
Integer Hulls, Z-Polyhedra and Presburger
Arithmetic in Action

Rui-Juan Jing 1, Yuzhuo Lei 2, Christopher F. S. Maligec 2,
Marc Moreno Maza 2, Chirantan Mukherjee 2

2Ontario Research Center for Computer Algebra (ORCCA), UWO, London, Ontario
1School of Mathematical Science, Jiangsu University, Zhenjiang, China

July 30, 2025



Acknowledgements

▸ This software demo is based on research projects in which
many former and current ORCCA students have played an
essential role. By alphabetic order: Xiaohui Chen, Rui-Juan Jing,
Yuzhuo Lei, Christopher Maligec, Chirantan Mukherjee, Delaram
Talaashrafi, Linxiao Wang, Ning Xie, Rong Xiao and Haoze Yuan.

▸ This software demo is based on
academic and industry collaborations with Maplesoft,
MIT/CSAIL, NVIDIA, Intel and IBM Canada, with funding support
from Maplesoft, MITACS, IBM and NSERC of Canada, together
with hardware/software from NVIDIA and Intel.

▸ Most of the algorithms presented in this software demo are
available in Maple’s PolyhedralSets library.

https://www.linkedin.com/in/xiaohui-chen-76113371/?originalSubdomain=ca
https://jingrj.github.io/
https://www.csd.uwo.ca/~cmukher/
https://dtalaashrafi.github.io/
https://dtalaashrafi.github.io/
https://www.csd.uwo.ca/~lwang739/
https://www.linkedin.com/in/ning-nxie/?originalSubdomain=ca


Acknowledgements

▸ This software demo is based on research projects in which
many former and current ORCCA students have played an
essential role. By alphabetic order: Xiaohui Chen, Rui-Juan Jing,
Yuzhuo Lei, Christopher Maligec, Chirantan Mukherjee, Delaram
Talaashrafi, Linxiao Wang, Ning Xie, Rong Xiao and Haoze Yuan.

▸ This software demo is based on
academic and industry collaborations with Maplesoft,
MIT/CSAIL, NVIDIA, Intel and IBM Canada, with funding support
from Maplesoft, MITACS, IBM and NSERC of Canada, together
with hardware/software from NVIDIA and Intel.

▸ Most of the algorithms presented in this software demo are
available in Maple’s PolyhedralSets library.

https://www.linkedin.com/in/xiaohui-chen-76113371/?originalSubdomain=ca
https://jingrj.github.io/
https://www.csd.uwo.ca/~cmukher/
https://dtalaashrafi.github.io/
https://dtalaashrafi.github.io/
https://www.csd.uwo.ca/~lwang739/
https://www.linkedin.com/in/ning-nxie/?originalSubdomain=ca


Acknowledgements

▸ This software demo is based on research projects in which
many former and current ORCCA students have played an
essential role. By alphabetic order: Xiaohui Chen, Rui-Juan Jing,
Yuzhuo Lei, Christopher Maligec, Chirantan Mukherjee, Delaram
Talaashrafi, Linxiao Wang, Ning Xie, Rong Xiao and Haoze Yuan.

▸ This software demo is based on
academic and industry collaborations with Maplesoft,
MIT/CSAIL, NVIDIA, Intel and IBM Canada, with funding support
from Maplesoft, MITACS, IBM and NSERC of Canada, together
with hardware/software from NVIDIA and Intel.

▸ Most of the algorithms presented in this software demo are
available in Maple’s PolyhedralSets library.

https://www.linkedin.com/in/xiaohui-chen-76113371/?originalSubdomain=ca
https://jingrj.github.io/
https://www.csd.uwo.ca/~cmukher/
https://dtalaashrafi.github.io/
https://dtalaashrafi.github.io/
https://www.csd.uwo.ca/~lwang739/
https://www.linkedin.com/in/ning-nxie/?originalSubdomain=ca


Motivations and objectives

▸ Studying the integer solutions of linear systems of equations and
inequalities is of practical importance in various areas of scientific
computing:

▸ combinatorial optimization, in particular, integer linear
programming,

▸ compiler optimization in particular, the analysis, transformation,
and scheduling of nested loops in computer programs.

▸ One important objective for us is to support
Presburger arithmetic, that is, quantifier elimination over the
integers, see our ISSAC 2025 paper.



Motivations and objectives

▸ Studying the integer solutions of linear systems of equations and
inequalities is of practical importance in various areas of scientific
computing:
▸ combinatorial optimization, in particular, integer linear

programming,

▸ compiler optimization in particular, the analysis, transformation,
and scheduling of nested loops in computer programs.

▸ One important objective for us is to support
Presburger arithmetic, that is, quantifier elimination over the
integers, see our ISSAC 2025 paper.



Motivations and objectives

▸ Studying the integer solutions of linear systems of equations and
inequalities is of practical importance in various areas of scientific
computing:
▸ combinatorial optimization, in particular, integer linear

programming,
▸ compiler optimization in particular, the analysis, transformation,

and scheduling of nested loops in computer programs.

▸ One important objective for us is to support
Presburger arithmetic, that is, quantifier elimination over the
integers, see our ISSAC 2025 paper.



Motivations and objectives

▸ Studying the integer solutions of linear systems of equations and
inequalities is of practical importance in various areas of scientific
computing:
▸ combinatorial optimization, in particular, integer linear

programming,
▸ compiler optimization in particular, the analysis, transformation,

and scheduling of nested loops in computer programs.

▸ One important objective for us is to support
Presburger arithmetic, that is, quantifier elimination over the
integers, see our ISSAC 2025 paper.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q

IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls

ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra

FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method

NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials

ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions

QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials

QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)

PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.

▸ All libraries and commands are Maple code, except FME SatMat which is is written in
C/C++ in support of efficiency critical routines.



Software architecture and history

Component Release year Key functionalities
PolyhedralSets 2015 Basic routines for polyhedra over Q
IntegerHull 2022 fast computations of integer hulls
ZPolyhedralSets 2023 Z-polyhedra
FME SatMat 2025 FME, double-description method
NumberOfIntegerPoints 2025 Ehrhart polynomials
ValuesUnderConstrainsts 2025 computations with piece-wise functions
QuasiPolynomials 2025 computations with quasi-polynomials
QuantifierEliminationOverZ new QE over Z (back-engine)
PresburgerFormulas new QE over Z (front-engine)

▸ All these components are libraries, except IntegerHull and NumberOfIntegerPoints

which are commands.
▸ All libraries and commands are Maple code, except FME SatMat which is is written in

C/C++ in support of efficiency critical routines.



Plan

1. Overview

2. Integer hulls of polyhedra

3. Integer point counting for parametric polyhedra

4. Quantifier elimination over the integers

5. Concluding remarks



Plan

1. Overview

2. Integer hulls of polyhedra
2.1 Integer hulls, lattices and Z-polyhedra

3. Integer point counting for parametric polyhedra
3.1 Generating functions of non-parametric polyhedral sets

4. Quantifier elimination over the integers
4.1 Presburger arithmetic

5. Concluding remarks



Integer hulls and lattices
1 The integer hull of a polyhedron P ⊆ Qd , is the smallest convex
polyhedron containing all the integer points of P. Thus, this is
is the intersection of all convex polyhedra containing P ∩Zd .

x

y

2 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if
L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}

holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

3 It is convenient to see this lattice as the solution set of the systems
of congruence relations x ≡ b mod A.



Integer hulls and lattices
1 The integer hull of a polyhedron P ⊆ Qd , is the smallest convex
polyhedron containing all the integer points of P. Thus, this is
is the intersection of all convex polyhedra containing P ∩Zd .

x

y

2 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if
L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}

holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

3 It is convenient to see this lattice as the solution set of the systems
of congruence relations x ≡ b mod A.



Integer hulls and lattices
1 The integer hull of a polyhedron P ⊆ Qd , is the smallest convex
polyhedron containing all the integer points of P. Thus, this is
is the intersection of all convex polyhedra containing P ∩Zd .

x

y

2 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if
L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}

holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

3 It is convenient to see this lattice as the solution set of the systems
of congruence relations x ≡ b mod A.



Integer hulls and lattices
1 The integer hull of a polyhedron P ⊆ Qd , is the smallest convex
polyhedron containing all the integer points of P. Thus, this is
is the intersection of all convex polyhedra containing P ∩Zd .

x

y

2 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if
L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}

holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

3 It is convenient to see this lattice as the solution set of the systems
of congruence relations x ≡ b mod A.



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [3] decomposes any
Z-polyhedron into normalized Z-polyhedra.



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [3] decomposes any
Z-polyhedron into normalized Z-polyhedra.



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where

b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form
max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and

c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [3] decomposes any
Z-polyhedron into normalized Z-polyhedra.



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and

c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [3] decomposes any
Z-polyhedron into normalized Z-polyhedra.



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that

d all the integer points of P are obtained by back substitution, that
is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [3] decomposes any
Z-polyhedron into normalized Z-polyhedra.



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [3] decomposes any
Z-polyhedron into normalized Z-polyhedra.



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [3] decomposes any
Z-polyhedron into normalized Z-polyhedra.



Plan

1. Overview

2. Integer hulls of polyhedra
2.1 Integer hulls, lattices and Z-polyhedra

3. Integer point counting for parametric polyhedra
3.1 Generating functions of non-parametric polyhedral sets

4. Quantifier elimination over the integers
4.1 Presburger arithmetic

5. Concluding remarks



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =

1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) =

G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) = G(Q1,x) +

G(Q2,x)

+

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) = G(Q1,x) +G(Q2,x) +

G(Q3,x)

+

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +

G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)

= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Generating function of a polyhedral set
▸ Consider a polyhedral set P ⊆ Qd and map each integer point

e = (e1, . . . , ed) of P to the monomial xe = x1
e1⋯xd

ed

▸ The generating function of P is the formal Laurent series:
G(P,x) = ∑

e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts its integer points.

▸ If P is not bounded, then G(P,x) is a formal Laurent series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray given by y = 0 and x ≥ 0, then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

▸ Still for d = 2, G(P,x) is computed as the sum of the generating
functions of its vertex cones, thanks to Brion’s theorem (1988) [1].

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y+
+x3y + 1 + x + x2.



Plan

1. Overview

2. Integer hulls of polyhedra
2.1 Integer hulls, lattices and Z-polyhedra

3. Integer point counting for parametric polyhedra
3.1 Generating functions of non-parametric polyhedral sets

4. Quantifier elimination over the integers
4.1 Presburger arithmetic

5. Concluding remarks



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.

A Presburger formula F in prenex normal form has the form:
F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),

where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Quantifier elimination

Theorem 1
Presburger arithmetic admits quantifier elimination.

Remark 1
Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
Our goal is to determine the set D(y1, . . . , yn) ⊆ Zn of ALL integer tuples
of (y1, . . . , yn) for which the formula F (x1, . . . , xm, y1, . . . , yn) is true.



Quantifier elimination

Theorem 1
Presburger arithmetic admits quantifier elimination.

Remark 1
Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
Our goal is to determine the set D(y1, . . . , yn) ⊆ Zn of ALL integer tuples
of (y1, . . . , yn) for which the formula F (x1, . . . , xm, y1, . . . , yn) is true.



Concluding remarks

Summary and notes

1 We have presented software libraries for computing with integer hulls
and Z-polyhedra.

2 They support integer point counting of parametric polyhedra (=
computing Ehrhart polynomials) as well as Presburger arithmetic (=
quantifier elimination over the integers).

3 The algorithm IntegerPointDecomposition plays an essential role.

4 Most of these functionalities are available in Maple 2025, except QE.

Work in progress

1 In the presence of free variables, QE tend to split computations more
than necessary and we are developing algorithms dealing with this
issue.

2 We are extending our implementation of Presburger arithmetic to
support certain class of non-linear expressions that are of practical
interest in compiler theory [2].



References

[1] M. Brion. “Points entiers dans les polyedres convexes”. In:
Annales scientifiques de l’École normale supérieure. Vol. 21. 4.
1988, pp. 653–663.

[2] C. Chen, X. Chen, A. Keita, M. Moreno Maza, and N. Xie.
“MetaFork: a compilation framework for concurrency models
targeting hardware accelerators and its application to the
generation of parametric CUDA kernels”. In:
Proceedings of 25th Annual International Conference on Computer Science and Software Engineering, CASCON 2015, Markham, Ontario, Canada, 2-4 November, 2015.
Ed. by J. Gould, M. Litoiu, and H. Lutfiyya. IBM / ACM, 2015,
pp. 70–79. url:
http://dl.acm.org/citation.cfm?id=2886456.

[3] R. Jing and M. Moreno Maza. “Computing the Integer Points of
a Polyhedron, I: Algorithm”. In: CASC 2017, Proceedings.
Vol. 10490. LNCS. Springer, 2017, pp. 225–241.

http://dl.acm.org/citation.cfm?id=2886456

	Overview
	Integer hulls of polyhedra
	Integer hulls, lattices and Z-polyhedra

	Integer point counting for parametric polyhedra
	Generating functions of non-parametric polyhedral sets

	Quantifier elimination over the integers
	Presburger arithmetic

	Concluding remarks

