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A rational parametrization of a variety V, may not cover all
V.

The missing part is a constructible set of V [3].
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Constructible Set

A subset 𝐶 ⊆ V is constructible if there exist finitely many
Zariski open sets 𝑈1, . . . ,𝑈𝑟 ⊆ V and Zariski closed sets
𝑍1, . . . , 𝑍𝑟 ⊆ V such that

𝐶 =

𝑟⋃
𝑖=1

(𝑈𝑖 ∩ 𝑍𝑖) .

Example (V = A1 with the Zariski topology)
▶ 𝐶 = C \ {0} is constructible, since

𝐶 = 𝑈 ∩ 𝑍, 𝑈 = C \ {0} (open), 𝑍 = C (closed).

▶ 𝐶 = {0}︸︷︷︸
closed

∪ C \ {1}︸  ︷︷  ︸
open

Thus 𝐶 is constructible but is neither open nor closed.



Constructible Set

A subset 𝐶 ⊆ V is constructible if there exist finitely many
Zariski open sets 𝑈1, . . . ,𝑈𝑟 ⊆ V and Zariski closed sets
𝑍1, . . . , 𝑍𝑟 ⊆ V such that

𝐶 =

𝑟⋃
𝑖=1

(𝑈𝑖 ∩ 𝑍𝑖) .

Example (V = A1 with the Zariski topology)
▶ 𝐶 = C \ {0} is constructible, since

𝐶 = 𝑈 ∩ 𝑍, 𝑈 = C \ {0} (open), 𝑍 = C (closed).

▶ 𝐶 = {0}︸︷︷︸
closed

∪ C \ {1}︸  ︷︷  ︸
open

Thus 𝐶 is constructible but is neither open nor closed.



Constructible Set

A subset 𝐶 ⊆ V is constructible if there exist finitely many
Zariski open sets 𝑈1, . . . ,𝑈𝑟 ⊆ V and Zariski closed sets
𝑍1, . . . , 𝑍𝑟 ⊆ V such that

𝐶 =

𝑟⋃
𝑖=1

(𝑈𝑖 ∩ 𝑍𝑖) .

Example (V = A1 with the Zariski topology)
▶ 𝐶 = C \ {0} is constructible, since

𝐶 = 𝑈 ∩ 𝑍, 𝑈 = C \ {0} (open), 𝑍 = C (closed).

▶ 𝐶 = {0}︸︷︷︸
closed

∪ C \ {1}︸  ︷︷  ︸
open

Thus 𝐶 is constructible but is neither open nor closed.



Parametric representations are used in:

▶ computer graphics [1, 4]
▶ CAD/CAM [4]
▶ surface/geometric modeling [1, 4]

Related problems:

▶ geometric covering problem [11]
▶ computation of intersections [9]
▶ estimating Hausdorff distances [6]
▶ analysis of cross sections [8]

Obvious solution:

▶ Find parametrizations that cover the whole object.
▶ For curves, see [7].
▶ For surfaces, open problem .
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Alternative solution:

▶ Compute finitely many parametrizations such that their
images cover all the surface [2, 6, 8].

▶ Have a precise description of the missing set of the
parametrization.

▶ Use the parametrization and then decide the existence of
relevant points in the critical set by using elimination
theory [9].

A subset of the surface, containing the missing set and having
dimension smaller than 2, is called a critical set.

These techniques produces huge critical sets and requires
solving systems of algebraic equations.
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Goal:

▶ For structured surfaces , a preliminary analysis of the
structure can help to describe the critical set.

▶ Any rational ruled surface can be parametrized so that
the critical set is a line [6], known as profile curve.

▶ In this talk, we analyze the case of surfaces of
revolution given by means of a real plane curve
parametrization.

▶ The critical set for the real part is, in the worst-case, the
union of a curve (the mirror curve of the profile curve)
and a circle passing through the critical point of the
profile curve.
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Notations:

▶ 𝐶 be a profile curve in the (𝑦, 𝑧)-plane parametrized by,

𝑟 (𝑡) = (0, 𝑝 (𝑡) , 𝑞 (𝑡)) .

▶ 𝑟 is proper [10], i.e. injective.
▶ 𝑆 be the surface of revolution generated by rotating 𝐶

around the 𝑧-axis.
▶ The classical parametrization of 𝑆, obtained from 𝑟 is,

𝑃 =

(
2𝑠

1 + 𝑠2 𝑝 (𝑡) , 1 − 𝑠2

1 + 𝑠2 𝑝 (𝑡) , 𝑞 (𝑡)
)

.

▶ 𝑐𝑖𝑟𝑐(𝛼, 𝑝) is the circle of radius |𝛼 | centered at (0, 0, 𝑝)

𝑃 =

(
2𝑠

1 + 𝑠2𝛼, 1 − 𝑠2

1 + 𝑠2 𝛼, 𝑝
)

.
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Notations:
▶ 𝐶𝑀 is called the mirror curve of 𝐶, parameterized by,

𝑟𝑀 (𝑡) =
(
0, - 𝑝 (𝑡) , 𝑞 (𝑡)

)
.

▶ 𝐶 = 𝐶𝑀 ⇔ 𝐶 is symmetric w.r.t 𝑧-axis.
Example

▶ the parabola 𝑦 = 𝑧2 is equal to its mirror curve
▶ the cubic 𝑦 = 𝑧3 is not equal to its mirror curve
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▶ 𝑟 is normal if all points on the curve are reachable by 𝑟 (𝑡)
when 𝑡 takes values in the field of the complex numbers.

Symmetric real case:

▶ 𝑟 is normal, the empty set is a real-critical set of 𝑃.
▶ 𝑟 is not normal, and (0, 𝑏, 𝑐) is its critical point, then

{(0, 𝑏, 𝑐)} is a real-critical set of 𝑃.
▶ If 𝑟 is symmetric, and at least one of its components has

a numerator of degree greater than the degree of the
denominator, then 𝑃 covers all 𝑆.

Non-symmetric real case:

▶ 𝑟 is normal, 𝐶𝑀 is a real-critical set of 𝑃.
▶ 𝑟 is not normal, and (0, 𝑏, 𝑐) is its critical point, then a

real-critical set of 𝑃 is
{

𝐶𝑀 , if(0,−𝑏, 𝑐) ∈ 𝐶

𝐶𝑀 ∪ 𝑐𝑖𝑟𝑐(𝑏, 𝑐), otherwise
.
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Example 1

▶ 𝑟 (𝑡) =
(
0, 𝑡5

𝑡4+1 , 𝑡2

𝑡4+1
)

▶ 𝐶 = 𝐶𝑀

▶ 𝑟 is normal
▶ critical set is empty
▶ all real part of 𝑆 is covered by 𝑃



Example 2

▶ 𝑟 (𝑡) =
(
0, 𝑡

𝑡4+1 , 𝑡2−1
𝑡4+1

)
▶ 𝐶 = 𝐶𝑀

▶ 𝑟 is not normal
▶ critical point is (0, 0, 0)
▶ all real part of 𝑆 \ {(0, 0, 0)} is covered by 𝑃



Example 3

▶ 𝑟 (𝑡) =
(
0, 𝑡

𝑡4+1 , 𝑡3

𝑡2+1
)

▶ 𝐶 ≠ 𝐶𝑀

▶ 𝑟 is normal
▶ critical set is 𝑟𝑀
▶ all real part of 𝑆 \ 𝑟𝑀 is covered by 𝑃



Example 4

▶ 𝑟 (𝑡) =
(
0, 𝑡3

𝑡3+1 , 𝑡2−1
𝑡2+1

)
▶ 𝐶 ≠ 𝑀

▶ 𝑟 is not normal
▶ critical point is (0, 1, 1)
▶ (0,−1, 1) ∉ 𝐶

▶ critical set is 𝑟𝑀 ∪ 𝑐𝑖𝑟𝑐(1, 1)
▶ all real part of 𝑆 \ (𝑟𝑀 ∪ 𝑐𝑖𝑟𝑐(1, 1)) is covered by 𝑃
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Possible real critical sets:

Symmetric Normal Real critical set
Yes Yes Empty set, ex. 14

Yes No Critical point, ex. 15
No Yes Mirror curve, ex. 16
No No Mirror curve union cross section

circle at the critical point, ex. 17

Future work:

▶ We have analyzed the missing area of 𝑆, when 𝑃 takes
values in C2.

▶ Study the missing sets of 𝑆 when 𝑃 takes values in R2.
▶ Study the missing sets of other surface constructions in

CAD, for instance swung surfaces [5, 12].
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