Missing Sets in Rational Parameterization of Surface of Revolution

Chirantan Mukherjee

Plan

Overview

Results

Examples

Conclusion

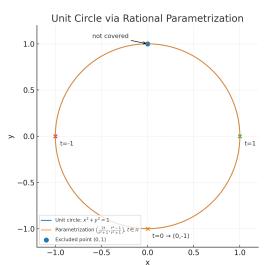
Plan

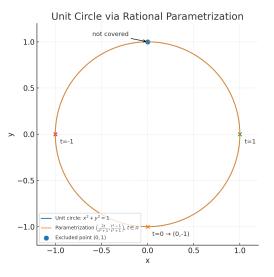
Overview

Results

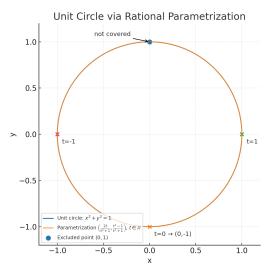
Examples

Conclusion





A rational parametrization of a variety \mathcal{V} , may not cover all \mathcal{V} .



A rational parametrization of a variety \mathcal{V} , may not cover all \mathcal{V} .

The missing part is a constructible set of \mathcal{V} [3].

Constructible Set

A subset $C \subseteq \mathcal{V}$ is *constructible* if there exist finitely many Zariski open sets $U_1, \ldots, U_r \subseteq \mathcal{V}$ and Zariski closed sets $Z_1, \ldots, Z_r \subseteq \mathcal{V}$ such that

$$C = \bigcup_{i=1}^r \left(U_i \cap Z_i \right).$$

Constructible Set

A subset $C \subseteq \mathcal{V}$ is *constructible* if there exist finitely many Zariski open sets $U_1, \ldots, U_r \subseteq \mathcal{V}$ and Zariski closed sets $Z_1, \ldots, Z_r \subseteq \mathcal{V}$ such that

$$C = \bigcup_{i=1}^{r} (U_i \cap Z_i) .$$

Example ($\mathcal{V} = \mathbb{A}^1$ with the Zariski topology)

▶ $C = \mathbb{C} \setminus \{0\}$ is constructible, since

$$C = U \cap Z$$
, $U = \mathbb{C} \setminus \{0\}$ (open), $Z = \mathbb{C}$ (closed).

Constructible Set

A subset $C \subseteq \mathcal{V}$ is *constructible* if there exist finitely many Zariski open sets $U_1, \ldots, U_r \subseteq \mathcal{V}$ and Zariski closed sets $Z_1, \ldots, Z_r \subseteq \mathcal{V}$ such that

$$C = \bigcup_{i=1}^{r} (U_i \cap Z_i) .$$

Example ($\mathcal{V} = \mathbb{A}^1$ with the Zariski topology)

• $C = \mathbb{C} \setminus \{0\}$ is constructible, since

$$C = U \cap Z$$
, $U = \mathbb{C} \setminus \{0\}$ (open), $Z = \mathbb{C}$ (closed).

$$C = \underbrace{\{0\}}_{\text{closed}} \cup \underbrace{\mathbb{C} \setminus \{1\}}_{\text{open}}$$

Thus C is constructible but is neither open nor closed.

Parametric representations are used in:

- ightharpoonup computer graphics [1, 4]
- ► CAD/CAM [4]
- ► surface/geometric modeling [1, 4]

Parametric representations are used in:

- ightharpoonup computer graphics [1, 4]
- ► CAD/CAM [4]
- ► surface/geometric modeling [1, 4]

Related problems:

- ▶ geometric covering problem [11]
- ► computation of intersections [9]
- ► estimating Hausdorff distances [6]
- ▶ analysis of cross sections [8]

Parametric representations are used in:

- ightharpoonup computer graphics [1, 4]
- ► CAD/CAM [4]
- ► surface/geometric modeling [1, 4]

Related problems:

- ▶ geometric covering problem [11]
- ► computation of intersections [9]
- estimating Hausdorff distances [6]
- ▶ analysis of cross sections [8]

Obvious solution:

- ► Find parametrizations that cover the whole object.
- ► For curves, see [7].
- ► For surfaces, open problem.

► Compute finitely many parametrizations such that their images cover all the surface [2, 6, 8].

- ► Compute finitely many parametrizations such that their images cover all the surface [2, 6, 8].
- ► Have a precise description of the missing set of the parametrization.

- ► Compute finitely many parametrizations such that their images cover all the surface [2, 6, 8].
- ► Have a precise description of the missing set of the parametrization.
- ▶ Use the parametrization and then decide the existence of relevant points in the critical set by using *elimination* theory [9].

- ► Compute finitely many parametrizations such that their images cover all the surface [2, 6, 8].
- ► Have a precise description of the missing set of the parametrization.
- ▶ Use the parametrization and then decide the existence of relevant points in the critical set by using *elimination* theory [9].

A subset of the surface, containing the missing set and having dimension smaller than 2, is called a *critical set*.

- ► Compute finitely many parametrizations such that their images cover all the surface [2, 6, 8].
- ► Have a precise description of the missing set of the parametrization.
- ▶ Use the parametrization and then decide the existence of relevant points in the critical set by using *elimination* theory [9].

A subset of the surface, containing the missing set and having dimension smaller than 2, is called a *critical set*.

These techniques produces huge critical sets and requires solving systems of algebraic equations.

► For structured surfaces , a preliminary analysis of the structure can help to describe the critical set.

- ► For structured surfaces, a preliminary analysis of the structure can help to describe the critical set.
- ▶ Any rational ruled surface can be parametrized so that the critical set is a line [6], known as *profile curve*.

- ► For structured surfaces, a preliminary analysis of the structure can help to describe the critical set.
- ▶ Any rational ruled surface can be parametrized so that the critical set is a line [6], known as *profile curve*.
- ► In this talk, we analyze the case of surfaces of revolution given by means of a real plane curve parametrization.

- ► For structured surfaces, a preliminary analysis of the structure can help to describe the critical set.
- ▶ Any rational ruled surface can be parametrized so that the critical set is a line [6], known as *profile curve*.
- ► In this talk, we analyze the case of surfaces of revolution given by means of a real plane curve parametrization.
- ► The *critical set* for the real part is, in the worst-case, the union of a curve (the mirror curve of the profile curve) and a circle passing through the critical point of the profile curve.

Plan

Overview

Results

Examples

Conclusion

• C be a profile curve in the (y, z)-plane parametrized by,

$$r\left(t\right) =\left(0,p\left(t\right) ,q\left(t\right) \right) .$$

ightharpoonup C be a profile curve in the (y, z)-plane parametrized by,

$$r\left(t\right) =\left(0,p\left(t\right) ,q\left(t\right) \right) .$$

ightharpoonup r is proper [10], i.e. injective.

ightharpoonup C be a profile curve in the (y, z)-plane parametrized by,

$$r\left(t\right) =\left(0,p\left(t\right) ,q\left(t\right) \right) .$$

- ightharpoonup r is proper [10], i.e. injective.
- \blacktriangleright S be the *surface of revolution* generated by rotating C around the z-axis.

ightharpoonup C be a profile curve in the (y, z)-plane parametrized by,

$$r\left(t\right)=\left(0,p\left(t\right),q\left(t\right)\right).$$

- ightharpoonup r is proper [10], i.e. injective.
- ► S be the *surface of revolution* generated by rotating C around the z-axis.
- \blacktriangleright The classical parametrization of S, obtained from r is,

$$P = \left(\frac{2s}{1+s^2}p(t), \frac{1-s^2}{1+s^2}p(t), q(t)\right).$$

ightharpoonup C be a profile curve in the (y, z)-plane parametrized by,

$$r\left(t\right) =\left(0,p\left(t\right) ,q\left(t\right) \right) .$$

- ightharpoonup r is proper [10], i.e. injective.
- ► S be the *surface of revolution* generated by rotating C around the z-axis.
- ightharpoonup The classical parametrization of S, obtained from r is,

$$P = \left(\frac{2s}{1+s^2}p(t), \frac{1-s^2}{1+s^2}p(t), q(t)\right).$$

• $circ(\alpha, p)$ is the circle of radius $|\alpha|$ centered at (0, 0, p)

$$P = \left(\frac{2s}{1+s^2}\alpha, \frac{1-s^2}{1+s^2}\alpha, p\right).$$

▶ C_M is called the mirror curve of C, parameterized by,

$$r_{M}\left(t\right) = \left(0, -p\left(t\right), q\left(t\right)\right).$$

▶ C_M is called the mirror curve of C, parameterized by,

$$r_{M}\left(t\right) = \left(0, -p\left(t\right), q\left(t\right)\right).$$

• $C = C_M \Leftrightarrow C$ is symmetric w.r.t z-axis.

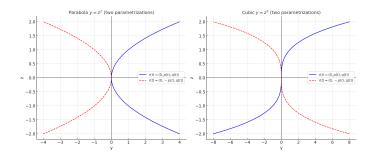
► C_M is called the mirror curve of C, parameterized by, $r_M(t) = (0, -p(t), q(t)).$

$$r_M(t) = (0, -p(t), q(t))$$

• $C = C_M \Leftrightarrow C$ is symmetric w.r.t z-axis.

Example

- the parabola $y = z^2$ is equal to its mirror curve
- the cubic $y = z^3$ is not equal to its mirror curve



Symmetric real case:

ightharpoonup r is normal, the empty set is a real-critical set of P.

Symmetric real case:

- ightharpoonup r is normal, the empty set is a real-critical set of P.
- ▶ r is not normal, and (0, b, c) is its critical point, then $\{(0, b, c)\}$ is a real-critical set of P.

Symmetric real case:

- \triangleright r is normal, the empty set is a real-critical set of P.
- ▶ r is not normal, and (0, b, c) is its critical point, then $\{(0, b, c)\}$ is a real-critical set of P.
- ▶ If r is symmetric, and at least one of its components has a numerator of degree greater than the degree of the denominator, then P covers all S.

Symmetric real case:

- \triangleright r is normal, the empty set is a real-critical set of P.
- ▶ r is not normal, and (0, b, c) is its critical point, then $\{(0, b, c)\}$ is a real-critical set of P.
- ▶ If r is symmetric, and at least one of its components has a numerator of degree greater than the degree of the denominator, then P covers all S.

Non-symmetric real case:

ightharpoonup r is normal, C_M is a real-critical set of P.

Symmetric real case:

- \triangleright r is normal, the empty set is a real-critical set of P.
- ▶ r is not normal, and (0, b, c) is its critical point, then $\{(0, b, c)\}$ is a real-critical set of P.
- ▶ If r is symmetric, and at least one of its components has a numerator of degree greater than the degree of the denominator, then P covers all S.

Non-symmetric real case:

- ightharpoonup r is normal, C_M is a real-critical set of P.
- $\begin{array}{c} \blacktriangleright \ r \ \text{is not normal, and} \ (0,b,c) \ \text{is its critical point, then a} \\ \text{real-critical set of} \ P \ \text{is} \left\{ \begin{array}{c} C_M & \text{, if} (0,-b,c) \in C \\ \\ C_M \cup circ(b,c), \ \text{otherwise} \end{array} \right. . \end{array}$

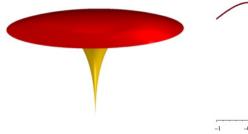
Plan

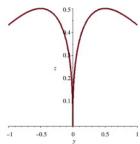
Overview

Results

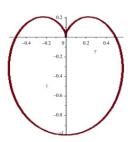
Examples

Conclusion

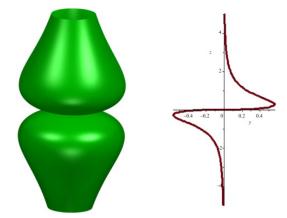




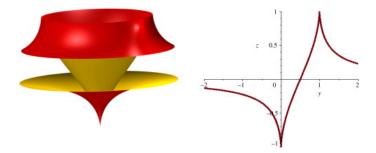
- $ightharpoonup r(t) = \left(0, \frac{t^5}{t^4+1}, \frac{t^2}{t^4+1}\right)$
- $ightharpoonup C = C_M$
- ightharpoonup r is normal
- ► critical set is empty
- \blacktriangleright all real part of S is covered by P



- $r(t) = \left(0, \frac{t}{t^4+1}, \frac{t^2-1}{t^4+1}\right)$
- $ightharpoonup C = C_M$
- ightharpoonup r is not normal
- critical point is (0,0,0)
- ▶ all real part of $S \setminus \{(0,0,0)\}$ is covered by P



- $r(t) = \left(0, \frac{t}{t^4+1}, \frac{t^3}{t^2+1}\right)$
- $ightharpoonup C \neq C_M$
- ightharpoonup r is normal
- \triangleright critical set is r_M
- all real part of $S \setminus r_M$ is covered by P



- $ightharpoonup r(t) = \left(0, \frac{t^3}{t^3+1}, \frac{t^2-1}{t^2+1}\right)$
- $ightharpoonup C \neq M$
- ightharpoonup r is not normal
- \triangleright critical point is (0,1,1)
- ► $(0, -1, 1) \notin C$
- critical set is $r_M \cup circ(1,1)$
- ▶ all real part of $S \setminus (r_M \cup circ(1,1))$ is covered by P

Plan

Overview

Results

Examples

Conclusion

Symmetric	Normal	Real critical set
Yes	Yes	Empty set, ex. 14

Symmetric	Normal	Real critical set
Yes	Yes	Empty set, ex. 14
Yes	No	Critical point, ex. 15
		'

Symmetric	Normal	Real critical set
Yes	Yes	Empty set, ex. 14
Yes	No	Critical point, ex. 15
No	Yes	Mirror curve, ex. 16
	ı	·

Symmetric	Normal	Real critical set
Yes	Yes	Empty set, ex. 14
Yes	No	Critical point, ex. 15
No	Yes	Mirror curve, ex. 16
No	No	Mirror curve union cross section
		circle at the critical point, ex. 17

Symmetric	Normal	Real critical set
Yes	Yes	Empty set, ex. 14
Yes	No	Critical point, ex. 15
No	Yes	Mirror curve, ex. 16
No	No	Mirror curve union cross section
		circle at the critical point, ex. 17

Future work:

▶ We have analyzed the missing area of S, when P takes values in \mathbb{C}^2 .

Symmetric	Normal	Real critical set
Yes	Yes	Empty set, ex. 14
Yes	No	Critical point, ex. 15
No	Yes	Mirror curve, ex. 16
No	No	Mirror curve union cross section
		circle at the critical point, ex. 17

Future work:

- ▶ We have analyzed the missing area of S, when P takes values in \mathbb{C}^2 .
- ▶ Study the missing sets of S when P takes values in \mathbb{R}^2 .

Symmetric	Normal	Real critical set
Yes	Yes	Empty set, ex. 14
Yes	No	Critical point, ex. 15
No	Yes	Mirror curve, ex. 16
No	No	Mirror curve union cross section
		circle at the critical point, ex. 17

Future work:

- We have analyzed the missing area of S, when P takes values in \mathbb{C}^2 .
- ▶ Study the missing sets of S when P takes values in \mathbb{R}^2 .
- ► Study the missing sets of other surface constructions in CAD, for instance swung surfaces [5, 12].

References I

- [1] M. K. Agoston. Computer graphics and geometric modeling: mathematics. Springer, 2005.
- [2] C. L. Bajaj and A. V. Royappa. "Finite representations of real parametric curves and surfaces". In:

 International Journal of Computational Geometry & Applications 5.03 (1995), pp. 313–326.
- [3] J. Harris. Algebraic geometry, vol. 133 of Graduate Texts in Mathematics, 1992.
- [4] D. Marsh. Applied geometry for computer graphics and CAD. Springer, 2006.
- [5] H. Qin and D. Terzopoulos. "Dynamic NURBS swung surfaces for physics-based shape design". In: Computer-Aided Design 27.2 (1995), pp. 111–127.

References II

- [6] J. Sendra, D. Sevilla, and C. Villarino. "Covering rational ruled surfaces". In: *Mathematics of Computation* 86.308 (2017), pp. 2861–2875.
- [7] J. R. Sendra. "Normal parametrizations of algebraic plane curves". In: *Journal of Symbolic Computation* 33.6 (2002), pp. 863–885.
- J. R. Sendra, D. Sevilla, and C. Villarino. "Covering of surfaces parametrized without projective base points".
 In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation. 2014, pp. 375–380.
- [9] J. R. Sendra, D. Sevilla, and C. Villarino. "Some results on the surjectivity of surface parametrizations". In: Computer Algebra and Polynomials: Applications of Algebra and Number Theory. Springer, 2015, pp. 192–203.

References III

- [10] J. R. Sendra, F. Winkler, and S. Pérez-Díaz. Rational algebraic curves: a computer algebra approach. Springer, 2008.
- [11] N. Shragai and G. Elber. "Geometric covering". In: Computer-Aided Design 45.2 (2013), pp. 243–251.
- [12] Y. Zhao, Y. Zhou, J. L. Lowther, and C.-K. Shene. "Cross-sectional design: A tool for computer graphics and computer-aided design courses". In: FIE'99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science and Engineering Education. Conference Proceedings (IEEE Cat. No. 99CH37011). Vol. 2. IEEE. 1999, 12B3-1.