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Introduction

What is QE?

Input
Consider a formula in prenex normal form,

F = Q1x1 . . . Qmxm ϕ(x1, . . . , xm, y1, . . . , yn)

where,
1 Q1, . . . Qm is a sequence of quantifiers (existential ∃ or universal ∀),
2 x1, . . . , xm are bound variables,
3 y1, . . . , yn are free variables and,
4 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula.

Output
A set D(y1, . . . , yn) consisting of all tuples (y1, . . . , yn) ∈ Zn that make F
true.
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Introduction

Bound variable

Definition
1 An upper bound for a variable x is a predicate of the form x ≤ a or

x < a.
2 A lower bound for a variable x is a predicate of the form a ≤ x or

a < x.

Example

∃x
(
(x < 13 ∨ 15 < x) ∧ x ≤ y

)
1 There are two upper bounds for x:

1 x < 13
2 x ≤ y

2 There is one lower bound for x:
1 15 < x
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Introduction

Applications
Optimizing Compilers:

Array Dependence Analysis (Delinearization Problem)
Polyhedral frameworks (LLVM’s Polly [GrGrLe12], GCC’s Graphite).

Program Verification:

Stanford Pascal Verifier [Lu79], Microsoft Spec#.
CompCert

Theorem Proving:

SAT/SMT Solvers (Microsoft’s Z3 [MoBj08], CVC5 [Ba22])
Proof Assistants (Coq [BeCa04], Isabelle [NiPaWe02], HOL Light
[Ha96], Lean [Mo15]).

Software Implementations

ISL (Integer Set Library) [Ve24]
TaPAS (Talence Presburger Arithmetic Suite) [ChGuUn15]
Yices [Du14]
Princess (Scala Theorem Prover) [Rü08]
Our Software

Chirantan Mukherjee Quantifier Elimination Over the Integers April 7, 2025 7 / 36



Introduction

Why is QE hard?

Example (Hilbert’s Tenth Problem [Hi02])
Is there a general algorithm for,
Input: polynomial p(x1, . . . , xn) with coefficients in Z
Output: ∃(a1, . . . , an) ∈ Zn such that p(a1, . . . , an) = 0

No! [Ma70, DaPuRo61]

Definition
Peano Arithmetic [Pe89] is a first order language L (0, s, +, ∗).

1 Peano Arithmetic is undecidable [Ch36, Tu36] and incomplete [Go31].
2 QE of semi-algebraic expressions over R is decidable [TaMc51].
3 QE of semi-algebraic expressions over real closed fields by cylindrical

algebraic decompostion is also decidable [Co75].
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Presburger Arithmetic

Setup

F = Q1x1 . . . Qmxm ϕ(x1, . . . , xm, y1, . . . , yn)

Assume F is in disjunctive normal form

ϕ(x1, . . . , xm, y1, . . . , yn) =
∨
i

∧
j

Φij(x1, . . . , xm, y1, . . . , yn),

where,
1 each Φij(x1, . . . , xm, y1, . . . , yn) is an atomic formula (or an atom),
2 thus a formula free of quantifiers and connectives.

Remark
We can assume that each atom is either

1 a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0 or,
2 a divisibility relation k | ℓ(x1, . . . , xm, y1, . . . , yn).
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Presburger Arithmetic

Presburger Arithmetic

Definition
Presburger arithmetic (PA) [Pr29] is a weaker version of Peano’s arithmetic
L (0, s, +).

1 PA is decidable and complete [Pr29].
2 PA originally applied to only N, but it was later extended to work over

Z by Robinson [Ro49].
3 Cooper [Co72] improved the QE procedure for eliminating the

existential quantifiers (∃) from formulas.
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Presburger Arithmetic

Complexity Estimates

1 Let n be the length of a statement in a PA.
2 Fischer & Rabin [FiRa74]

1 They established a lower bound of 22Ω(n)

2 This implies that any decision algorithm requires at least double
exponential time, i.e., at least 22c·n for some constant c > 0.

3 Oppen [Op78]
1 For formulas with a fixed number of quantifier alternations, provided an

upper bound of 222O(n)
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Cooper’s Algorithm

General Idea for QE

F = Q1x1 . . . Qmxm ϕ(x1, . . . , xm, y1, . . . , yn)

When m = 0
F itself is a quantifier-free formula, then it suffices to determine the tuples
of integer values (y1, . . . , yn) for which ϕ(y1, . . . , yn) is true.

When m > 0
1 We can view F as Q1x1F ′, where F ′ is a formula and x1 is free.
2 By induction assume that F ′ has been converted to a quantifier-free

formula. Now two cases arise,
1 either Q1 is the existential quantifier,
2 or Q1 is the universal quantifier and we use De Morgan’s law, ∀x1 F ′

with ¬(∃x1 ¬(F ′)).
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Cooper’s Algorithm

Cooper’s Algorithm [Co72]

1 Each atom of the input formula, say Ψ(x), is one of the following four
types: Ay < ax, ax < Ay, d | (ax + Ay), and ¬ (d | (ax + Ay)),
where a, d ∈ Z and Ay ∈ Z[y1, . . . , yn] is a linear polynomial.

2 Set x′ = ℓ x, with ℓ = lcm(coefficients of x).
3 There are two possibilities,

1 either infinitely many (arbitrarily small) integers k satisfy Ψ(x′), or
2 there is a least integer k satisfying Ψ(x′).

4 Replace each lower bound inequality in Ψ(x′) by false and each upper
bound by true, denoting the result as Ψ−∞(x′). Then,

∃x′ Ψ(x′) ⇐⇒
δ∨

i=1
Ψ−∞(i) ∨

n∨
i=1

δ∨
j=1

Ψ(bi + j),

where b1, . . . , bn are the lower bounds in Ψ(x′) and δ is the lcm of all
divisibility moduli.
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Our Algorithm

ZPolyhedron
A ZPolyhedron is a subset of integer points of a polyhedral set.

Example
Input: 

7x + 12y + 31z = 17,
3x + 5y + 14z = 7,

x + y ≥ 0,
y − x ≤ 0.

Output: {
x = −13z − 1,
y = 5z + 2,
z ≤ −1.

and

(
x
y
z

)
=

(
−13

5
1

)
t +

(
−1
2
0

)
.

(
x
y
z

)
∈ ZPolyhedron

((
−13

5
1

)
,

(
−1
2
0

))
.
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Our Algorithm

F = Q1x1 . . . Qmxm ϕ(x1, . . . , xm, y1, . . . , yn)

Remark
We can re-arrange the quantifier-free part as,

ϕ(x1, . . . , xm, y1, . . . , yn) =
∨
i

Zi(x1, . . . , xm, y1, . . . , yn),

where each Zi is a predicate of the form

x1
...

xm

y1
...

ym


∈ ZPolyhedron(Pi, Li),

for some polyhedra Pi and integer lattices Li.
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Our Algorithm

Only one variable x to eliminate (m = 1) in F

1 Let f1, . . . , fs, g1, . . . , gr ∈ Z[x, y] be linear polynomials and
k1, . . . , kr be positive integers.

2 Consider the formula:

F (y) : (∃x ∈ Z)


f1 ≤ 0

...
...

...
fs ≤ 0

∧
g1 ≡ 0 mod k1

...
...

...
gr ≡ 0 mod kr

(1)

3 We developed a generalized version the Chinese Remaindering theorem
for multivariate parametric systems of linear congruences.

4 Substitute the solution into the system on linear inequalities.
5 Our goal is to determine D(y), the set of the tuples of integer values

(y1, . . . yn) for which F (y) is true. We call D(y) the integer projection
of F (y).
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Our Algorithm

Two inequalities (s = 2) and no congruences (r = 0)

1 Replace
{

f1 ≤ 0
f2 ≤ 0 with

{
Ay − a x, ≤ 0
−By + b x ≤ 0 ,

where Ay, By ∈ Z[y] are linear, and a, b ∈ Z are non-zero.
2 Focus on a > 0, b > 0. (The other cases are easy!)
3 Formula 1 simplifies to:

F (y) : (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (2)

4 We use an idea suggested in Williams [Wi76] as well as Pugh’s lemma
[Pu91, Pu92].

Chirantan Mukherjee Quantifier Elimination Over the Integers April 7, 2025 20 / 36



Our Algorithm

Integer projection: first theorem

Theorem
Let, ℓ = lcm(a, b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b define,

Ek := {y | rem(By, b) = k}.

Then the following conditions are equivalent,
1 F (y) := (∃x ∈ Z)(Ay ≤ ax) ∧ (bx ≤ By),
2
∨k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay)

Remark
The number of atoms in the above formula grows doubly exponentially
with the number of variables being eliminated.
We proved that this formula is equivalent to the condition computed by
Cooper’s algorithm
In practice, the latter has a (much) larger number of atoms.
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Our Algorithm

Pugh’s dark shadow

Recall that we are eliminating the integer variable x from:

F (y) := (∃x ∈ Z)(Ay ≤ ax) ∧ (bx ≤ By)

Pugh has found a sufficient but not necessary condition to reduce the
number of cases.

Lemma (Dark Shadow [Pu91, Pu92])

If we have,
aBy − bAy ≥ (a − 1)(b − 1), (3)

then F (y) holds.
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Our Algorithm

Integer projection: second theorem

We combine the above first theorem with Pugh’s lemma.

Theorem

Define κ(a, b) := ⌈ (a−1)(b−1)
a′ ⌉. Then, Formula (1) is equivalent to:

((a − 1)(b − 1) ≤ aBy − bAy)
∨ k=b−1∨

k=κ(a,b)
(y ∈ Ek)∧

(
a′k ≤ a′By − b′Ay

)
.

(4)

Remark
1 the second theorem reduces significantly the number of “cuts”.
2 To take a concrete example, say with a = 7 and b = 11,

1 with the first theorem alone k ranges from 0 to 10,
2 with Pugh’s lemma, k ranges from 8 to 10.
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Benchmarking
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Benchmarking

test IPD MEMORY(MB) IPD TIME(s) NIP MEMORY(MB) NIP TIME(s)
T1[BoGoWo17] 24.232 0.121 33.811 0.193
T2[BoGoWo17] 57.843 0.281 59.136 0.344
T3[BoGoWo17] 121.978 0.671 189.439 1.256
T4[BoGoWo17] 42.531 0.240 65.162 0.378
T5[BoGoWo17] 22.114 0.110 31.725 0.167
T6[SeLoMe12] 97.739 0.481 64.456 0.333

T7[St23] 671.154 3.506 1066.889 6.608
T8[KöVeWo08] 69.087 0.338 58.668 0.328
T9 [KöVeWo08] 245.156 1.235 979.964 6.462
T17[BoGoWo17] 5.315 0.043 12.771 0.060
T18[CaLiZh22] 39.055 0.200 48.237 0.205

T19[Fe88] 355.466 1.786 1715.958 10.941
T20[Ve24] 25.453 0.154 28.667 0.180

T32[SeLoMe12] 28216.613 156.989 > 10 GB > 600
T33[SeLoMe12] 70.135 0.351 345.340 1.920
T34[SeLoMe12] 178.657 0.928 366.935 2.487
T35[SeLoMe12] 121.098 0.645 165.582 1.053
T36[SeLoMe12] 1243.682 6.209 798.004 4.822

T44[Ve24] 1.549 0.013 1.550 0.014
T45[Ve24] 1.549 0.014 1.551 0.013
T46[Ve24] 1.551 0.017 1.552 0.013
T47[Ve15] 49.726 0.236 45.779 0.219
T48[Ve15] 53.819 0.260 98.094 0.540
T49[Ve15] 32.190 0.197 27.997 0.153

Table: Maple 2024, Ubuntu 24.04.1 LTS, 16GB RAM and 12th Gen Intel(R) Core(TM) i5-1235U processor

The code can be accessed here.
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Conclusions

Conclusions
1 We have enabled two modes for QE,

1 onequantifieratatime - eliminate one quantifier at at time
2 byblocksofquantifiers - eliminate blocks of same quantifier in one

step

Example
F := ∀x∀y∃z∃wf(x, y, z, w, p)

2 We shall continue investigating heuristics to bypass the use of De
Morgan’s laws when dealing with universal quantifiers,

1 ∀xf(x) = b is true only when all coefficients are 0
2 ∀xf(x) ≤ b is true only when all coefficients in LHS are 0 and in RHS

are ≥ 0
3 We shall explore how we could take advantage of recent developments,

such as the results of Haase et al. in [Ha24],
4 We want to explore some non-linear QE problems over the integers,

which occur in the field of optimizing compilers, in particular,
scheduling problems.
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Conclusions

Thank You!
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