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Motivations and objectives

▸ Studying the integer solutions of linear systems of equations and
inequalities is of practical importance in various areas of scientific
computing:

▸ combinatorial optimization, in particular, integer linear
programming,

▸ compiler optimization in particular, the analysis, transformation,
and scheduling of nested loops in computer programs.

▸ One important objective for us is to support
Presburger arithmetic, that is, quantifier elimination over the
integers, see our ISSAC 2025 paper.
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Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q

IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.
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Integer hulls and lattices
1 The integer hull of a polyhedron P ⊆ Qd , is the smallest convex
polyhedron containing all the integer points of P. Thus, this is
is the intersection of all convex polyhedra containing P ∩Zd .

x

y

2 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if
L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}

holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

3 It is convenient to see this lattice as the solution set of the systems
of congruence relations x ≡ b mod A.
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Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [3] decomposes any
Z-polyhedron into normalized Z-polyhedra.
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Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.
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Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.

A Presburger formula F in prenex normal form has the form:
F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),

where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.
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Quantifier elimination

Theorem 1
Presburger arithmetic admits quantifier elimination.

Remark 1
Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
Our goal is to determine the set D(y1, . . . , yn) ⊆ Zn of ALL integer tuples
of (y1, . . . , yn) for which the formula F (x1, . . . , xm, y1, . . . , yn) is true.
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Concluding remarks

Summary and notes

1 We have presented software libraries for computing with integer hulls
and Z-polyhedra.

2 They support integer point counting of parametric polyhedra (=
computing Ehrhart polynomials) as well as Presburger arithmetic (=
quantifier elimination over the integers).

3 The algorithm IntegerPointDecomposition plays an essential role.

4 Most of these functionalities are available in Maple 2025, except QE.

Work in progress

1 In the presence of free variables, QE tend to split computations more
than necessary and we are developing algorithms dealing with this
issue.

2 We are extending our implementation of Presburger arithmetic to
support certain class of non-linear expressions that are of practical
interest in compiler theory [2].
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