

Keyboard-based

 Load event

 Timer events

25 Event handling

 Events are handled with event

listeners applied to HTML elements.

 Event listeners are always watching

for specific events to occur.

 When an awaited event occurs,

the listener detects it and triggers

the event's code.

26

Event handling

 There are two main ways to add

event listeners to elements.

 Inline: attach the event listener as an
attribute in the HTML element tag.

 Dot Notation: use the addEventListener

function as a property on the element
using dot notation.

27 Event handling

 Inline event listeners are the easiest.

 Although inline CSS and JS is

generally frowned upon, event

listeners are a different story!

 Inline event listeners start with "on"

followed by an event name

(sometimes abbreviated).

 All lowercase, no spaces or hyphens.

28

Event handling

 Common mouse events:

Click: onclick

Double click: ondblclick

Mouse over: onmouseover

Mouse out: onmouseout

 Focus a form field: onfocus

 Leave a form field: onblur

Change a form value: onchange

29 Event handlers

 Keyboard events:

Key press: onkeypress

Key down: onkeydown

Key up: onkeyup

 Differentiate keypress, keydown,

and keyup events.

30

2/21/2020

6

Event handlers

 <div id="box"

onclick="document.getElementByI

d('box').style.width = '300px'"></div>

 In this example, the style change

applies to the element itself, so we

can use a shortcut: this

 <div id="box" onclick="

this.style.width = '300px'"></div>

31 Event handlers

 Dot notation is the other method

for creating event listeners.

 This can go in internal or external

JavaScript code (after the element

is created!)

 box.addEventListener("click",

function() { this.style.width = "300px"

});

32

Other events

 We talked about mouse events

and keyboard events already.

 There are two other common event

types in JS: the loading of the

webpage and custom timers.

 The loading is simple. Just attach

an onload listener to the body and

it will trigger when everything loads.

33 Other events

 There are two types of timers.

 Timeout: trigger a function once

after a specified time has elapsed.

 Interval: trigger a function

repeatedly in intervals of the

specified time.

 Start them with setTimeout(function,

ms) or setInterval(function, ms)

34

Other events

 Examples of various events:

 http://www.csd.uwo.ca/~bsarlo/cs

2033b/samples/lec7/

35 JavaScript

 Most lines of code end with a semi-

colon ;

 There are structures of code that

may contain multiple lines in a

sequence.

 The first and last line of those

structures end with a curly bracket {

or } instead of a semi-colon.

36

http://www.csd.uwo.ca/~bsarlo/cs2033b/samples/lec7/

2/21/2020

7

Conditionals

 Conditionals are an important

structure in programming.

 Portions of code will only execute if

specific conditions are met.

 For example, checking if a number

is less than 10

 The if-else statement is used for

conditionals in JavaScript.

37 Conditionals

 if (condition) {
// do stuff;

}

 The condition can be anything that
boils down to a True or False value
(this is called a Boolean variable).

 x > 5 (greater than)

 x == 1 (note the double equal signs)

course != "CS2033" (not equal)

38

Conditionals

 We can add multiple conditionals

using the else if operator.

 if (x == 1) {

// do stuff.

} else if (x == 2) {

// do different stuff.

} else if (x == 3) {

// do other different stuff.

}

39 Conditionals

 The else operator is a catch-all for

any cases not yet accounted for.

 if (x == 1) {

// do stuff.

} else if (x == 2) {

// do different stuff.

} else {

// do other different stuff.

}

40

Conditionals

 Note that once a condition is

satisfied, the "else-if" statements

below it will not be checked.

 x = 2;

if (x < 5) {

// do stuff.

} else if (x < 10) {

// do different stuff.

}

41 Conditionals

 Suppose we received the user's

age online and then checked if the

user was allowed to buy booze…

 if (age >= 19) {

canDrink = true;

} else {

canDrink = false;

}

42

2/21/2020

8

Conditionals

 Conditionals might be composed
of multiple sub-conditions that all
have to be met.

 We combine them with the &&
(and) operator.

 if (age >= 19 && pregnant != true) {
canDrink = true;

} else {
canDrink = false;

}

43 Conditionals

 There also might be sub-conditions

such that at least one must be met.

 In this case, use the || (or)

operator.

 if (age >= 19 || allowed == true) {

canDrink = true;

} else {

canDrink = false;

}

44

Functions

 Another common structure in code

is a function.

 A function is a process that can be

executed at any time, and any

number of times.

 Great for routine processes that

need to be used multiple times.

45 Functions

 function myFunction() {

// code here.

// code here.

}

 The above code creates a function

but does not actually call (run) the

function. Calling it looks like this:

myFunction();

46

Functions

 Many functions have input

parameters which are placed

within the parentheses.

 Parameters make the function

reusable and flexible to work in

different scenarios.

 To call a function with parameters,

include the parameter values in the

function call parentheses.

47 Functions

 function average(x, y) {

var z = (x + y) / 2;

document.write("Result: " + z);

}

 This has 2 parameters: x and y.

 Call this function:

 average(5,9); // Result: 7

 average(10,20); // Result: 15

48

2/21/2020

9

Loops

 Another special code structure is

the loop. This is used to run code

repeatedly in a row.

 There are two main types of loops:

while-loop and for-loop but we will

focus on the for-loop.

 They contain 3 parts: variable

initialization, condition, increment.

49 Loops

 for (x = 0; x < 5; x++) {

alert(x);
}

 They also work great with arrays.

 data = [9, 4, 7, 3];

for (x = 0; x < data.length; x++) {

alert(data[x]);

}

50

Closing remarks

 Next week we will continue with

JavaScript.

 We'll focus on using JavaScript for

form validation.

 Have a good week!

51

