
Quantifier Elimination Over the Integers

Rui-Juan Jing 1, Yuzhuo Lei 2, Christopher F. S. Maligec 2,
Marc Moreno Maza 2, Chirantan Mukherjee 2

2Ontario Research Center for Computer Algebra (ORCCA), UWO, London, Ontario
1School of Mathematical Science, Jiangsu University, Zhenjiang, China

July 29, 2025



Plan

1. Overview

2. Basic concepts

3. Quantifier elimination over the integers

4. Integer projection

5. Experimentation

6. Concluding remarks



Quantifier elimination

Input
Consider a formula in prenex normal form,

F = Q1x1 . . . Qmxm ϕ(x1, . . . , xm, y1, . . . , yn)
where:

1 Q1, . . .Qm is a sequence of quantifiers (existential ∃ or universal ∀),
2 x1, . . . , xm are bound variables,

3 y1, . . . , yn are free variables and,

4 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula.

Possible output

1 A sample point: a tuple of values for (y1, . . . , yn) making F true, if
such a tuple exists, false otherwise,

2 An equivalent formula: describing the set D(y1, . . . , yn) consisting
of all tuples of values for (y1, . . . , yn) making F true.



Quantifier elimination

Input
Consider a formula in prenex normal form,

F = Q1x1 . . . Qmxm ϕ(x1, . . . , xm, y1, . . . , yn)
where:

1 Q1, . . .Qm is a sequence of quantifiers (existential ∃ or universal ∀),
2 x1, . . . , xm are bound variables,

3 y1, . . . , yn are free variables and,

4 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula.

Possible output

1 A sample point: a tuple of values for (y1, . . . , yn) making F true, if
such a tuple exists, false otherwise,

2 An equivalent formula: describing the set D(y1, . . . , yn) consisting
of all tuples of values for (y1, . . . , yn) making F true.



Quantifier elimination

Input
Consider a formula in prenex normal form,

F = Q1x1 . . . Qmxm ϕ(x1, . . . , xm, y1, . . . , yn)
where:

1 Q1, . . .Qm is a sequence of quantifiers (existential ∃ or universal ∀),
2 x1, . . . , xm are bound variables,

3 y1, . . . , yn are free variables and,

4 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula.

Possible output

1 A sample point: a tuple of values for (y1, . . . , yn) making F true, if
such a tuple exists, false otherwise,

2 An equivalent formula: describing the set D(y1, . . . , yn) consisting
of all tuples of values for (y1, . . . , yn) making F true.



QE over the integers

1 Linear integer arithmetic (LIA), started with the works of
Mojżesz Presbuger [26] and David Cooper [6].

2 Effective approaches for LIA, developed by William Pugh [24] and
Sven Verdoolaege et al. [28]:

a eliminate a sequence of existential quantifiers in the sense of
computing a formula;

b however, no complexity estimates are known for these approaches.

3 Our algorithm IntegerPointDecomposition [12], which is based
on William Pugh’s projection,

a eliminates a sequence of existential quantifiers for LIA in the sense of
computing a formula;

b under some technical assumptions, it runs in single exponential time
w.r.t. the dimension of the ambient space.

4 Still for a sequence of existential quantifiers in LIA, the
algorithm [10] by Christoph Haase et al.
computes sample points in singly exponential time.

5 Can we eliminate a sequence of existential quantifiers for LIA in the
sense of computing a formula in single exponential time?



QE over the integers

1 Linear integer arithmetic (LIA), started with the works of
Mojżesz Presbuger [26] and David Cooper [6].

2 Effective approaches for LIA, developed by William Pugh [24] and
Sven Verdoolaege et al. [28]:

a eliminate a sequence of existential quantifiers in the sense of
computing a formula;

b however, no complexity estimates are known for these approaches.

3 Our algorithm IntegerPointDecomposition [12], which is based
on William Pugh’s projection,

a eliminates a sequence of existential quantifiers for LIA in the sense of
computing a formula;

b under some technical assumptions, it runs in single exponential time
w.r.t. the dimension of the ambient space.

4 Still for a sequence of existential quantifiers in LIA, the
algorithm [10] by Christoph Haase et al.
computes sample points in singly exponential time.

5 Can we eliminate a sequence of existential quantifiers for LIA in the
sense of computing a formula in single exponential time?



QE over the integers

1 Linear integer arithmetic (LIA), started with the works of
Mojżesz Presbuger [26] and David Cooper [6].

2 Effective approaches for LIA, developed by William Pugh [24] and
Sven Verdoolaege et al. [28]:

a eliminate a sequence of existential quantifiers in the sense of
computing a formula;

b however, no complexity estimates are known for these approaches.

3 Our algorithm IntegerPointDecomposition [12], which is based
on William Pugh’s projection,

a eliminates a sequence of existential quantifiers for LIA in the sense of
computing a formula;

b under some technical assumptions, it runs in single exponential time
w.r.t. the dimension of the ambient space.

4 Still for a sequence of existential quantifiers in LIA, the
algorithm [10] by Christoph Haase et al.
computes sample points in singly exponential time.

5 Can we eliminate a sequence of existential quantifiers for LIA in the
sense of computing a formula in single exponential time?



QE over the integers

1 Linear integer arithmetic (LIA), started with the works of
Mojżesz Presbuger [26] and David Cooper [6].

2 Effective approaches for LIA, developed by William Pugh [24] and
Sven Verdoolaege et al. [28]:

a eliminate a sequence of existential quantifiers in the sense of
computing a formula;

b however, no complexity estimates are known for these approaches.

3 Our algorithm IntegerPointDecomposition [12], which is based
on William Pugh’s projection,

a eliminates a sequence of existential quantifiers for LIA in the sense of
computing a formula;

b under some technical assumptions, it runs in single exponential time
w.r.t. the dimension of the ambient space.

4 Still for a sequence of existential quantifiers in LIA, the
algorithm [10] by Christoph Haase et al.
computes sample points in singly exponential time.

5 Can we eliminate a sequence of existential quantifiers for LIA in the
sense of computing a formula in single exponential time?



QE over the integers

1 Linear integer arithmetic (LIA), started with the works of
Mojżesz Presbuger [26] and David Cooper [6].

2 Effective approaches for LIA, developed by William Pugh [24] and
Sven Verdoolaege et al. [28]:

a eliminate a sequence of existential quantifiers in the sense of
computing a formula;

b however, no complexity estimates are known for these approaches.

3 Our algorithm IntegerPointDecomposition [12], which is based
on William Pugh’s projection,

a eliminates a sequence of existential quantifiers for LIA in the sense of
computing a formula;

b under some technical assumptions, it runs in single exponential time
w.r.t. the dimension of the ambient space.

4 Still for a sequence of existential quantifiers in LIA, the
algorithm [10] by Christoph Haase et al.
computes sample points in singly exponential time.

5 Can we eliminate a sequence of existential quantifiers for LIA in the
sense of computing a formula in single exponential time?



Applications
▸ Optimizing Compilers:

▸ Array Dependence Analysis
▸ Polyhedral frameworks (GCC’s Graphite [22], LLVM’s Polly [8]).

▸ Program Verification:
▸ Stanford Pascal Verifier [18]
▸ CompCert [16]

▸ Theorem Proving:
▸ SAT/SMT Solvers (Z3 [20], CVC5 [1])
▸ Proof Assistants (Coq [4], Isabelle [21], HOL Light [11], Lean [19]).

Software Implementations

▸ ISL (Integer Set Library) [27]

▸ TaPAS (Talence Presburger Arithmetic Suite) [15]

▸ Yices [7]

▸ Princess (Scala Theorem Prover) [25]

▸ Our Software, see the ISSAC 2025 software demo.



Our contributions

1 We study integer projection, that is, the elimination of a sequence
of existential quantifiers in a Presburger formula

2 We compare three well-know projections in a unified framework:
Cooper’s algorithm [6], Williams’ projection [29] and the Omega
test [24]

3 We show that the former two are equivalent while the latter is a
substantial optimization of these.

4 We have implemented a QE solver where integer projection can be
done either

a via IntegerPointDecomposition [12],
b or a parametric adaptation [13] of Barvinok’s algorithm for

counting integer points, thus computing Ehrhart polynomials.

5 Experimental results are provided.



Our contributions

1 We study integer projection, that is, the elimination of a sequence
of existential quantifiers in a Presburger formula

2 We compare three well-know projections in a unified framework:
Cooper’s algorithm [6], Williams’ projection [29] and the Omega
test [24]

3 We show that the former two are equivalent while the latter is a
substantial optimization of these.

4 We have implemented a QE solver where integer projection can be
done either

a via IntegerPointDecomposition [12],
b or a parametric adaptation [13] of Barvinok’s algorithm for

counting integer points, thus computing Ehrhart polynomials.

5 Experimental results are provided.



Our contributions

1 We study integer projection, that is, the elimination of a sequence
of existential quantifiers in a Presburger formula

2 We compare three well-know projections in a unified framework:
Cooper’s algorithm [6], Williams’ projection [29] and the Omega
test [24]

3 We show that the former two are equivalent while the latter is a
substantial optimization of these.

4 We have implemented a QE solver where integer projection can be
done either

a via IntegerPointDecomposition [12],
b or a parametric adaptation [13] of Barvinok’s algorithm for

counting integer points, thus computing Ehrhart polynomials.

5 Experimental results are provided.



Our contributions

1 We study integer projection, that is, the elimination of a sequence
of existential quantifiers in a Presburger formula

2 We compare three well-know projections in a unified framework:
Cooper’s algorithm [6], Williams’ projection [29] and the Omega
test [24]

3 We show that the former two are equivalent while the latter is a
substantial optimization of these.

4 We have implemented a QE solver where integer projection can be
done either

a via IntegerPointDecomposition [12],
b or a parametric adaptation [13] of Barvinok’s algorithm for

counting integer points, thus computing Ehrhart polynomials.

5 Experimental results are provided.



Our contributions

1 We study integer projection, that is, the elimination of a sequence
of existential quantifiers in a Presburger formula

2 We compare three well-know projections in a unified framework:
Cooper’s algorithm [6], Williams’ projection [29] and the Omega
test [24]

3 We show that the former two are equivalent while the latter is a
substantial optimization of these.

4 We have implemented a QE solver where integer projection can be
done either

a via IntegerPointDecomposition [12],

b or a parametric adaptation [13] of Barvinok’s algorithm for
counting integer points, thus computing Ehrhart polynomials.

5 Experimental results are provided.



Our contributions

1 We study integer projection, that is, the elimination of a sequence
of existential quantifiers in a Presburger formula

2 We compare three well-know projections in a unified framework:
Cooper’s algorithm [6], Williams’ projection [29] and the Omega
test [24]

3 We show that the former two are equivalent while the latter is a
substantial optimization of these.

4 We have implemented a QE solver where integer projection can be
done either

a via IntegerPointDecomposition [12],
b or a parametric adaptation [13] of Barvinok’s algorithm for

counting integer points, thus computing Ehrhart polynomials.

5 Experimental results are provided.



Our contributions

1 We study integer projection, that is, the elimination of a sequence
of existential quantifiers in a Presburger formula

2 We compare three well-know projections in a unified framework:
Cooper’s algorithm [6], Williams’ projection [29] and the Omega
test [24]

3 We show that the former two are equivalent while the latter is a
substantial optimization of these.

4 We have implemented a QE solver where integer projection can be
done either

a via IntegerPointDecomposition [12],
b or a parametric adaptation [13] of Barvinok’s algorithm for

counting integer points, thus computing Ehrhart polynomials.

5 Experimental results are provided.



Plan

1. Overview

2. Basic concepts

3. Quantifier elimination over the integers

4. Integer projection

5. Experimentation

6. Concluding remarks



Plan

1. Overview

2. Basic concepts

3. Quantifier elimination over the integers

4. Integer projection

5. Experimentation

6. Concluding remarks



Polyhedra

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0;

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.



Polyhedra

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0;

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.



Polyhedra

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0;

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.



Polyhedra

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0;

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.



Integer hulls and lattices
1 The integer hull of a polyhedron P ⊆ Qd , is the smallest convex
polyhedron containing all the integer points of P. Thus, this is
is the intersection of all convex polyhedra containing P ∩Zd .

x

y

2 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if
L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}

holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

3 It is convenient to see this lattice as the solution set of the systems
of congruence relations x ≡ b mod A.



Integer hulls and lattices
1 The integer hull of a polyhedron P ⊆ Qd , is the smallest convex
polyhedron containing all the integer points of P. Thus, this is
is the intersection of all convex polyhedra containing P ∩Zd .

x

y

2 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if
L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}

holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

3 It is convenient to see this lattice as the solution set of the systems
of congruence relations x ≡ b mod A.



Integer hulls and lattices
1 The integer hull of a polyhedron P ⊆ Qd , is the smallest convex
polyhedron containing all the integer points of P. Thus, this is
is the intersection of all convex polyhedra containing P ∩Zd .

x

y

2 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if
L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}

holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

3 It is convenient to see this lattice as the solution set of the systems
of congruence relations x ≡ b mod A.



Integer hulls and lattices
1 The integer hull of a polyhedron P ⊆ Qd , is the smallest convex
polyhedron containing all the integer points of P. Thus, this is
is the intersection of all convex polyhedra containing P ∩Zd .

x

y

2 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if
L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}

holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

3 It is convenient to see this lattice as the solution set of the systems
of congruence relations x ≡ b mod A.



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [14] decomposes any
Z-polyhedron into normalized Z-polyhedra.

skip slide



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [14] decomposes any
Z-polyhedron into normalized Z-polyhedra.

skip slide



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where

b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form
max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and

c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [14] decomposes any
Z-polyhedron into normalized Z-polyhedra.

skip slide



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and

c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [14] decomposes any
Z-polyhedron into normalized Z-polyhedra.

skip slide



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that

d all the integer points of P are obtained by back substitution, that
is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [14] decomposes any
Z-polyhedron into normalized Z-polyhedra.

skip slide



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [14] decomposes any
Z-polyhedron into normalized Z-polyhedra.

skip slide



Z-polyhedra
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(2.1)

where
b ai (resp. bi ) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei ) (resp. min(ℓi,1 . . . ℓi,ei )), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that

is, by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

3 The algorithm IntegerPointDecomposition [14] decomposes any
Z-polyhedron into normalized Z-polyhedra.

skip slide



Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,

2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (2.2)

Theorem 1 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.



Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (2.2)

Theorem 1 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.



Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (2.2)

Theorem 1 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.



Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (2.2)

Theorem 1 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.



Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (2.2)

Theorem 1 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.



Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .

7 Consider the system
N z ≡ q mod m. (2.2)

Theorem 1 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.



Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (2.2)

Theorem 1 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.



Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (2.2)

Theorem 1 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.



Plan

1. Overview

2. Basic concepts

3. Quantifier elimination over the integers

4. Integer projection

5. Experimentation

6. Concluding remarks



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.

A Presburger formula F in prenex normal form has the form:
F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),

where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Presburger arithmetic

The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 y1, . . . , yn are free (or unbounded) variables,

3 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula, where each
atom (= formula free of quantifiers and connectives) is either

a a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
b or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where:

a k ∈ Z>0 is a constant, and
b ℓ(x1, . . . , xm, y1, . . . , yn) is a linear integer polynomial, thus with

total degree at most 1.



Quantifier elimination (1/2)

Theorem 2
Presburger arithmetic admits quantifier elimination.

Proof.
1 See the thesis of Mojżesz Presburger [26], the paper of David
Cooper [6], and Christoph Haase’s
Survival Guide to Presburger Arithmetic [9].

2 See also our own proof in a few slides.

Recall our Presburger formula
F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),

Our goal is to determine the set D(y1, . . . , yn) ⊆ Zn of ALL integer tuples
of (y1, . . . , yn) for which the formula F (x1, . . . , xm, y1, . . . , yn) is true.



Quantifier elimination (1/2)

Theorem 2
Presburger arithmetic admits quantifier elimination.

Proof.
1 See the thesis of Mojżesz Presburger [26], the paper of David
Cooper [6], and Christoph Haase’s
Survival Guide to Presburger Arithmetic [9].

2 See also our own proof in a few slides.

Recall our Presburger formula
F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),

Our goal is to determine the set D(y1, . . . , yn) ⊆ Zn of ALL integer tuples
of (y1, . . . , yn) for which the formula F (x1, . . . , xm, y1, . . . , yn) is true.



Quantifier elimination (1/2)

Theorem 2
Presburger arithmetic admits quantifier elimination.

Proof.
1 See the thesis of Mojżesz Presburger [26], the paper of David
Cooper [6], and Christoph Haase’s
Survival Guide to Presburger Arithmetic [9].

2 See also our own proof in a few slides.

Recall our Presburger formula
F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),

Our goal is to determine the set D(y1, . . . , yn) ⊆ Zn of ALL integer tuples
of (y1, . . . , yn) for which the formula F (x1, . . . , xm, y1, . . . , yn) is true.



Quantifier elimination (2/2)

Remark 1
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),

2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (3.1)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.



Quantifier elimination (2/2)

Remark 1
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (3.1)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.



Quantifier elimination (2/2)

Remark 1
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (3.1)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.



Quantifier elimination (2/2)

Remark 1
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (3.1)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.



Quantifier elimination (2/2)

Remark 1
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),

c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (3.1)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.



Quantifier elimination (2/2)

Remark 1
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (3.1)

where

1 C ∈ Zr×m is a matrix, and

2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.



Quantifier elimination (2/2)

Remark 1
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (3.1)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.



Coarsening the atoms

Remark 2
In Cooper’s algorithm [6], when processing ∃x1 F ′, the formula F ′ uses
the following four types of atoms:

Ay < ax1, ax1 < Ay , k ∣ (ax1 +Ay), and ¬(k ∣ (ax1 +Ay)) , (3.2)
where a ∈ Z and Ay ∈ Z[y1, . . . , yn] is a linear polynomial.

Remark 3
We can rearrange our quantifier-free formula to:

ϕ(x1, . . . , xm, y1, . . . , yn) = ⋁
i

Zi(x1, . . . , xm, y1, . . . , yn), (3.3)

where each Zi is a predicate of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1
⋮
xm
y1
⋮
yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ ZPolyhedron(Pi ,Li), (3.4)

for some polyhedron Pi and some integer lattice Li .
We call such a predicate a Z-polyhedron predicate.



Coarsening the atoms

Remark 2
In Cooper’s algorithm [6], when processing ∃x1 F ′, the formula F ′ uses
the following four types of atoms:

Ay < ax1, ax1 < Ay , k ∣ (ax1 +Ay), and ¬(k ∣ (ax1 +Ay)) , (3.2)
where a ∈ Z and Ay ∈ Z[y1, . . . , yn] is a linear polynomial.

Remark 3
We can rearrange our quantifier-free formula to:

ϕ(x1, . . . , xm, y1, . . . , yn) = ⋁
i

Zi(x1, . . . , xm, y1, . . . , yn), (3.3)

where each Zi is a predicate of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1
⋮
xm
y1
⋮
yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ ZPolyhedron(Pi ,Li), (3.4)

for some polyhedron Pi and some integer lattice Li .
We call such a predicate a Z-polyhedron predicate.



Plan

1. Overview

2. Basic concepts

3. Quantifier elimination over the integers

4. Integer projection

5. Experimentation

6. Concluding remarks



Integer projection: n = 1

Remark 4
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(4.1)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 5

1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(4.2)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).



Integer projection: n = 1

Remark 4
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(4.1)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.

3 We can further reduce the problem as follows.

Remark 5

1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(4.2)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).



Integer projection: n = 1

Remark 4
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(4.1)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 5

1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(4.2)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).



Integer projection: n = 1

Remark 4
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(4.1)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 5
1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.

2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(4.2)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).



Integer projection: n = 1

Remark 4
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(4.1)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 5
1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(4.2)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).



Integer projection: n = 1

Remark 4
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(4.1)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 5
1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(4.2)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least 1+ the same number of variables from our

system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least 1+ the same number of variables from our

system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least 1+ the same number of variables from our

system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least 1+ the same number of variables from our

system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least 1+ the same number of variables from our

system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),

b but eliminates at least 1+ the same number of variables from our
system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least 1+ the same number of variables from our

system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least 1+ the same number of variables from our

system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least 1+ the same number of variables from our

system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, removing congruences

Remark 6
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We should also check for implicit equations.

3 We apply Hermite Normal Form, see Section 3 of the paper.

4 Now some of x , y1, . . . , yn are given by a lattice.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least 1+ the same number of variables from our

system of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
IntegerPointDecomposition.

8 If that process does not solve for x, then go to next slide.



Integer projection: n = 1, no congruences, 2 inequalities

Remark 7
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (4.3)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (4.2 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (4.4)

7 We present a first formula for D(y) based on Harris Williams [29, 30]

8 Then, we present a second one based on William Pugh’s Omega
test [23, 24].



Integer projection: n = 1, no congruences, 2 inequalities

Remark 7
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (4.3)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (4.2 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (4.4)

7 We present a first formula for D(y) based on Harris Williams [29, 30]

8 Then, we present a second one based on William Pugh’s Omega
test [23, 24].



Integer projection: n = 1, no congruences, 2 inequalities

Remark 7
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (4.3)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (4.2 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (4.4)

7 We present a first formula for D(y) based on Harris Williams [29, 30]

8 Then, we present a second one based on William Pugh’s Omega
test [23, 24].



Integer projection: n = 1, no congruences, 2 inequalities

Remark 7
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (4.3)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (4.2 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (4.4)

7 We present a first formula for D(y) based on Harris Williams [29, 30]

8 Then, we present a second one based on William Pugh’s Omega
test [23, 24].



Integer projection: n = 1, no congruences, 2 inequalities

Remark 7
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (4.3)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (4.2 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (4.4)

7 We present a first formula for D(y) based on Harris Williams [29, 30]

8 Then, we present a second one based on William Pugh’s Omega
test [23, 24].



Integer projection: n = 1, no congruences, 2 inequalities

Remark 7
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (4.3)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (4.2 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (4.4)

7 We present a first formula for D(y) based on Harris Williams [29, 30]

8 Then, we present a second one based on William Pugh’s Omega
test [23, 24].



Integer projection: n = 1, no congruences, 2 inequalities

Remark 7
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (4.3)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (4.2 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (4.4)

7 We present a first formula for D(y) based on Harris Williams [29, 30]

8 Then, we present a second one based on William Pugh’s Omega
test [23, 24].



Integer projection: n = 1, no congruences, 2 inequalities

Remark 7
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (4.3)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (4.2 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (4.4)

7 We present a first formula for D(y) based on Harris Williams [29, 30]

8 Then, we present a second one based on William Pugh’s Omega
test [23, 24].



Williams-style Projection

Theorem 3
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.

1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).
3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).
4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).



Williams-style Projection

Theorem 3
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.
1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).
3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).
4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).



Williams-style Projection

Theorem 3
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.
1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).

3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).
4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).



Williams-style Projection

Theorem 3
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.
1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).
3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).

4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).



Williams-style Projection

Theorem 3
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.
1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).
3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).
4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).



Pugh’s omega test (1/2)
Lemma 4 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (4.5)
then F (y) holds.

Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (4.6)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (4.7)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (4.8)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.



Pugh’s omega test (1/2)
Lemma 4 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (4.5)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (4.6)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (4.7)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (4.8)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.



Pugh’s omega test (1/2)
Lemma 4 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (4.5)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (4.6)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (4.7)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (4.8)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.



Pugh’s omega test (1/2)
Lemma 4 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (4.5)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (4.6)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (4.7)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (4.8)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.



Pugh’s omega test (1/2)
Lemma 4 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (4.5)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (4.6)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (4.7)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (4.8)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.



Pugh’s omega test (1/2)
Lemma 4 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (4.5)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (4.6)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (4.7)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (4.8)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.



Pugh’s omega test (1/2)
Lemma 4 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (4.5)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (4.6)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (4.7)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (4.8)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.



Pugh’s omega test (2/2)

Theorem 5
Define κ(a,b) ∶= ⌈ (a−1)(b−1)

a′
⌉. Then, Formula F (y) is equivalent to:

((a − 1)(b − 1) ≤ aBy − bAy)
k=b−1
⋁

k=κ(a,b)
(y ∈ Ek)∧(a′k ≤ a′By − b′Ay) . (4.9)

Proof.
This is a direct consequence of William Pugh’s lemma and Harris
Williams’ projection formula

Remark 8
1 William Pugh’s lemma reduces significantly the number of “cuts”

2 To take a concrete example, say with a = 7 and b = 11:
a with Williams’ projection alone k ranges from 0 to 10,
b with William Pugh’s lemma, k ranges from 9 to 10.

skip slide



Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).

1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (4.10)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y,

b C1, . . . ,Ce are systems of congruences in the variables y, and
c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .



Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (4.10)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y,

b C1, . . . ,Ce are systems of congruences in the variables y, and
c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .



Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (4.10)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y,

b C1, . . . ,Ce are systems of congruences in the variables y, and
c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .



Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (4.10)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y,

b C1, . . . ,Ce are systems of congruences in the variables y, and
c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .



Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (4.10)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y,

b C1, . . . ,Ce are systems of congruences in the variables y, and
c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .



Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (4.10)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y,

b C1, . . . ,Ce are systems of congruences in the variables y, and
c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .



Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (4.10)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y,

b C1, . . . ,Ce are systems of congruences in the variables y, and

c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .



Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (4.10)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y,

b C1, . . . ,Ce are systems of congruences in the variables y, and
c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .



Plan

1. Overview

2. Basic concepts

3. Quantifier elimination over the integers

4. Integer projection

5. Experimentation

6. Concluding remarks



Experimentation

Two strategies for integer projection

1 IPD: the one presented in this paper and based on the
IntegerPointDecomposition algorithm [13],

2 NIP: one based on NumberOfIntegerPoints [13] and thus a
parametric adaptation of Barvinok’s algorithm [3, 17, 28].

Sources of test cases
1 examples from the literature (mainly from compiler theory)

2 examples from the SMT-LIA category of the SMT-LIB data-base [2],

Our code can be accessed here.

https://github.com/MarcMorenoMaza/PolyhedralSets/tree/main/QuantifierEliminationOverTheIntegers


test IPD MEMORY(MB) IPD TIME(s) NIP MEMORY(MB) NIP TIME(s)
T1[BoGoWo17] 24.232 0.121 33.811 0.193
T2[BoGoWo17] 57.843 0.281 59.136 0.344
T3[BoGoWo17] 121.978 0.671 189.439 1.256
T4[BoGoWo17] 42.531 0.240 65.162 0.378
T5[BoGoWo17] 22.114 0.110 31.725 0.167
T6[SeLoMe12] 97.739 0.481 64.456 0.333

T7[St23] 671.154 3.506 1066.889 6.608
T8[KVeWo08] 69.087 0.338 58.668 0.328
T9 [KVeWo08] 245.156 1.235 979.964 6.462
T17[BoGoWo17] 5.315 0.043 12.771 0.060
T18[CaLiZh22] 39.055 0.200 48.237 0.205

T19[Fe88] 355.466 1.786 1715.958 10.941
T20[Ve24] 25.453 0.154 28.667 0.180

T32[SeLoMe12] 28216.613 156.989 > 10 GB > 600
T33[SeLoMe12] 70.135 0.351 345.340 1.920
T34[SeLoMe12] 178.657 0.928 366.935 2.487
T35[SeLoMe12] 121.098 0.645 165.582 1.053
T36[SeLoMe12] 1243.682 6.209 798.004 4.822

T44[Ve24] 1.549 0.013 1.550 0.014
T45[Ve24] 1.549 0.014 1.551 0.013
T46[Ve24] 1.551 0.017 1.552 0.013
T47[Ve15] 49.726 0.236 45.779 0.219
T48[Ve15] 53.819 0.260 98.094 0.540
T49[Ve15] 32.190 0.197 27.997 0.153

Table: Maple 2024, Ubuntu 24.04.1 LTS, 16GB RAM and 12th Gen Intel(R) Core(TM) i5-1235U processor

1 IPD = IntegerPointDecomposition

2 NIP = NumberOfIntegerPoints



Using the SMT-LIB data-base

Figure: Time vs Memory for the SMT-LIA examples.

We have tested all the examples (about 400) from SMT-LIA that are
Presburger formulas.



Plan

1. Overview

2. Basic concepts

3. Quantifier elimination over the integers

4. Integer projection

5. Experimentation

6. Concluding remarks



Summary and notes
We have discussed algebraic issues for the problem of quantifier
elimination in Presbuger arithmetic. Our findings are:

1 Cooper’s algorithm [6] is equivalent to Williams’ projection [29].

2 The Omega test [24] is a substantial optimization of the latter two
projections.

3 The algorithm IntegerPointDecomposition [12], which is based on
the Omega test, seems experimentally superior to algorithms based
on parametric versions of Barvinok’s algorithm.

Work in progress

1 We shall continue investigating heuristics to bypass
double negation when dealing with universal quantifiers.

2 In the presence of free variables, QE tend to split computations more
than necessary and we are developing algorithms dealing with this
expression swell issue.

3 We are extending our implementation of Presburger arithmetic to
support certain classes of non-linear expressions that are of
practical interest in compiler theory [5].



References

[1] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt,
M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli,
A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and
Y. Zohar. “cvc5: A Versatile and Industrial-Strength SMT
Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I.
Ed. by D. Fisman and G. Rosu. Vol. 13243. Lecture Notes in
Computer Science. Springer, 2022, pp. 415–442. url:
https://doi.org/10.1007/978-3-030-99524-9%5C_24.

[2] C. Barrett, P. Fontaine, and C. Tinelli.
The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org. 2016.

[3] A. I. Barvinok. “A Polynomial Time Algorithm for Counting
Integral Points in Polyhedra When the Dimension is Fixed”. In:
Math. Oper. Res. 19.4 (1994), pp. 769–779.

https://doi.org/10.1007/978-3-030-99524-9%5C_24


[4] Y. Bertot and P. Castéran.
Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2004. url:
https://doi.org/10.1007/978-3-662-07964-5.

[5] C. Chen, X. Chen, A. Keita, M. Moreno Maza, and N. Xie.
“MetaFork: a compilation framework for concurrency models
targeting hardware accelerators and
its application to the generation of parametric CUDA kernels”. In:
Proceedings of 25th Annual International Conference on Computer Science and Software Engineering, CASCON 2015, Markham, Ontario, Canada, 2-4 November, 2015.
Ed. by J. Gould, M. Litoiu, and H. Lutfiyya. IBM / ACM, 2015,
pp. 70–79. url:
http://dl.acm.org/citation.cfm?id=2886456.

[6] D. C. Cooper. “Theorem proving in arithmetic without
multiplication”. In: Machine intelligence 7.91-99 (1972), p. 300.

[7] B. Dutertre. “Yices 2.2”. In:
Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings.
Ed. by A. Biere and R. Bloem. Vol. 8559. Lecture Notes in
Computer Science. Springer, 2014, pp. 737–744. url:
https://doi.org/10.1007/978-3-319-08867-9%5C_49.

https://doi.org/10.1007/978-3-662-07964-5
http://dl.acm.org/citation.cfm?id=2886456
https://doi.org/10.1007/978-3-319-08867-9%5C_49


[8] T. Grosser, A. Größlinger, and C. Lengauer. “Polly - Performing
Polyhedral Optimizations on a Low-Level Intermediate
Representation”. In: Parallel Process. Lett. 22.4 (2012).

[9] C. Haase. “A survival guide to Presburger arithmetic”. In:
ACM SIGLOG News 5.3 (2018), pp. 67–82.

[10] C. Haase, S. N. Krishna, K. Madnani, O. S. Mishra, and
G. Zetzsche. “An Efficient Quantifier Elimination Procedure for
Presburger Arithmetic”. In:
51st International Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia.
Ed. by K. Bringmann, M. Grohe, G. Puppis, and O. Svensson.
Vol. 297. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2024, 142:1–142:17.

[11] J. Harrison. “HOL Light: A tutorial introduction”. In:
International Conference on Formal Methods in Computer-Aided Design.
Springer. 1996, pp. 265–269.

[12] R. J. Jing and M. Moreno Maza. “Computing the Integer Points
of a Polyhedron, I: Algorithm”. In: Proceedings of CASC. 2017,
pp. 225–241.



[13] R. Jing, Y. Lei, C. F. S. Maligec, and M. Moreno Maza.
“Counting the Integer Points of Parametric Polytopes: A Maple
Implementation”. In:
Computer Algebra in Scientific Computing - 26th International Workshop, CASC 2024, Rennes, France, September 2-6, 2024, Proceedings.
Ed. by F. Boulier, C. Mou, T. M. Sadykov, and
E. V. Vorozhtsov. Vol. 14938. Lecture Notes in Computer
Science. Springer, 2024, pp. 140–160. url:
https://doi.org/10.1007/978-3-031-69070-9%5C_9.

[14] R. Jing and M. Moreno Maza. “Computing the Integer Points
of a Polyhedron, I: Algorithm”. In: CASC 2017, Proceedings.
Vol. 10490. LNCS. Springer, 2017, pp. 225–241.

[15] J. Leroux and
G. Point. “TaPAS: The Talence Presburger Arithmetic Suite”. In:
Tools and Algorithms for the Construction and Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings.
Ed. by S. Kowalewski and A. Philippou. Vol. 5505. Lecture
Notes in Computer Science. Springer, 2009, pp. 182–185. url:
https://doi.org/10.1007/978-3-642-00768-2%5C_18.

https://doi.org/10.1007/978-3-031-69070-9%5C_9
https://doi.org/10.1007/978-3-642-00768-2%5C_18


[16] X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, and
C. Ferdinand. “CompCert-a formally verified optimizing
compiler”. In:
ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress.
2016.

[17] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida.
“Effective lattice point counting in rational convex polytopes”.
In: J. Symb. Comput. 38.4 (2004), pp. 1273–1302.

[18] D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp,
P. Milne, D. C. Oppen, W. Polak, and W. L. Scherlis.
Stanford pascal verifier user manual. Stanford University, 1979.

[19] L. de Moura. “Formalizing Mathematics using the Lean
Theorem Prover”. In:
International Symposium on Artificial Intelligence and Mathematics, ISAIM 2016, Fort Lauderdale, Florida, USA, January 4-6, 2016.
2016. url: https://isaim2016.cs.ou.edu/papers/
ISAIM2016%5C_Proofs%5C_DeMoura.pdf.

https://isaim2016.cs.ou.edu/papers/ISAIM2016%5C_Proofs%5C_DeMoura.pdf
https://isaim2016.cs.ou.edu/papers/ISAIM2016%5C_Proofs%5C_DeMoura.pdf


[20] L. M. de Moura and N. S. Bjørner. “Z3: An Efficient SMT
Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
Ed. by C. R. Ramakrishnan and J. Rehof. Vol. 4963. Lecture
Notes in Computer Science. Springer, 2008, pp. 337–340. url:
https://doi.org/10.1007/978-3-540-78800-3%5C_24.

[21] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL - A Proof Assistant for Higher-Order Logic.
Vol. 2283. Lecture Notes in Computer Science. Springer, 2002.
url: https://doi.org/10.1007/3-540-45949-9.

[22] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and
N. Vasilache. “GRAPHITE: Polyhedral analyses and
optimizations for GCC”. In:
proceedings of the 2006 GCC developers summit. Vol. 6. 2006,
pp. 90–91.

[23] W. Pugh. “A Practical Algorithm for Exact Array Dependence
Analysis”. In: Commun. ACM 35.8 (1992), pp. 102–114.

https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1007/3-540-45949-9


[24] W. W. Pugh. “The Omega test: a fast and prac-
tical integer programming algorithm for dependence analysis”. In:
Proceedings Supercomputing ’91, Albuquerque, NM, USA, November 18-22, 1991.
ACM, 1991, pp. 4–13.

[25] P. Rümmer. “A Constraint Sequent Calculus for First-Order
Logic with Linear Integer Arithmetic”. In: Proc. LPAR 2008.
Vol. 5330. LNCS. Springer, pp. 274–289.

[26] R. Stansifer.
Presburger’s article on integer arithmetic: Remarks and translation.
Tech. rep. Cornell University, 1984.

[27] S. Verdoolaege. “isl: An Integer Set Library for the Polyhedral
Model”. In:
Mathematical Software - ICMS 2010, Third International Congress on Mathematical Software, Kobe, Japan, September 13-17, 2010. Proceedings.
Ed. by K. Fukuda, J. van der Hoeven, M. Joswig, and
N. Takayama. Vol. 6327. Lecture Notes in Computer Science.
Springer, 2010, pp. 299–302.

[28] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. “Counting Integer Points in Parametric
Polytopes Using Barvinok’s Rational Functions”. In:
Algorithmica 48.1 (2007), pp. 37–66.



[29] H. P. Williams. “Fourier-Motzkin elimination extension to
integer programming problems”. In:
Journal of combinatorial theory, series A 21.1 (1976),
pp. 118–123.

[30] H. Williams and J. Hooker. “Integer programming as
projection”. In: Discrete Optimization 22 (2016), pp. 291–311.
issn: 1572-5286.


	Overview
	Basic concepts
	Quantifier elimination over the integers
	Integer projection
	Experimentation
	Concluding remarks

