
University of Alberta

Library Release Form

Name of Author: Daniel James Lizotte

Title of Thesis: Budgeted Learning of Näıve Bayes Classifiers

Degree: Master of Science

Year this Degree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Daniel James Lizotte
4 Brandon Street
Quispamsis, New Brunswick
Canada, E2E 1N9

Date:

“...But what is this data you refer to? No textile chemist knows exactly what it is that the
buyer tests when he feels a tuft of cotton. Presumably there’s the average length of the
threads, their feel, the extent and nature of their slickness, the way they hang together,
and so on. —Several dozen items, subconsciously weighed, out of years of experience. But
the quantitative nature of these tests is not known; maybe even the very nature of some of
them is not known. So we have nothing to feed the Machine.”

Isaac Asimov
I, Robot

University of Alberta

Budgeted Learning of Näıve Bayes Classifiers

by

Daniel James Lizotte

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2003

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Gradu-
ate Studies and Research for acceptance, a thesis entitled Budgeted Learning of Näıve

Bayes Classifiers submitted by Daniel James Lizotte in partial fulfillment of the require-
ments for the degree of Master of Science.

Russell Greiner (Supervisor)

Peter Hooper (External)

Robert Holte

Omid Madani

Date:

Abstract

Sometimes, data is not free. We consider the situation where the learner must ‘purchase’ its

training data, subject to a fixed budget. In particular, we examine classifier learning where

observing the value of a feature of a training example has an associated cost, and the total

cost of all feature values acquired during training must remain less than the fixed budget.

This thesis compares methods for sequentially choosing which feature value to purchase next,

given the remaining budget and user’s current knowledge of Näıve Bayes model parameters.

This problem is similar to “active learning,” but active learning scenarios assume the ability

to purchase class labels, whereas we are interested in purchasing feature values. Also, work on

active learning has traditionally focused on myopic (greedy) approaches and uniform/round-

robin policies for query selection, but we show that such methods are often suboptimal and

present a tractable method for incorporating knowledge of a fixed budget in the information

acquisition process. This thesis extends ideas from [MLG03], and provides a more complete

treatment of the topics covered in [LMG03].

Acknowledgements

I would like to thank my supervisor Russ Greiner for his insights and support, and for

his confidence in me throughout this project. I would also like to thank Omid Madani for

his endless supply of ideas and enthusiasm, and to wish him the best of luck in his future

endeavours.

Finally, I would like to thank my good friend and colleague Colin Cherry, who began

work with me on this project, but who has since moved on to wordier problems.

Contents
1 Introduction 1

2 The Coins Problem 3

2.1 Modeling the Coins Problem . 4
2.1.1 Bayesian Updating . 4
2.1.2 Beta Priors . 5
2.1.3 Computing Expected Loss . 6

2.2 Markov Decision Process Framework . 7
2.3 Policies . 9

2.3.1 Optimal Policy . 10
2.3.2 Greedy Loss Reduction . 12
2.3.3 Biased-Robin Policy . 12
2.3.4 Random Policy . 13

2.4 Allocations . 13
2.4.1 Optimal Allocation . 14
2.4.2 Single Coin Lookahead . 14
2.4.3 Uniform Allocation . 16

2.5 Empirical Results . 22

3 The Budgeted Näıve Bayes Problem 26

3.1 Modeling the Budgeted Näıve Bayes Problem 27
3.1.1 Bayesian Updating . 27

3.2 Markov Decision Process Framework . 28
3.3 Policies . 29

3.3.1 Optimal Policy . 29
3.3.2 Greedy Loss Reduction . 30
3.3.3 Biased-Robin . 30

3.4 Allocations . 30
3.4.1 Single Feature Lookahead (SFL) . 31
3.4.2 Uniform Policies . 32

3.5 Empirical Results . 32
3.5.1 Synthesized Data . 33
3.5.2 UCI Data . 34

4 Related Work 41

4.1 Bandit Problems . 41
4.2 Hoeffding Races . 42
4.3 Active Learning . 42

5 Conclusions 44

5.1 Future Work . 44
5.2 Contributions . 45

Bibliography 46

A Proofs 48

List of Figures

2.1 Beta Distributions . 6
2.2 Updating Example . 8
2.3 An optimal policy tree for budget b = 3 on identical uniform priors, where

n = 4. Diamond boxes are actions, with ‘head’ outcomes leading up, and
‘tail’ outcomes leading down. Transition probabilities are indicated. Some
branches terminate early as the coin to report (circled) is already determined. 10

2.4 Performance of the optimal policy versus several other policies on 10 coins
with a budget of 10. (Note different Average Loss axis scales.) 24

2.5 These figures show performance (average loss) of various policies on 10 coins.
Figure 2.5(a) shows the performance of non-optimal policies with a maximum
budget of 40 and uniform priors. Figure 2.5(b) shows the performance of non-
optimal policies with skewed priors (γi1|s0, γi2|s0) = (10, 1) and a maximum
budget of 40. Figure 2.5(c) shows performance when (γi1|s0, γi2|s0) = (1, 10).
Note that different plots have different Average Loss axis scales. 25

3.1 Initial state of P . No feature values are known, all class labels are known. . . 26
3.2 Näıve Bayes Structure . 27
3.3 Policies . 29
3.4 Performance on synthesized data. 0/1 error on a validation set consisting of

20% of the complete data set. Errors are averages of 50 trials. 33
3.5 Performance on UCI Mushroom data. 0/1 error error on a validation set

consisting of 20% of the data. Errors are averages of 50 trials. 38
3.6 Performance on UCI Nursery data. 0/1 error error on a validation set con-

sisting of 20% of the data. Errors are averages of 50 trials. 39
3.7 Performance on UCI Votes data. 0/1 error error on a validation set consisting

of 20% of the data. Errors are averages of 50 trials. 40

A.1 (Repeated from page 10.) An optimal policy tree for budget b = 3 on identical
uniform priors, where n = 4. Diamond boxes are actions, with ‘head’ out-
comes leading up, and ‘tail’ outcomes leading down. Transition probabilities
are indicated. Some branches terminate early as the coin to report (circled)
is already determined. 50

List of Symbols

P (x) Probability of event x
〈X〉 Expected value of random variable X , i.e.,

∑

x∈Range(X)

x · P (x)

pdf(x) Probability distribution function P (X = x)
cdf(x) Cumulative density function P (X ≤ x)

R
≥0 The nonnegative real numbers

Z
≥0 The nonnegative integers

b The budget ∈ R
≥0

n Number of coins or features ∈ Z
+

Ci Bernoulli-distributed Coin, takes values ∈ {1, 0}
Θi Beta distributed parameter of Ci, i.e., P (Ci = 1)
γik Beta parameter corresponding to counts of Ci = ck

s Belief state
S Set of all belief states

` Loss function, ` : S→ R
≥0

ai Action of flipping coin Ci

A Set of all possible actions
ǎ∗ Optimal static allocation of budget across coins or features
ǎ1

i Allocation of entire budget b to coin Ci

ǎ− Uniform allocation of budget across all coins or features

Xi Feature Xi, takes on values ∈ {x1, x2, ..., xk} where k = |Xi|.
|Xi| number of different values Xi may take on
Y Class label Y , takes on values ∈ {y1, y2, ..., xl} where l = |Y |.
Θijk Dirichlet distributed parameter of Xi|Yj , i.e., P (Xi = xk|Yj)
γijk Dirichlet parameter corresponding to counts of Xi = xk|Yj

aij Action of purchasing a value of Xi when Y = yj

ǎ1
ij Allocation of entire budget to purchasing a value of Xi when Y = yj

Note: When certain symbols require more context, (i.e., state) the conditioning bar is used.
For example γik|s represents the value of γik in state s.

Chapter 1

Introduction

A recent project was allocated $2 million to develop a diagnostic classifier for cancer sub-

types. In the study, a pool of patients with known cancer subtypes was available, as were

various diagnostic tests that could be performed, each with an associated cost. Experts

theorized that some combination of these tests would be capable of discriminating between

subtypes; the challenge was to build a classifier using these tests that would be the most

accurate.

The first step is to acquire the relevant information: here, we have to decide which tests

to perform on which patients. The standard approach, of course, is simple round-robin:

run every test on every patient until we exhaust our fixed budget. Given our finite budget,

however, this might not produce the best classifier — e.g., if we can determine that two tests

are equivalent, it is clearly inefficient to perform both tests on the same patient. Fortunately,

there are many other options. For example, we could run all the tests on a subset of the

large pool of patients to examine their usefulness and correlations and then run only the

most relevant tests on future patients. Indeed, we could go to the extreme of building a

dynamic policy that, at each time step, decides which tests to perform on which patient,

based on all of the information available about the costs and apparent effectiveness of the

tests, as well as the remaining available funds.

This thesis explores this idea: how to dynamically decide which tests to run on which

individual to produce the most effective classifier, subject to the known firm budget.

Our “budgeted learning task” is an instance of decision making under uncertainty, a

vast topic that has been explored by researchers since the advent of statistics. Chapter 4

examines how these other explorations relate (and do not relate) to the issues discussed here.

In particular, we explain how our objective differs from standard bandit problems, Hoeffding

1

races, on-line learning, active learning, and active classification. Chapter 2 describes the

‘Coins Problem,’ which we use to develop the foundation of budgeted learning. Insight

gained examining this problem has been extended for use in Näıve Bayes classifiers (which

our learners will return) in Chapter 3. We have implemented these systems and run a

number of tests on both real and synthesized datasets; Section 3.5 reports our findings. We

see in particular that Round-Robin is typically not the most effective policy. The URL [Web]

provides additional information, both theoretical (e.g., proofs) and empirical (datasets, etc.).

2

Chapter 2

The Coins Problem

In order to shed some light on the general principles and ideas involved in budgeted learning,

we examine the following simplified problem:

Problem 1. The Coins Problem. We are given a set C = {Ci} of n independent Bernoulli

random variables Ci from which we may draw a total of b iid samples. We are uncertain

about the expected value 〈Ci〉 of each variable1. Our task has two phases: First, we choose

which distribution each sample should come from and observe the resulting data. Once we

have exhausted our budget of b samples, we report the random variable we believe to have the

highest expected value given our observations D, i.e., arg maxi {〈Ci|D〉}. The performance

associated with reporting the rth random variable is measured by the loss function

`(r) = maxi{〈Ci〉} − 〈Cr〉, which we wish to minimize.2

We call this problem the Coins Problem because it describes the situation of having a

handful of n unfair coins that we flip some number of times to determine which one has

the highest probability of turning up ‘heads.’ Throughout this chapter we assume uniform

unit costs across coins, i.e., the cost of obtaining a sample from any coin is 1. However,

extending the algorithms presented here to handle nonuniform costs is straightforward.

The Coins Problem is intended to provide a simplified environment that helps us gain

some intuition into the decision making required for budgeted learning. It is a problem of

decision making under uncertainty that retains the same reward structure as our final goal

of budgeted learning: performance is only evaluated after all intermediate decision making

has been completed.

Although the Coins Problem has a similar structure to our goal problem of budgeted

1We denote the expected value of a random variable X by 〈X〉.
2In this expression, 〈Ci〉 and 〈Cr〉 represent the ‘true’ expected values of the underlying Bernoulli distri-

butions.

3

classifier learning, it is only remotely similar to classifier learning in general. It is most closely

related to feature selection: choosing the distribution with the highest expected value is akin

to choosing the most correlated feature. However, the simplifications in this model would

only allow us to identify the most positively correlated feature, for example. Nevertheless,

the strategies developed to tackle the coins problem can be successfully extended to the

more interesting application of budgeted classifier learning, as described in Chapter 3. In

addition to providing a starting point for examining budgeted decision problems, the coins

problem is interesting as a model of situations where we wish to choose the best among

objects whose “goodness” can be measured in isolation, i.e., independently of the goodness

of other objects. The problem of selecting the best among a set of atomic medical treatments,

subject to a budget, might have this property, for example.

2.1 Modeling the Coins Problem

First, we define random variables Θi that assume values θi ∈ [0, 1] and correspond to the

parameters of the Bernoulli random variables Ci (i.e., θi = 〈Ci〉). We assign a prior distri-

bution to each Θi, and compute posterior distributions using the incoming data and Bayes’

Theorem. We will use these posterior distributions to compute the quantities necessary for

optimizing our loss function `(·).

2.1.1 Bayesian Updating

Bayes’ Theorem allows us to compute the posterior probability of a random variable given

our observations of some other random variable(s), usually called ‘data’ or ‘evidence.’

P (Θi|D) =
P (D|Θi) · P (Θi)

P (D)

Here, D represents the data we have seen so far, and Θi is our parameter of interest. The

value P (D|Θi) represents the likelihood of the data given Θi, P (Θi) represents the prior

distribution on Θi, i.e., the distribution we believe Θi to have before we see any data. The

quantity P (D) can be viewed as a normalizing term to ensure the new posterior distribution

integrates to 1.

The value P (D|Θi) is easily derived from the definition of the Bernoulli distribution

[Dev95]. The likelihood of observing Ci = 1 is Θi, and the likelihood of observing Ci = 0

is (1 − Θi). Because we assume that the events we observe are independent (part of the

Bernoulli assumption) the likelihood of observing Ci = 1 a total of (γi1 − 1) times and

4

Ci = 0 a total of (γi2 − 1) times3 is

P (D|Θi) =

(

γi1 + γi2 − 2

γi1 − 1

)

·Θγi1−1
i (1−Θi)

γi2−1

If we choose a uniform prior over Θi, i.e., pdf(Θi) = 1, then the posterior distribution is

simply

P (Θi|D) =
P (D|Θi) · P (Θi)

P (D)

=
Θγi1−1

i · (1−Θi)
γi2−1

P (D)

=
Θγi1−1

i · (1−Θi)
γi2−1

B(γi1, γi2)
(2.1)

where the normalizing term B(x1, x2) is the (complete) Beta function

B(x1, x2) =

1
∫

0

Θx1−1(1−Θ)x2−1 dΘ =
Γ(x1)Γ(x2)

Γ(x1 + x2)

and Γ(x) is the Gamma function

Γ(x) =

∫ ∞

0

tx−1e−t dt = (x− 1)Γ(x− 1)

= (x− 1)! for x ∈ Z
+

The distribution defined by Equation 2.1 is known as a Beta distribution, which is the con-

jugate prior of a Bernoulli parameter [Hec95]. The Beta distribution is called the conjugate

prior of a Bernoulli distribution because the posterior resulting from updating a Beta prior

with an event having Bernoulli likelihood is also a Beta distribution. The Beta distribution

is a continuous distribution defined over [0, 1] that has two parameters γ1, γ2 ∈ R
+. A Beta

distribution with parameters (γ1, γ2) is given by

PB(Θ ; γ1, γ2) =
Θγ1−1(1−Θ)γ2−1

B(γ1, γ2)

2.1.2 Beta Priors

For the above example, we chose P (Θi) = 1, which is equivalent to P (Θi) = PB(Θi; 1, 1).

This choice caused the parameters of the posterior to be equal to the event counts plus

one. In general, if we take any Beta distribution PB(Θi; γ
0
i1, γ

0
i2) as our prior, the Bayes-

updated posterior after observing γi1 ‘heads’ and γi2 ‘tails’ will also be a Beta distribution

PB(Θi; γi1 + γ0
i1, γi2 + γ0

i2). Intuitively, we can think of γ0
i1 and γ0

i2 as imaginary previously

3Here, we have defined the ‘event counts’ to be one less than the values γij so that they may be used
directly in the usual definition of the Beta distribution as given in Equation 2.2.

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Θ

P
B
(Θ;1,1)

(a) γ1 = 1, γ2 = 1

0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

Θ

P
B
(Θ;8,2)

(b) γ1 = 8, γ2 = 2

Figure 2.1: Beta Distributions

seen samples from the distribution of Ci. They act as parameters of the prior, and are

also called hyperparameters. For example, using a PB(Θi; 1, 1) prior is like imagining we

have seen one ‘heads’ and one ‘tails’ from coin i, while a PB(Θi; 8, 2) prior indicates that

we imagine having seen eight ‘heads’ and two ‘tails.’ (And therefore that coin Ci probably

has expected value close to 0.8.) Graphs of these priors are shown in Figure 2.1. Most

commonly, we will assume the uniform prior PB(Θi; 1, 1) unless we have reason to believe

otherwise.4

As we accumulate data by querying distributions, (i.e., by flipping coins) we will update

the original hyperparameters by incrementing γi1 every time we see Ci = 1 and incrementing

γi2 every time we see Ci = 0. A belief state s ∈ S is a set of pairs {(γi1, γi2)|i ∈ {1...n}}

that records the current value of Beta parameters based on our chosen priors and the data

observed so far. S is the set of all possible belief states. Each time we observe a new data

value, we move to a new belief state.

2.1.3 Computing Expected Loss

These posterior distributions allow us to compute and make decisions about the expected

loss `(j) = maxi{〈Ci〉} − 〈Cj〉 associated with reporting a particular coin j based on the

data we have seen.

4Note that it is not possible to have a prior that assumes having seen no ‘heads’ or no ‘tails,’ as Γ(0) is
undefined and the posterior cannot be normalized. Assuming a PB(Θ ; 1, 1) prior is the Bayesian equivalent
to the frequentist approach of Laplace smoothing.

6

Lemma 1. To minimize expected loss, we should report the coin Cr where r = arg maxi{〈Θi〉}.

Proof. In general, ∀j the expectation of `(j) = maxi{〈Ci〉} − 〈Cj〉 is given by

〈`(j)〉 = 〈max
i
{〈Ci〉} − 〈Cj〉〉

= 〈max
i
{Θi} −Θj〉

= 〈max
i
{Θi}〉 − 〈Θj〉 (2.2)

From Equation 2.2 and the fact that 〈maxi{Θi}〉 does not depend on j, we see that

arg minr{〈`(r)〉} = argmaxr{〈Θr〉}.

From Lemma 1, we see that if we are to report a coin and we wish to minimize loss as

defined in the problem, we must report the coin that has the highest expected value5 in the

current state s, i.e., argmaxi〈Θi|s〉. Because we will always report a coin with maximum

expected value based on our observed sample, our expected loss in a particular belief state

s is

`(s) = 〈max
i
{Θi|s}〉 −max

i
{〈Θi|s〉} (2.3)

In practice, we compute arg maxr〈Θr|s〉 from the posterior distributions of the Θi. The

expected value of the i-th coin’s posterior is 〈Θi|s〉 = θ̂i|s = γi1/(γi1 +γi2) where γi1 and γi2

are the parameters of the distribution of Θi in state s. Therefore, maxi〈Θi|s〉 = maxi θ̂i|s

which we call θ̂max|s. Also, for convenience we will denote the random variable maxi{Θi|s}

as Θmax|s, which means Equation 2.3 is written as

`(s) = 〈Θmax|s〉 − θ̂max|s (2.4)

2.2 Markov Decision Process Framework

We can easily view the coins problem as a Markov Decision Process (MDP) [Put94]. To

work in the MDP framework, we need the notion of states s ∈ S, which in our case are the

posterior distributions of each coin’s parameter Θi (defined by a list of pairs of parameters)

along with the remaining budget, and a reward function to indicate performance, which

in our case is the (negative) loss function `(·). This reward is only obtained at outcome

states where the budget has been exhausted; reward at all intermediate states is 0. (For

our purposes, we will work with the less common convention of an MDP whose goal is to

minimize loss, instead of maximizing reward. These two conventions are equivalent.) To

5There may be more than one maximum coin. If so, we may break ties however we wish and still retain
this minimum loss property.

7

complete the MDP formulation, we need to define actions, which we denote ai ∈ A, where

ai represents the action of flipping coin i (and thus obtaining a new data sample and moving

to a new belief state).

Moving to new belief states is accomplished via the Bayes updating procedure described

in Section 2.1.1. We assume each coin i has a Bernoulli parameter Θi ∼ B(γi1, γi2) that

is Beta distributed with parameters γi1 and γi2. When we observe a new data point Ci =

ck, k ∈ {1, 2}, we increment parameter γik. For example, coin 3 might have its parameter

Θ3 ∼ B(2, 3). If we perform action a3 (i.e., flip coin 3) and observe C3 = 1 (i.e., a heads),

then the new posterior is Θ3 ∼ B(3, 3). This change in distribution is illustrated by Figure

2.2.

Finally, we need a transition model, which is a probability distribution over successor

states given an action and our current state. An action ai results in observing one more

data point from coin i, so from our current belief state s we can get to one of two possible

successor states by taking ai: one where γi1 has been incremented, and one where γi2 has

been incremented. We call these states s|γi1++ and s|γi2++, respectively. Given our current

knowledge, the probability of incrementing the k-th ‘heads’ parameter γi1 when performing

action i is θ̂i = γi1/(γi1 + γi2). (The probability of incrementing γi2 is 1− θ̂i.)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Θ

P
B
(Θ,2,3)

(a) Coin 3 before update: B(2, 3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

Θ

P
B
(Θ,3,3)

(b) Coin 3 after seeing one more ‘head’: B(3, 3)

Figure 2.2: Updating Example

8

2.3 Policies

We define a policy to be a function π : S → A that takes the current belief state (i.e.,

current posterior distributions) and the remaining budget, and outputs an action ai ∈ A

that indicates which coin to flip next. Policies have the potential to be dynamic or contingent

in the sense that their actions can be influenced by the accumulating data.

The expected loss (sometimes called regret) of a policy is given by

`(π, s0) =
∑

s∈O(π,s0)

P (s) · `(s)

Here, O(π, s0) is the set of all possible outcomes of π starting from s0, i.e., states reached

by beginning at s0, and following π until the budget is exhausted, at which time we report

a coin. Of course, outcomes are stochastic because the observed events that define them are

stochastic. In general, with n coins and a budget of b, there are

b
∑

h=0

[(

h + n − 1

h

)(

(b − h) + n − 1

b − h

)]

different possible outcomes we can reach. (Note that not all of these outcomes might be

reached by a given policy.)

It is possible to calculate the posterior probability of observing a particular outcome

from the current distributions of Θi. Given a current belief state s = {(γi1, γi2)|i = 1..n}

and a number of flips bi allocated to coin i, the probability of reaching an end belief state

s′ = {(γ′
i1, γ

′
i2)|i = 1..n} is given by P (s′|s, b) =

∏n
i=1 P ((γ′

i1, γ
′
i2)|(γi1, γi2), bi) because we

assume that the Ci are conditionally independent.

The probability of a particular coin reaching the end state (γ ′
i1, γ

′
i2) is the probability

of observing γ′
i1 − γi1 ‘heads’ and γ′

i2 − γi2 ‘tails’ out of a total of (γ ′
i1 + γ′

i2) − (γi1 + γi2)

flips. The random variable describing this event has a Beta-Binomial distribution, which is

similar to the standard binomial distribution but assumes a Beta prior on the parameter θ

instead of a point value. The Beta-Binomial distribution is given by [Hec95]6

P ((γ′
i1, γ

′
i2, ..., γ

′
ik)|(γi1, γi2, ..., γik)) =

Γ(
∑

k γik)

Γ(
∑

k γ′
ik)

∏

k

Γ(γ′
ik)

Γ(γik)
(2.5)

Note that this probability is also implicity conditioned on the number of samples obtained

in moving from s to s′, i.e.,
∑

k γ′
ik −

∑

k γik. Equation 2.5 represents the Beta-Binomial

distribution when k ∈ {1, 2}, i.e., when k ranges over two possible events (‘heads’ and

6Heckerman describes this quantity as the ‘probability of imagined future data.’

9

Figure 2.3: An optimal policy tree for budget b = 3 on identical uniform priors, where
n = 4. Diamond boxes are actions, with ‘head’ outcomes leading up, and ‘tail’ outcomes
leading down. Transition probabilities are indicated. Some branches terminate early as the
coin to report (circled) is already determined.

‘tails’.) It can also represent the Dirichlet-Multinomial distribution, which can model ran-

dom variables with more than two events. (Take a die roll, for example. To model this, let

k ∈ {1, 2, ..., 6}.) This will become important when we discuss budgeted classifier learning

in Chapter 3.

2.3.1 Optimal Policy

We now present an algorithm that generates the optimal policy for a given coin problem.

We have states s ∈ S, a known stochastic state transition function, and a loss function `.

It is widely known that for every MDP there exists a deterministic optimal policy π∗ that

minimizes expected loss. (Or, equivalently, maximizes expected reward.) A graph describing

the optimal policy for n = 4 coins and a budget of b = 3 flips is shown in Figure 2.3. In

this diagram, actions are represented in diamonds, with arcs representing the two possible

outcomes from each action: arcs leading up from an ai diamond represent observing Ci = 1,

while those leading down represent Ci = 0. The effect of each observation on the current

parameters is noted on each arc, along with its probability of occurring. Final states are

10

represented as circles indicating which coin would be reported7. We now show how to

construct an optimal policy (such as this one) that minimizes expected loss.

First, we define an optimal expected loss function `∗ : S → R
+ that represents the

expected loss if we begin in state s and act optimally. (This is typically written as a value

function V ∗. For us, `∗ = −V ∗.)

We have already seen that reporting the coin with the highest expected value θ̂max results

in the lowest expected loss over all coins. Thus, given a budget b = 0, the optimal policy

simply reports coin r = argmaxi{〈Θi〉}, which gives an optimal expected loss for state s of

`(s) = 〈Θmax〉 − θ̂max from Equation 2.4.

Consider now the case where b = 1. Our policy may flip one coin, and must then

report which coin is optimal. To see which coin the optimal policy would choose to flip, we

consider all possible outcomes of all possible flips, and compute the optimal expected loss

`∗ associated with each flip using Equation 2.4 together with the transition probabilities.

The expected loss of the current state associated with flipping coin Ci is given by

〈`∗(s)|ai〉 = P (Ci = 1|s) · `∗(s|γi1++) + P (Ci = 0|s) · `∗(s|γi2++) (2.6)

Since, in this case, flipping i will exhaust our budget, we can compute `∗(s|γi1++) and

`∗(s|γi2++) from Equation 2.4. The probabilities P (Ci = x) are simply the expected values

of the Θi random variables, so we have

〈`∗(s)|ai〉 = θ̂i|s · `
∗(s|γi1++) + (1− θ̂i|s) · `

∗(s|γi2++) (2.7)

and

`∗(s) = min
ai

〈`∗(s)|ai〉 (2.8)

Equations 2.8 and 2.7 together are analogous to the Bellman backup equation for MDPs

[RN95]. We have demonstrated their use for the case where b = 1, but the exact value of

`∗(s) can be computed for any budget by starting from all possible outcome states (i.e.,

where b = 0) and ‘backing up’ the values to earlier states with more budget, until the start

state s0 is reached. This process is shown in Algorithm 1.

Once `∗ has been calculated for all possible states, we can use it to choose the optimal

policy by simply choosing the action that is expected to result in the minimum `∗, i.e.,

π∗(s) = arg minai
〈`∗(s)|ai〉.

7Note that some branches terminate early, as spending the remaining budget on any coin after certain
states would not change which coin had the highest expected value, and therefore would not change our
decision of which coin to report.

11

Algorithm 1 Recursive algorithm for `∗

compute `
∗(s, b)

if b = 0 then

return 〈maxi{Θi|s}〉 − θ̂max|s
else

return minf

{

θ̂f · compute `
∗(s|γf1++, b − 1)

+ (1− θ̂f) · compute `
∗(s|γf2++, b − 1)

}

end if

Of course, the number of states that can arise from a particular starting state is expo-

nential in the size of the budget, (i.e., O(n b)) so calculating the exact expected loss for all

states by this exhaustive method is impractical except for very small instances of the coins

problem.

2.3.2 Greedy Loss Reduction

The optimal policy becomes intractable because the number of potential outcomes grows

exponentially with the amount we look ahead. One typical method of counteracting this

growth is to limit the lookahead to one step, which is tractable. The Greedy policy always

takes the action that is expected to result in the least loss if we had to report a coin

immediately after the next step. It is fast to compute (takes O(n) time), and is contingent

on incoming data, but it does not take the budget into account. Empirical performance of

this policy (and of others) is discussed in Section 2.5.

2.3.3 Biased-Robin Policy

Another heuristic policy that is tractable and can identify coins with high expected value is

Biased-Robin, which operates as follows: Biased-Robin continues to flip a coin that returns

Algorithm 2 Biased-Robin for Coins Problem

i← 0
while b > 0 do

Flip Ci+1, obtaining sample D
b ← b − 1
if D = 0 {i.e., ‘tails’} then

i← (i + 1) mod n
end if

end while

‘heads’ (which is good) until it observes a ‘tails’ (which is bad). At this point, it moves to

the next coin and does the same thing, wrapping around as necessary. (The policy is called

Biased-Robin because of its similarity to Round-Robin which flips each coin in sequence

and wraps around as necessary until the budget runs out. The Round-Robin policy and its

12

characteristics are discussed in Section 2.4.3.) The intuitive justification for why this policy

might perform well is simple: Since ‘better’ coins (i.e., coins with higher expected value) will

turn up ‘heads’ more, this policy will probably query them more. This means that ‘good’

coins should be separated from ‘bad’ coins fairly easily, and the set of ‘good’ coins will have

more total data acquired, which will hopefully enable identification of the ‘best’ coin from

among the ‘good.’

Of course, the words ‘probably’ and ‘hopefully’ are used here in a completely nontechnical

sense: we have no approximability guarantees regarding Biased-Robin. It is simply an

example of a concise, hand-engineered policy that is extremely fast to compute. It takes

into account the incoming data about coin flips, but does not consider the budget.

2.3.4 Random Policy

Another policy we will use in our empirical comparisons is the random policy, where the

next coin is chosen from a uniform discrete distribution. The probability of flipping any

coin i is 1/n . This policy is the only stochastic policy we will examine. As the budget gets

large we expect it to perform nearly identically to a Round-Robin policy (or, equivalently,

to a Uniform Allocation; see Section 2.4.3).

2.4 Allocations

An allocation is a static policy that flips each coin a predetermined number of times, con-

veniently described by listing the amount of budget allocated to each coin Ci, e.g., the

allocation (3, 0, 2) indicates to flip coin C1 three times, coin C2 zero times, and coin C3 two

times. In general, an allocation ǎ = (ǎ1, ǎ2, ...ǎn) represents obtaining ǎ1 ∈ Z
≥0 samples

from C1, ǎ2 ∈ Z
≥0 samples from C2, etc. Allocations are not dynamic as they do not base

their actions on incoming data. With n unit-cost coins and a budget of b, there are
(

b + n − 1

n − 1

)

∈ O(bn−1)

different possible allocations. (Each allocation is an integer composition of b into n parts.)

It is possible to evaluate the expected loss of a particular allocation, as we could for any

policy, by summing over all possible outcomes of the allocation, of which there are

|O(ǎ)| =
n

∏

i=0

(ǎi + 1)

For some special cases, however, it is possible to express expected loss more compactly; see

Section 2.4.3.

13

2.4.1 Optimal Allocation

Since the number of different possible allocations is polynomial in the budget (but exponen-

tial in n) it is possible to enumerate all allocations for modest n and evaluate their expected

loss to find the optimal allocation, either exactly by summing over all possible outcomes or

approximately by sampling. The resulting optimal allocation ǎ∗ is the policy that results in

the minimum expected loss out of all possible non-contingent policies.

Table 2.1 shows several examples of optimal allocations, uniform allocations, and single

coin allocations, which are discussed below. It is interesting to note that neither the uniform

allocation nor the best single coin allocation is optimal for any of these situations.

2.4.2 Single Coin Lookahead

Consider allocating the entire budget to a single coin i, denoted ǎ1
i . This single coin allocation

(SCA) allocation has only b + 1 different possible outcomes, so its expected loss is

`(ǎ1
i) = 〈Θmax〉 − Γ(γi1 + γi2)

b
∑

h=0

[

1

Γ(γi1 + γi2 + b)
·
Γ(γi1 + h)Γ(γi2 + (b − h))

Γ(γi1)Γ(γi2)
· θ̂(s′)

max

]

Here s′ = s′(i, s, h, b) represents the state equal to s0 except that γi1 is increased by h

and γi2 is increased by (b − h). The expected loss of a single coin allocation (which we

call “SCA loss”) is computable in O(b) time. We could consider actually following this

simplistic policy of allocating the entire budget to one coin, but as can be seen in Table 2.1,

frequently even the best of these single coin allocations has high expected loss, particularly

when n is large. We therefore do not propose to actually allocate all b flips to coin Ci where

i = arg maxi{`(ǎ
1
i)}, but instead develop a contingent policy based on the best possible

expected SCA loss.

We define a policy called ‘Single Coin Lookahead,’ denoted πSCL, that uses SCA loss

values but is contingent. It works as follows: At each step, the coin with the minimum SCA

loss score is found. That coin is flipped once, and the belief state is updated based on the

outcome. The process is then repeated, always flipping the coin that has the minimum SCA

loss according to the current belief state.

This policy was developed with the intention of creating a policy that is not only contin-

gent (as is Biased-Robin, say) but also explicitly takes the budget into account. Its empirical

performance is discussed in Section 2.5.

14

Θ1 ∼ B(1, 1) Θ2 ∼ B(1, 1) Θ3 ∼ B(1, 1) Θ4 ∼ B(1, 1) 〈`〉
ǎ∗ 3 2 2 1 0.091204
ǎ− 2 2 2 2 0.102469
ǎ1
1 8 0 0 0 0.188889

(a) Identical uniform priors, n = 4, b = 8.

Θ1 ∼ B(1, 1) Θ2 ∼ B(1, 1) Θ3 ∼ B(1, 1) Θ4 ∼ B(1, 1) 〈`〉
ǎ∗ 11 10 10 9 0.026544
ǎ− 10 10 10 10 0.027523
ǎ1
1 40 0 0 0 0.178049

(b) Identical uniform priors, n = 4, b = 40.

Θ1 ∼ B(10, 1) Θ2 ∼ B(10, 1) Θ3 ∼ B(10, 1) Θ4 ∼ B(10, 1) 〈`〉
ǎ∗ 6 2 0 0 0.042095
ǎ− 2 2 2 2 0.052592
ǎ1
1 8 0 0 0 0.045254

(c) Identical skewed priors, n = 4, b = 8.

Θ1 ∼ B(4, 2) Θ2 ∼ B(5, 3) Θ3 ∼ B(1, 1) Θ4 ∼ B(3, 2) 〈`〉
ǎ∗ 3 0 3 2 0.079402
ǎ− 2 2 2 2 0.088954
ǎ1
1 8 0 0 0 0.107668

ǎ1
2 0 8 0 0 0.118206

ǎ1
3 0 0 8 0 0.101879

ǎ1
4 0 0 0 8 0.110737

(d) Various different priors, n = 4, b = 8.

Table 2.1: Expected losses of various allocations in different circumstances. Definitions for
ǎ∗, ǎ1, and ǎ− can be found in Sections 2.4.1, 2.4.2, and 2.4.3, respectively. Note that for
situations with identical coins, any permutation of a particular allocation will have the same
loss.

15

2.4.3 Uniform Allocation

At the other end of the spectrum from SCA would be to flip each coin b/n times. A policy

that produces this effect might look like

π−(s, b) = [(
∑

i
γi1 + γi2) mod n] + 1

This results in a uniform allocation, denoted ǎ−. It represents flipping coin C1, C2, up to Cn

and then beginning again with C1 which we also call a Round-Robin policy. (Note that the

order is arbitrary; all that matters is the end result of having an equal number of samples

from each coin.)

Expected Loss of Uniform Allocation

It is possible to express the expected loss of a uniform allocation (Round-Robin policy) in

a compact form if we assume uniform Beta priors over all of the coins. The more concise

form allows for asymptotic analysis to examine the effect of varying the number of coins

and budget on performance. We will use a few simple properties of probability distribution

functions and cumulative density functions in this derivation.

Lemma 2. If {X1, X2, ..., Xn} are independent real-valued random variables, cdf i(x) =

P (Xi ≤ x) and cdfmax(x) = P (max{X1, X2, ..., Xn} ≤ x), then

cdfmax(x) =

n
∏

i=1

cdfi(x)

Proof. The probability P (max{X1, X2, ..., Xn} ≤ x) = cdfmax(x) is the same as the con-

junctive probability P (X1 ≤ x ∩X2 ≤ x ∩ ... ∩Xn ≤ x). Because the Xi are independent,

this probability is simply the product
∏n

i=1 P (Xi ≤ x) =
∏n

i=1 cdf i(x).

Lemma 3. If X is a continuous random variable that takes on values in [0, 1], then

〈X〉 = 1−

1
∫

0

cdf(x) dx

Proof. By definition,

〈X〉 =

∫ 1

0

x · pdf(x) dx

16

Integrating by parts, we get

∫ 1

0

x · pdf(x) dx =

[

x ·

∫

pdf(x) dx−

∫
(

∫ x

0

pdf(t) dt

)

dx

]∣

∣

∣

∣

1

0

=

[

x · cdf(x) −

∫

cdf(x) dx

]
∣

∣

∣

∣

1

0

= x · cdf(x)
∣

∣

∣

1

0
−

∫ 1

0

cdf(x) dx

= [(1 · cdf(1)− 0 · cdf(0)]−

∫ 1

0

cdf(x) dx

= 1−

∫ 1

0

cdf(x) dx

Theorem 1. The expectation 〈Θmax|s0〉 is invariant over policies. Given a start state s0

and any policy π,
∑

s∈O(π,s0)

P (s) · 〈Θmax|s〉 = 〈Θmax|s0〉

Proof. (Sketch.) This equivalence is derived from the following identity of Beta distributions:

PB(x; γ1, γ2) =
γ1

γ1 + γ2
· PB(x; γ1 + 1, γ2) +

γ2

γ1 + γ2
· PB(x; γ1, γ2 + 1) (2.9)

Using Lemmas 2 and 3 and Equation 2.9, it is easy to show that

〈Θmax|s0〉 = θ̂i|s0 · 〈Θmax|(s0|γi1++)〉+ (1− θ̂i|s0) · 〈Θmax|(s0|γi2++)〉 (2.10)

which means that 〈Θmax|s0〉 does not change when averaged over the possible outcomes

of any action. Simple induction extends this result to possible outcomes of any policy.

A complete proof of Equation 2.9 and the derivation proving Theorem 1 can be found in

Appendix A.

We have defined the expected loss of a particular belief state in Equation 2.7. The

expected loss (or regret) of a policy is given by

`(π, s0) =
∑

s∈O(π,s0)

P (s) · `(s)

=
∑

s∈O(π,s0)

P (s) ·
[

〈Θmax|s〉 − θ̂max|s
]

=
∑

s∈O(π,s0)

P (s) · 〈Θmax|s〉 −
∑

s∈O(π,s0)

P (s) · θ̂max|s

= 〈Θmax|s0〉 −
∑

s∈O(π,s0)

P (s) · θ̂max|s (2.11)

17

〈Θmax|s0〉 represents the expected value of the random variable Θmax = max{Θ1,Θ2, ...,Θn},

which, assuming uniform priors, has a cumulative density function

cdfmax(θ) =

n
∏

i=1

cdfi(θ) (2.12)

= cdf1(θ)
n (2.13)

= θn (2.14)

Equation 2.12 follows from Lemma 2, Equation 2.13 from the fact that the distributions of

the Θi are identical, and Equation 2.14 from the fact that each Θi is uniformly distributed.

(i.e., ∀i, pdf i(θ) = 1, and therefore cdf i(θ) =
∫

pdf i(θ) dθ =
∫

1 dθ = θ.)

Theorem 2. If n random variables Θ1...Θn are all uniformly distributed on [0, 1], and if

Θmax = max{Θ1,Θ2, ...,Θn}, then

〈Θmax〉 =
n

n + 1
(2.15)

Proof. Using the cumulative density of Θmax and Lemma 3, we can compute the value of

〈Θmax〉:

〈Θmax〉 = 1−

1
∫

0

cdfmax(θ) dθ

= 1−

1
∫

0

θn dθ

= 1−
θn+1

n + 1

∣

∣

∣

1

0

= 1−
1

n + 1

=
n

n + 1

This demonstrates that value of 〈Θmax|s〉 can be calculated in constant time from the

current belief state, but the second term of Equation 2.11,
∑

s∈O(π,s0)
P (s) · θ̂max|s is a sum

over all possible outcomes of a policy, of which there may be an exponential number. If we

assume a Beta prior and conditional independence of coins, the probability distribution over

outcomes is a product of Beta-Binomial distributions, each of which is uniform. (Uniformity

of the distributions can be observed by setting all hyperparameters to 1 in Equation 2.5. N.b.

these distributions are unlike binomial distributions, which cannot be uniform except for a

18

few degenerate cases when there are only one or two outcomes.) Therefore, the distribution

P (s) over outcomes is uniform, which gives

∑

s∈O(π,s0)

P (s) · θ̂max|s =
1

|O(π, s0)|

∑

s∈O(π,s0)

θ̂max|s

where O(π, s0) is the set of outcomes that can be reached by following π, and θ̂max|s repre-

sents the highest observed expected value in outcome s, i.e., the expected value of the coin

we would report. Unfortunately, if we consider allocating k flips to each of n coins (b = n ·k),

then |O(ǎ−, s0)| = (k + 1)n , which is exponential in the number of coins.

We can avoid summing over this exponential number of outcomes by noting that there

are many outcomes that have the same value of θ̂max|s. In fact, there are only k+1 different

possible values of θ̂max. Furthermore, we can calculate the probability of ending up in any

of the states with a particular value of θ̂max. We therefore re-factor the expectation and

sum over all k + 1 possible values of θ̂max instead of over all (k + 1)n possible outcomes of

ǎ−.

〈θ̂max〉 =
∑

θ̂max∈V

P (θ̂max) · θ̂max (2.16)

Given uniform priors and k = b/n flips for each coin, it is easy to see that

V = {(i + 1)/(k + 2)|i ∈ {0, 1, ..., k}}

Therefore P (θ̂max) is a discrete distribution

P (θ̂max ≤ x) =
∏

1≤j≤n

P (θ̂j ≤ x)

As before, θ̂j represents the empirical expected value of coin j after we exhaust the budget.

If we stipulate that θ̂j = (i + 1)/(k + 2) where i represents the number of heads seen from

coin j (that is, 0 ≤ i ≤ k), then the distribution of θ̂j is uniform over k+1 possible outcomes,

so we have

P (θ̂j ≤ (i + 1)/(k + 2)) =
i + 1

k + 1
(2.17)

it follows that

P (θ̂max ≤ (i + 1)/(k + 2)) =
∏

1≤j≤n

P (θ̂j ≤ (i + 1)/(k + 2))

= P (θ̂j ≤ (i + 1)/(k + 2))n

=

(

i + 1

k + 1

)n

19

This gives the cumulative distribution function for the discrete variable θ̂max, from which

we can derive the probability distribution function

P (θ̂max = (i + 1)/(k + 2)) = P (θ̂max ≤ (i + 1)/(k + 2))

− P (θ̂max ≤ i/(k + 2))

=

(

i + 1

k + 1

)n

−

(

i

k + 1

)n

=
(i + 1)n − in

(k + 1)n

Substituting this for Equation 2.16 we get

∑

s∈O(π,s0)

P (s) · θ̂max|s =
∑

θ̂max

P (θ̂max) · θ̂max

=

k
∑

i=0

P (θ̂max = (i + 1)/(k + 2)) · (i + 1)/(k + 2)

=

k
∑

i=0

(i + 1)n − in

(k + 1)n ·
i + 1

k + 2

Therefore, given identical uniform priors, n coins and k flips for each coin, the expected loss

associated with flipping each coin k times is given by

`(ǎ−, s0) = 〈Θmax〉 −
∑

θ̂max

P (θ̂max) · θ̂max

=
n

n + 1
−

k
∑

i=0

(i + 1)n − in

(k + 1)n ·
i + 1

k + 2
(2.18)

Asymptotic Examination

Equation 2.18 can be rewritten in a more convenient form

`(ǎ−) =
n

n + 1
−

k
∑

i=0

(i + 1)n − in

(k + 1)n ·
i + 1

k + 2

=
n

n + 1
−

1

(k + 1)n · (k + 2)

k
∑

i=0

[(i + 1)n − in] · (i + 1)

=
n

n + 1
−

1

(k + 1)n · (k + 2)

·

[

k
∑

i=0

[(i + 1)n · (i + 1)]−

k
∑

i=0

in · i−

k
∑

i=0

in

]

20

We can then change the indices on the summations to obtain

`(ǎ−) =
n

n + 1
−

1

(k + 1)n · (k + 2)

·

[

k+1
∑

i=1

[in · i]−
k

∑

i=1

in · i−
k

∑

i=1

in

]

=
n

n + 1
−

1

(k + 1)n · (k + 2)
·

[

(k + 1)n · (k + 1)−
k

∑

i=1

in

]

=
n

n + 1
−

[

k + 1

k + 2
−

∑k

i=1 in

(k + 1)n · (k + 2)

]

(2.19)

We now make two observations about Equation 2.19. First, for n = 1 (i.e., one coin only)

`(ǎ−, s0) =
n

n + 1
−

[

k + 1

k + 2
−

∑k
i=1 in

(k + 1)n · (k + 2)

]

=
1

1 + 1
−

[

k + 1

k + 2
−

∑k

i=1 i

(k + 1) · (k + 2)

]

=
1

2
−

[

k + 1− k
2

k + 2

]

=
1

2
−

1

2

[

k + 2

k + 2

]

= 0

That is, if we only have one coin it must be the one with the highest expected value, and

therefore we report it and achieve zero loss. Also, if we examine what happens as the budget

k approaches infinity

lim
k→∞

`(ǎ−) = lim
k→∞

n
n + 1

−

[

k + 1

k + 2
−

∑k

i=1 in

(k + 1)n · (k + 2)

]

=
n

n + 1
− lim

k→∞

[

k + 1

k + 2
−

∑k

i=1 in

(k + 1)n · (k + 2)

]

=
n

n + 1
−

[

1− lim
k→∞

∑k

i=1 in

(k + 1)n · (k + 2)

]

(2.20)

The last term of Equation 2.20 can be expressed in terms of a power formula p(k) (a

polynomial of degree n + 1) in the numerator and a polynomial of degree n + 1 in the

denominator [Wei].

The coefficient of the leading term of p(k) is 1/(n + 1), and the coefficient of the leading

term of the polynomial in the denominator is 1, so the limit is

lim
k→∞

∑k

i=1 in

(k + 1)n · (k + 2)
=

1

n + 1

21

k
∖

n 1 2 3 4 5

0 0.000000 0.166667 0.250000 0.300000 0.333333
1 0.000000 0.083333 0.125000 0.154167 0.177083
2 0.000000 0.055556 0.083333 0.102469 0.117284
3 0.000000 0.041667 0.062500 0.076563 0.087240
4 0.000000 0.033333 0.050000 0.061067 0.069333
5 0.000000 0.027778 0.041667 0.050772 0.057485

Table 2.2: Expected loss associated with a uniform allocation of k flips to each of n coins.

by n + 1 applications of l’Hôpital’s Rule. Equation 2.20 therefore simplifies to

lim
k→∞

`(ǎ−) =
n

n + 1
−

[

1− lim
k→∞

∑k

i=1 in

(k + 1)n · (k + 2)

]

=
n

n + 1
−

[

1−
1

n + 1

]

=
n

n + 1
−

[

n
n + 1

]

= 0

This indicates that, as expected, as we accumulate more and more data, our information

gets better and better, and so our expected loss goes to zero. Table 2.2 shows the numerical

value of `(ǎ−) for various k (number of flips per coin) and n (number of coins.) We also

note that, for a fixed k, loss increases as n increases. Intuitively this is because the more

coins we have, the more coins appear to be equally good (i.e., show k heads out of k flips),

and our inability to distinguish between them results in a higher probability of making a

high-loss choice.

2.5 Empirical Results

It is feasible to compute the optimal loss (and the optimal policy) using Algorithm 1 for the

range of only about n ≤ 10 and b ≤ 10. Figures 2.4(a) and 2.4(b) show the performance of

the optimal strategy against some of the other algorithms on uniform priors and on skewed

priors8. Athough we are concerned with loss only after the budget has been expended, the

current loss is plotted at intermediate points to illustrate the behaviour of policies during

data acquisition. The performances of Single Coin Lookahead and Biased-Robin are very

close to that of optimal, while Round-Robin lags behind considerably9. Because of the

8Each point is the average of 4000 trials. Initially in each trial, every coin’s actual head probability is
drawn from the prior, and then tossed by the algorithms.

9We remark that the empirical loss from Round-Robin with n = 10, b = 10 and uniform priors shown in
Figure 2.4(a) is very close to the number predicted by Equation 2.18, which is ≈ 0.24275. Also, Figure 2.5(a)
shows an empirical loss for Round-Robin with n = 10, b = 40 close to the theoretical value of ≈ 0.09468.

22

nature of the experiment wherein a new set of coins is drawn for each of 4000 trials and

then given to the algorithms to flip, the variance of the loss function is very high, as is

indicated by the error bars.

We have made similar observations on other types of identical priors on larger problem

sizes (e.g., Figures 2.5(a), 2.5(b), and 2.5(c), which show performance with a budget of

40). In Figures 2.5(b) and 2.5(c), we observe that the loss of the Round-Robin policy has

a step-like shape, with sharp reductions in loss occurring at points where there is sufficient

budget to ‘wrap around’ and flips some coins one more time i.e., the maximum number of

flips to any coin increases by one. We regard this as further evidence that it may be useful

to allocate more flips to fewer coins, even though some may be flipped very seldom or not

at all.

The Biased-Robin and Single Coin Lookahead policies consistently outperform the others

to varying degrees depending on priors. The relative difference in performance increases

with priors skewed toward higher head probabilities (Beta densities B(5, 1) and B(10, 1)

in the figure), and with increasing n (see [Web]). Conversely, as the probability of good

coins decreases in general (as with a B(1, 10) prior; see Figure 2.5(c)), performance becomes

generally bad for all policies. We believe the cause of the poor performance of the greedy

policy is its inability to make a definitive decision in many situations. Frequently, looking

only one step ahead, two coins may have the exact same expected loss. This causes the

greedy policy to toss many arbitrary coins that may be inefficient choices when considering

the budget. For example, with uniform priors, as soon as some coin gives a head, a single

toss of any coin does not change the expected highest mean and therefore each coin is as

good as any other. Although SCL considers single-coin allocations only, it performs well

since it takes the whole budget into account which allows it to discriminate between coins

better than the greedy policy.

Again, the Coins Problem is a gross simplification of the budgeted learning problem: we

chosen the simplest distributions, assumed unit costs10, and made independence assump-

tions. Nonetheless, we see that even a simple problem such as this requires careful resource

allocation to obtain good performance.

10It is very simple to extend the coin problem to have nonuniform costs. When constructing an optimal
policy or finding the best SCL score, we only admit outcomes that respect the budget, i.e., outcomes for
which the total cost of the actions that lead to them, stays less than b.

23

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

A
ve

ra
ge

 L
os

s

Tosses Made

n=10, b=10, B(1,1)

Optimal
Biased-Robin

SCL
Round-Robin

Random

(a) 10 Coins, Θi ∼ B(1, 1)

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0 2 4 6 8 10

A
ve

ra
ge

 L
os

s

Tosses Made

n=10, b=10, B(5,1)

Optimal
Biased-Robin

SCL
Round-Robin

Random

(b) 10 Coins, Θi ∼ B(5, 1)

Figure 2.4: Performance of the optimal policy versus several other policies on 10 coins with
a budget of 10. (Note different Average Loss axis scales.)

24

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 L
os

s

Tosses Made

n=10, b=40, B(1,1)

Round-Robin
Random

Greedy
SCL

Biased-Robin

(a) 10 Coins, Θi ∼ B(1, 1)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 L
os

s

Tosses Made

n=10, b=40, B(10,1)

Round-Robin
Random

Greedy
SCL

Biased-Robin

(b) 10 Coins, Θi ∼ B(10, 1)

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 L
os

s

Tosses Made

n=10, b=40, B(1,10)

Round-Robin
Random

Greedy
SCL

Biased-Robin

(c) 10 Coins, Θi ∼ B(1, 10)

Figure 2.5: These figures show performance (average loss) of various policies on 10 coins.
Figure 2.5(a) shows the performance of non-optimal policies with a maximum budget of
40 and uniform priors. Figure 2.5(b) shows the performance of non-optimal policies with
skewed priors (γi1|s0, γi2|s0) = (10, 1) and a maximum budget of 40. Figure 2.5(c) shows
performance when (γi1|s0, γi2|s0) = (1, 10). Note that different plots have different Average
Loss axis scales.

25

Chapter 3

The Budgeted Näıve Bayes
Problem

We now examine the idea of budgeted learning a Näıve Bayes classifier.

Problem 2. The Budgeted Näıve Bayes Problem. We are given a pool P of training

instances, where each instance is characterized by a set of n features X = {X1, X2, ..., Xn },

as well as a class label Y . Initially, our learner R knows only the class labels of a large set

of training instances; n.b., R does not know the value of any feature for any instance.

X1 X2 ... Xn Y

? ? ? ? y1

? ? ? ? y2

? ? ? ? y1

...
...

...
...

...

Figure 3.1: Initial state of P . No feature values are known, all class labels are known.

R begins with a known, fixed total budget b ∈ R
≥0, and knows the costs ci = c(Xi)

to obtain a value of feature Xi from any instance. At each time, R can, at cost c(Xi),

obtain the value of the i-th feature of an instance with any particular label y. (Hence, R can

explicitly request, say, the previously unknown X1 value of a Y = y1 instance.) We assume

that the cost of an action is independent of its outcome, and independent of j. E.g., the cost

of purchasing X1 is the same whether the value observed is x11 or x13, and the same whether

we purchase it from a Y = y1 or a Y = y2 instance. R continues until exhausting its budget.

At that point, R returns a classifier. Its goal is to obtain a classifier whose expected loss

`(R) is minimum among all those learned from any pool of training data whose total cost is

less than b.

We will focus on the case where R is a Näıve Bayes (NB) classifier, which is a belief

26

�

�
	Y

�

�
	X1

����� �

�
	X2

�
�	�

�
	X3

?
· · ·

�

�
	Xn

HHHHj

Figure 3.2: Näıve Bayes Structure

net with a structure that assumes that feature values are conditionally independent given

the class label y [DHS01]; see Figure 3.2. The parameters of the classifier are estimated

from the event counts observed in the purchased data and the priors using m-estimates, for

example see [Mit97]. When presented with a new feature vector x, Bayes’ Theorem is used

to compute argmaxy P (Y = y |X = x), which is returned as the most likely classification

given x and the model.

3.1 Modeling the Budgeted Näıve Bayes Problem

We will model the Budgeted Näıve Bayes Problem as a Markov Decision Process over belief

state space, much as we did for the Coins problem. We again define random variables Θijk ,

this time to describe the posterior distributions of each feature Xi given each class label

Y = yj .

In this case, we also need parameters Θj representing the unconditional probabilities

P (Y = yj). Since each instance in our pool of data has its class label, these parameters can

be estimated in the same way as for normal (non-budgeted) Näıve Bayes learning. Once

initially estimated, these parameters do not change during the data purchasing process.

3.1.1 Bayesian Updating

We again use the Bayes updating procedure to define distributions that are modified as data

accumulates. In this problem setting, however, we need to handle features that may take

on more than two different values, so we will assume that the conditional distribution of

each feature Xi is a discrete, multi-valued generalization of the Bernoulli distribution1 with

parameters

Θijk = P (Xi = xik |Y = yj)

These parameters are in turn drawn from Dirichlet conjugate priors [Hec95] with parameters

γijk , and each state s corresponds to the collection of these γijk parameters. If the feature

1The distribution of event counts over multiple iid samples from Xi is drawn from a Multinomial distri-
bution, which is a generalization of the Binomial distribution.

27

Xi has r values, then its multinomial parameters

Θij = {Θij1, . . . ,Θijr } ∼ Dir(γij1, . . . , γijr)

are Dirichlet distributed, with parameters γijk > 0. The density function is given by

p(θij1, θij2, ..., θijr) =

∏r

k=1 Γ(γijk)

Γ(
∑r

k=1 γijk)
·

r
∏

k=1

θ
γijk−1
ijk

subject to
∑

k θijk = 1.

These distributions are direct extensions of the Bernoulli and Beta distributions we

used to model the Coins Problem, and are updated in much the same way, using priors

and observation counts. (Setting γij·|s0 = { 1, 1, ..., 1} represents the uniform prior.) E.g.,

the 3-valued feature X7 associated with the class having its first value Y = y1, might be

distributed as Θ7,1,·|s = {Θ7,1,1|s,Θ7,1,2|s,Θ7,1,3|s } ∼ Dir(3, 8, 2). Our learning process

must perform a sequence of actions {aij}, where action aij represents requesting the value

of feature Xi from an instance with label Y = yj . (E.g., a71 represents requesting the value of

feature X7 from a Y = y1 instance. Thanks to our Näıve Bayes independence assumptions,

it does not matter which Y = y1 instance this value comes from.) If we later request the X7

value of a Y = y1 instance (i.e., take action a7,1), and observe the second value x7,2, then the

posterior distribution in the new state s′ will be Θ7,1,·|s
′ ∼ Dir(3, 8 + 1, 2) = Dir(3, 9, 2).

In general, if Θij |s ∼ Dir(γij1, . . . , γijr), then after observing a value, which is say the k-th

value of Xi (xik), the new distribution is Θij |s
′ ∼ Dir(γij1, . . . , γijk +1, . . . , γijr). Note that

the expected value of this Θ7,1,2|s
′ variable is θ̂7,1,2|s

′ = 9/(3 + 9 + 2) = 9/14. Given our

current knowledge, the probability of incrementing the k-th value γijk |s, when purchasing

a value for Xi for the j-th label, is θ̂ijk |s, which defines our state transition probability.

3.2 Markov Decision Process Framework

We again have belief states s ∈ S which are collections of Dirichlet parameters, actions

aij ∈ A which describe the process of purchasing a feature value to get to a new belief state,

and a state transition probability distribution.

The final component of our budgeted learning MDP is the loss function which is only

evaluated when the budget has been expended (i.e., loss is 0 for all states except final states).

At that time a loss of `(NB(s)) is received where ` is a loss function of the Näıve Bayes

model induced by the parameters of the state s. Possible loss functions are described in

28

RoundRobin(pool P ,
budget b)

c← mini c(Xi)
i← 0
while b > c do

if b > c(Xi+1) then

Draw j from
P (Y = yj)

do action(ai+1,j)
Update b, s

end if

i← (i + 1) mod n
end while

{ For RoundRobin and
BiasedRobin, j is drawn
from the prior class distri-
bution. }

(a) Round-Robin

BiasedRobin(pool P ,
budget b)

c← mini c(Xi)
`old ← `(NB(s))
i← 0
while b > c do

if b > c(Xi+1) then

Draw j from
P (Y = yj)

do action(ai+1,j)
Update b, s

`new ← `(NB(s))
end if

if `new ≥ `old then

i← (i + 1) mod n
end if

`old ← `new

end while

(b) Biased-Robin

SFL(pool P , budget b)

c← mini c(Xi)
while b > c do

aij ←
argmini,j〈`(NB(s|ǎ1

ij))〉
do action(aij)
{ i.e., purchase value of
Xi when Y = yj }
Update b, s

end while

return(NB(s))

{ Replacing ǎ1
ij with aij

gives the greedy policy. }

(c) Single Feature Lookahead

(SFL) and Greedy

Figure 3.3: Policies

Section 3.5, and include such measures as 0/1 error, GINI index, and entropy [HTF01]. We

can now define policies that are intended to deliver reduced expected loss.

3.3 Policies

This section first indicates the complexity of finding the optimal policy, then outlines a

number of plausible policies that we have implemented.

3.3.1 Optimal Policy

As we saw in Section 2.3.1, it is possible, given an MDP, to compute an optimal deterministic

policy π∗ that will result in the minimum expected loss. This policy can be found in a way

analogous to Algorithm 1, but in principle it can be found by any standard MDP solution

method (i.e., value iteration, policy iteration, linear programming) in time polynomial in

the size of the state space |S|. Unfortunately we again have the problem that the state space

grows exponentially in b, precluding exact computation for problems of an interesting size if

we are to rely on an exhaustive state tree expansion. In fact, this problem is also NP-hard

under different feature costs, a result inherited from [MLG03] (see also [Web]). In light of

29

this, we now examine several simpler, tractable policies that, while not optimal, improve on

näıve approaches.

3.3.2 Greedy Loss Reduction

One common technique used in active learning is to calculate the expected loss of taking an

action aij from the current belief state, given by

〈 `(NB(s)) | aij 〉 =
∑

s′∈S

P (s′ | s, aij) · `(NB(s′))

A simple greedy policy is to evaluate these expectations for each possible action from the

current state, and perform the action that has the lowest expected loss if we had to report a

classifier immediately after taking that action. This technique has the advantage of directly

minimizing the error of the resulting classifier, but we show that this greedy, single-step

policy is outperformed by other policies that use deeper lookahead, as was the case for the

Coins Problem, see Figure 3.5(a).

3.3.3 Biased-Robin

While examining the Coins Problem, we developed the Biased-Robin heuristic policy. We

extend this policy to the Näıve Bayes problem as follows: Repeatedly take an action (i.e.,

purchase feature Xi.) as long as it continues to reduce our current loss. As soon as an

action results in an increase in our estimate of the loss according to the current model of the

input distribution, we begin taking the next action. Note there is an important difference

between this policy and the Greedy Loss Reduction policy: The Greedy policy chooses the

next action that is expected to minimize loss. Biased-Robin either chooses the same action

if it just caused our current loss to decrease, otherwise it begins taking the next action.

Again, the Biased-Robin policy is based on the Round-Robin or Uniform policy, discussed

in Section 3.4.2. See Figure 3.3(b) for a more detailed description.

3.4 Allocations

Adapting the work of Section 2.4, we make the following definition: An allocation is an array

of integers that describes the number of times a feature’s value is purchased in conjunction

with a certain class label; i.e., the number of times action aij is executed. For example,

under allocation ǎ, ǎ32 = 4 would mean that the value of feature X3 is purchased 4 times

30

from distinct tuples where Y = y2. With normalized uniform costs (c(Xi) = 1 for all Xi)

an allocation can be viewed as an integer composition.

The expected loss of executing the actions of an allocation ǎ in the current state s is

given by

〈`(NB(s)) | ǎ〉 =
∑

s′∈S

P (s′ | s, ǎ) · `(NB(s′)) (3.1)

where

|{s′ ∈ S : P (s′ | s, ǎ) > 0}| =
∏

i,j

(

ǎij + |Xi| − 1

ǎij

)

|Xi| represents the number of different values feature Xi may take on. Again, enumerat-

ing all possible states resulting from an allocation is an integer composition enumeration

problem with a straightforward solution, except that there are an exponential number of

compositions.

3.4.1 Single Feature Lookahead (SFL)

Although the Greedy policy is provably suboptimal, it is tractable since there are not too

many actions to evaluate. Our goal is to incorporate knowledge of the budget when scoring

potential actions while retaining this tractability. We accomplish this by formulating a

method that introduces lookahead without expanding the entire state space that is derived

from the SCL policy of Section 2.4.2.

Again, we consider allocations where ǎij = bb/c(aij)c for one (i, j) and ǎij = 0 elsewhere.

We denote this allocation ǎ1
ij . It represents spending the entire budget on the single action

aij , and has a state space of size

|{s′ ∈ S : P (s′|s, ǎ1
ij) > 0}| =

(

ǎ1
ij + |Xi| − 1

ǎ1
ij

)

For a feature with two possible values, for example, there are only 2bb/c(aij)c distinct states.

The probability of reaching any one of these states is given by [Hec95]

P (s′|s, ǎ1
ij) =

Γ(
∑

k γijk |s)

Γ(
∑

k γijk |s′)

∏

k

Γ(γijk |s
′)

Γ(γijk |s)

Our Single Feature Lookahead (SFL) operates as follows: For all i and j, compute the

expected value of the loss of ǎ1
ij as defined in Equation (3.1). We find the action with the

minimum loss and perform it once, update the belief state and budget, and repeat. The

algorithm is described in Figure 3.3(c).

This policy, like the greedy policy in Section 3.3.2, is suboptimal. However, the SFL score

of an action will be influenced by additional factors that affect the mobility of a distribution.

31

This mobility is affected by a distribution’s current belief state (distributions with smaller

parameters are more mobile), the cost of an action (the distributions of cheaper actions

are more mobile) and by the remaining budget (more budget means more mobility for all

distributions.)

3.4.2 Uniform Policies

We again examine as a baseline the Round-Robin scheme where features are queried se-

quentially, regardless of outcomes; see Figure 3.3(a). We purchase feature X1, then X2, etc.

If action costs are uniform, this is equivalent to following a uniform allocation policy.

The preceding description really only specifies half of each action to take by identifying

which feature to purchase. The NB problem adds another dimension to actions: What

should the class label be of the instance the feature comes from? We could simply cycle

through class labels as we cycle through feature values, but this would not reflect the input

distribution. (It would be equivalent to oversampling and undersampling in such a way as

to force a uniform distribution over Y .) We have chosen instead to draw the class label from

the distribution P (Y) initially estimated.

Another simple policy when action costs are nonuniform would be to spend b/n on each

feature, purchasing more expensive features fewer times. (Hence, ask for around b/(n ·c(Xi))

values of each Xi.) We call this a uniform expenditure policy.

We will use the uniform allocation policy as a baseline for empirical performance evalu-

ation.

3.5 Empirical Results

We will use the GINI index of the NB classifier as our loss function ` for choosing the actions

of the greedy and SFL policies [HTF01]:

`GINI(NB(s)) =
∑

y∈Y

∑

x∈X

P (x)P (y|x)(1 − P (y|x))

Here, X represents the space of all possible inputs to the classifier, i.e., the domain of the

input distribution. Since this space has dimension n , we will sample to compute these loss

values in practice. We have chosen the GINI index to guide action selection because we

found that, being continuous, smooth, and nonlinear, it is more sensitive than 0/1 error to

the small changes in the NB distribution caused by a single action. (Because 0/1 error is

32

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 20 40 60 80 100

0/
1

V
al

id
at

io
n

E
rr

or

Feature Values Purchased

Round-Robin
Biased-Robin

Greedy
SFL, Max depth: 10

Complete Training Data

(a) Uniform Distributions

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 20 40 60 80 100

0/
1

V
al

id
at

io
n

E
rr

or

Feature Values Purchased

Round-Robin
Biased-Robin

Greedy
SFL, Max depth: 10

Complete Training Data

(b) Nonuniform Distributions

Figure 3.4: Performance on synthesized data. 0/1 error on a validation set consisting of
20% of the complete data set. Errors are averages of 50 trials.

piecewise constant, certain actions do not change its expected value at all.) We have found

that both GINI and entropy are similar in this respect.

Although we use the GINI index to choose actions, we have plotted 0/1 cross validation

error in Figures 3.4, 3.5, 3.6, and 3.7 (discussed below). This gives a more useful measure

of how well the classifiers learned under a budget are performing. In the interest of saving

computational time, we have estimated some quantities needed in the greedy and SFL

calculations by sampling. (Generating iid tuples from a belief net is trivial, especially for

a Näıve Bayes.) Also, in the case of SFL, we look as deep as either the remaining budget

or a fixed maximum indicated by “Max-depth”, whichever is smaller. For example, with a

budget b = 300 and a max depth of 80, SFL will look ahead 80 purchases at each step until

it expended all but 79 purchases (i.e., until purchase 221) at which point it will look 79

ahead, then 78, etc. Adjusting this Max-depth allows us to examine the effects of varying

degrees of lookahead.

3.5.1 Synthesized Data

Our initial experiments involve data synthesized from Näıve Bayes distributions to test

our policies in a setting where the conditional independence assumptions are true. In

these experiments, all the feature and class variables are Boolean, with P (Y = y1) =

P (Y = y2) = 0.5. Each experiment represents an average over 50 trials. In each trial, a

Näıve Bayes model with 10 features is generated from defined priors, and the model is used

to generate 1000 iid instances, of which the first 80% are used for training and the remainder

33

are used to compute the 0/1 cross-validation error. (Because the true distribution is known,

0/1 error could be computed exactly; however, cross validation error was used so that the

error computation is the same for our synthesized data as for the UCI datasets described

below.) The vertical axis shows the 0/1 error of the model trained by the various algorithms

after a number of purchases. The “Complete Training Data” line is the 0/1 cross-validation

error of the Näıve Bayes model trained on all of the training data.

The two experiments differ in the priors from which the Näıve Bayes model is generated.

In the first experiment (Figure 3.4(a)), under each class, each feature’s multinomial param-

eters are drawn from a uniform distribution; {Θij· } ∼ Dir(1, 1). Therefore, all features

are discriminative to varying degrees. We observe that the performances of the algorithms

are all comparable, and there is nothing to be gained from selective querying (i.e., even

Round-Robin works well). The reason for the comparable performance of the algorithms is

basically that purchasing any feature is expected to reduce the loss of the whole NB model

somewhat, but highly discriminative features are so rare that it does not pay to hunt for

them.

Figure 3.4(b) displays the other extreme where all features except one are irrelevant. In

this experiment, each feature’s parameters are drawn from a uniform (Dir(1,1)) distribution

independently of the class. One feature, Xi, chosen at random is selected to be discrimi-

native; in particular we set P (Xi = xi1 |Y = y1) = 0.9 and P (Xi = xi1 |Y = y2) = 0.1.

We observe that lookahead (with Max-depth 10) and Biased-Robin algorithms significantly

outperform Round-Robin in this scenario, requiring only about half as many purchases to

obtain the same error level. These policies are capable of identifying the most promising

features and obtaining better estimates of their posteriors, which improves performance.

We can increase this difference in performance by increasing the discrimination level of

the relevant feature (e.g., the extreme case would be P (Xi = xi1 |Y = y1) = 1.0 and

P (Xi = xi1 |Y = y2) = 0) and by increasing the number of irrelevant features.

3.5.2 UCI Data

For a less contrived test bed, we have chosen several datasets from the UCI Machine Learning

Repository [BM98]. These plots show averaged validation error of the policies on a holdout

set (20% of the dataset) on the mushroom, nursery, and votes datasets. Each point is an

average of 50 trials where in each trial a random balanced partition of classes was made for

training and validation. The five-fold cross-validation error of a standard (non-budgeted)

34

Näıve Bayes learner with the whole training set available is also shown (“Complete Training

Data”).

While we are really only interested in performance after the entire budget has been

expended, we have plotted performance at intermediate points during learning to examine

the behaviour of the different policies as feature values are being acquired.

The mushroom dataset is a binary class problem (poisonous vs. edible), with 22 features,

8124 instances, and a positive class probability of 0.52. One of the features, feature 5, is a

very discriminative 10-valued feature, while others are less discriminative [Hol93]. Figures

3.5(a) and 3.5(b) show the performance of the different policies.

Figure 3.5(a) represents what we imagine to be a typical application of the policies

discussed in this paper. The budget has been set at 100, and we allow SFL a “Max-depth”

of 100, meaning that it always looks ahead as far as its remaining budget. Here we see

that the contingent policies (i.e., Biased-Robin, Greedy, and SFL) outperform the simplistic

Round-Robin. Of the contingent policies, SFL, which is the only policy to use knowledge of

the budget in decision making, performs best. It is obvious from the error bars that there

is a great deal of variance over the 50 trials, which is an effect of learning from a very small

amount of data. (Over the fifty trials we are likely to get some partitions of data that are

very informative and others that are not.) Variance in the validation error of the different

policies is comparable; however it appears that for larger amounts of data (80 feature values

and up) the standard deviation of SFL is approximately half that induced by Round-Robin.

We suspect that this is because SFL uses incoming data and the remaining budget to try

to make the best of the current sample at hand, whereas Round Robin cannot adapt if a

particular sample gives a poor estimate for a particular feature. This behaviour of variance

is similar for other datasets; bars are shown only on this plot for clarity.

In Figure 3.5(b) again we see that the adaptive policies perform best, and we also see

the effect of varying the degree of lookahead, with Max-depth 30 SFL dominating earlier in

the run and Max-depth 80 SFL performing best later. This plot is illustrative of the effect

of altering lookahead depth as it shows a ‘more greedy’ policy with shallower lookahead

performing well initially before it is bested by a more farsighted policy. This is an indication

that it is important to match the depth of lookahead to the actual budget.

Further illustration of this is shown in the Nursery data. Figure 3.6(a) illustrates a

similar phenomenon of shallow lookahead performing well early on, as Max-depth 10 SFL

performs better than Max-depth 30 SFL earlier in the purchasing phase. Figure 3.6(b)

35

illustrates the difference in performance caused by by assuming a different budget for SFL

when the Max-depth is kept the same. After 50 purchases, Max-depth 30 SFL with an

assumed budget of 300 (�) performs significantly worse than Max-depth 30 SFL with an

assumed budget of 50 (◦). As these policies approach the 50 purchase mark, ◦ is looking

ahead to a total budget 50 purchases (i.e., at step 49 it is looking 1 puchase ahead), but

� is still looking 30 purchases ahead at each step (i.e., at step 49 it is still looking 30

purchases ahead) which results in a performance hit at the 50 purchase mark. The nursery

dataset (Figures 3.6(a) and 3.6(b)) is a five class problem with nine features that can take

on between two and five values. The relative performances of the policies are closer to each

other, but their behaviour is similar to Figure 3.5(b). Regardless of depth, SFL is capable

of picking out relevant features: Out of the 300 purchases, feature 5 is bought by SFL

an average of 75 times, while a non-discriminative feature such as feature 18 is bought an

average of only 2 times. For some budgets, the 0/1 error of SFL is nearly half that generated

by Round-Robin.

The votes dataset (Figures 3.7(a) and 3.7(b)) is a binary class problem (democrat vs.

republican), with 16 binary features, 435 instances, and a positive class probability of 0.61.

In the votes dataset, there is a high proportion of discriminative features, and we observe

that all policies within relatively few purchases reduce the error to the minimum possible

for a Näıve Bayes classifier. In fact, because of independence assumption violations, it is

possible for selective policies to perform better than a NB classifier trained on the whole data

set, as these policies are doing a form of feature selection: when beginning from uniform

priors, features that are never queried will have no influence on the computation of the

likelihood of a class label, and therefore will not ‘interfere’ with the prediction of features

that are queried many times. Therefore, if discriminative features are found and are are

queried extensively while other inferior features are ignored, performance will be better than

if these noisy or inferior features are allowed to sway the classifier’s decision. Again, for the

SFL policy, the assumed budget is significant: as shown in Figure 3.7(b), the performance of

SFL after 50 purchases is better when the budget is assumed (correctly) to be 50 than when

it is assumed to be 300 (i.e., when it looks ahead farther than it should). Other policies do

not take the budget into account.

We have observed the same overall patterns on several other datasets that we have tested

the policies on so far (CAR, DIABETES, CHESS, BREAST): the performance of SFL is

superior or comparable to the performance of other policies, and Biased-Robin is the best

36

algorithm among the budget insensitive policies; see [Web] for additional details. Run times

for Round-Robin and Biased-Robin are very short, taking only seconds, with the greedy

policy taking slightly longer. Run times for SFL took the longest, and were on the order of

minutes. (Its runtime is ∈ O(n ·maxi |Xi| · |Y | · b).)

37

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100

0/
1

V
al

id
at

io
n

E
rr

or

Feature Values Purchased

Round-Robin
Biased-Robin

Greedy
SFL, Max-depth: 100

Complete Training Data

(a) Mushroom Data: Max Depth equal to Budget

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300

0/
1

V
al

id
at

io
n

E
rr

or

Feature Values Purchased

Round-Robin
Biased-Robin

Greedy
SFL, Max-depth: 10
SFL, Max-depth: 30
SFL, Max-depth: 50
SFL, Max-depth: 80

min error

(b) Mushroom Data: Various Max Depths

Figure 3.5: Performance on UCI Mushroom data. 0/1 error error on a validation set con-
sisting of 20% of the data. Errors are averages of 50 trials.

38

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400

0/
1

V
al

id
at

io
n

E
rr

or

Feature Values Purchased

Round-Robin
Biased-Robin

Greedy
SFL, Max-depth: 10
SFL, Max-depth: 30

Complete Training Data

(a) Nursery Data

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 20 40 60 80 100

0/
1

V
al

id
at

io
n

E
rr

or

Feature Values Purchased

Round-Robin
Biased-Robin

Greedy
SFL, Max-depth: 10
SFL, Max-depth: 30

SFL, Budget: 50, Max-depth: 30

(b) Nursery Data, SFL with b = 50

Figure 3.6: Performance on UCI Nursery data. 0/1 error error on a validation set consisting
of 20% of the data. Errors are averages of 50 trials.

39

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300

0/
1

V
al

id
at

io
n

E
rr

or

Feature Values Purchased

Round-Robin
Biased-Robin

Greedy
SFL, Max-depth: 30

Complete Tranining Data

(a) Votes Data

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100

0/
1

V
al

id
at

io
n

E
rr

or

Feature Values Purchased

Round-Robin
Biased-Robin

Greedy
SFL, Max-depth: 30

SFL, Budget: 50, Max-depth: 30
Complete Tranining Data

(b) Votes Data, SFL with b = 50

Figure 3.7: Performance on UCI Votes data. 0/1 error error on a validation set consisting
of 20% of the data. Errors are averages of 50 trials.

40

Chapter 4

Related Work

4.1 Bandit Problems

The ‘Coins Problem,’ discussed in Chapter 2, is a bandit problem [BF85]. ‘Bandit’ problems

are named after slot machines called ‘one-armed-bandits.’ These slot machines will, for a

price, allow a gambler to pull an ‘arm,’ which results in some immediate reward (possibly

zero). The reward distribution is assumed to be independent of previous rewards. (That is,

the rewards are iid.) Closest to our work is the ‘multi-armed bandit problem,’ where there

are n different arms we could pull, and our goal is to maximize our expected reward over time.

The Coins Problem can be immediately reduced to a multi-armed bandit problem, with

the coins mapping to arms, and the loss mapping to (negative) reward. This formulation

provides intuition about the behaviour and characteristics of different policies, and details

which policies are effective for tackling budgeted learning in the context of multi-armed

bandits. The bandit formulation provides a theoretical grounding for budgeted problems in

a crisp setting, before it is extended in Chapter 3 to full classifier learning.

The important difference between the Coins Problem and the current state of the art

of the multi-armed bandit literature is the reward structure. Nearly all multi-armed bandit

work is dependent on a discounted reward structure, possibly up to a finite horizon. (E.g.,

use of the Gittins index solution requires this assumption [BF85].) This discounted struc-

ture does not apply to our problem, which offers zero reward until the last action when

expected loss is computed. This reward structure has not as yet been addressed in the

bandit literature1.

1Personal communication with D. Berry of [BF85].

41

4.2 Hoeffding Races

Hoeffding races [MM97] describe another statistical decision making procedure that is con-

cerned with efficiency in terms of the number of queries made. The application here is model

selection, where we wish to choose the best out of a set of classifiers (i.e., k-nn, neural net,

etc.) The set of models may be large, and cross-validating may be computationally very

expensive, so we want to minimize unnecessary queries (i.e., classifications of test instances)

as much as possible. This is accomplished by keeping statistics about the ‘goodness’ of each

model, and using them with Hoeffding/Chernoff bounds [Mit97] to construct confidence

intervals about the relative goodness of different models. This allows various strategies to

be used when deciding which model to query next. (For example, it is common to query

the model with the highest upper bound.) Also, once a particular model is shown to be

worse than another model with high probability (i.e., the models’ confidence intervals do

not overlap) we no longer test the inferior model.

Hoeffding races offer insight into how we might wish to go about budgeted learning, for

example, by using statistics to compute bounds or other measures of how good or bad we

think different features are. However, while Hoeffding races attempt to be as efficient as

possible with queries, they have no concept of a prior fixed budget. Also, we will make

several distributional assumptions for budgeted learning (as we would for ordinary Bayesian

learning) which obviate the need for probability approximations in the from of Chernoff or

Hoeffding bounds.

Other learning systems that use techniques similar to Hoeffding races include PALO

[Gre96], which provides performance guarantees on hill-climbing, and Leslie Kaelbling’s ‘in-

terval estimation’ (IE) algorithm [Kae93], which constructs approximate confidence intervals

to improve reinforcement learning. Again, these systems to not consider having a fixed prior

budget.

4.3 Active Learning

Many on-line learners try to minimize the number of training examples, either explicitly

or implicitly (e.g., [MCR93], [SG95], or other PAC results that deal with reducing sample

complexity). These approaches allow the learner to acquire as many examples as are needed

to meet some requirements — e.g., for some statistical test, or some specified ε and δ values

in the case of PAC-learners [Val84].

42

We, however, have a firm total budget, specified before the learning begins. Moreover,

our approach is fine-grained, as our system can explicitly ask for the value of a single

specified feature, rather than an entire tuple of values, one for each feature of an instance.

(In fact, our results show that this alternative “Round-Robin” approach is often inferior to

other policies.)

This kind of problem is also related to active learning scenarios as described in [TK00],

[RM01], and [LMRar]. In typical pool-based active learning, we have a pool P of instances

that have all feature values specified, but no class labels. We are considering the complement

of the problem: class labels are available but feature values are not. The work in [TK00]

could be applied to our problem since it is designed for general belief nets of which our Näıve

Bayes model is a special case. However, our goal is to build a good classifier as opposed to

a good generative model.

Also, in previous active learning results (including [TK00]) greedy methods have been

shown effective in reducing training sample size, and deeper lookahead has not been used

because of inefficiency and insignificant gains (specifically see [LMRar]). However, we ob-

serve that in our case the greedy method often has poor performance, and that looking

deeper can pay significant dividends.

Budgeted learning is also related to cost-sensitive learning and active classification (e.g.,

[Ang92, Tur00, GGR02]), although feature costs in [Tur00, GGR02] refer to costs at classifi-

cation time, while we are concerned with total cost during the learning phase. Nonetheless,

like several active learning results [LMRar, TK00, RM01], we show that selective querying

can be much more efficient than simplistic methods such as round-robin.

43

Chapter 5

Conclusions

5.1 Future Work

This work can be extended in several obvious directions. We have chosen to use a Näıve

Bayes classifier, but any classifier that can deal with incomplete data tuples could be used,

in principle. However, it is critical that we be able to compute the expected loss of a

classifier, which in turn means that we must have a means of generating samples of the

input distribution, or at least a model of the input distribution that allows expectations

to be computed exactly. For the NB case, the classifier is also the generative model of

the input distribution, but other non-statistical classifiers (like SVMs, say) would need a

separate generative model to compute expected loss, and it is not clear what this generative

model should look like, e.g., how it should model dependencies, etc. Another problem when

moving to more complicated classifiers that introduce dependencies between features is that

the number of decisions when choosing which feature to query next will increase. In the

Näıve Bayes case, we needed only to decide the class label of the instance we wished to

purchase a feature from. For a more general Bayes net where we might want to purchase

the value of a node, we would need to decide on the configuration of all parents of the node,

and the number of configurations is exponential in the number of parents.

An immediate extension of our work is to handle the detection of dependencies among

features and dropping redundant features in order to improve the performance of the learned

classifier. This can be viewed as a special case of actively learning structure [TK01]. De-

pendency detection would remedy a problem on some of the UCI datasets such as votes,

when a Näıve Bayes classifier using all features performs worse than using only the single

best feature for classification. We are currently investigating logistic regression as a means

of mitigating the problems caused by unmodeled dependencies. While better dependency

44

modeling is desirable, it may be difficult: The introduction of model dependencies among

features will increase the space of actions because when purchasing a feature Xi, we will

need to decide not only what the class label should be, but what values the other features

should have in the instance from which we purchase Xi. This increase in the number of

actions increases the size of the search space we examine when choosing an action.

The cost structure presented here is quite simple, but real data acquisition can have a

very complex cost structure. One could imagine for example, extrapolating from the medical

study that was our motivation, a situation with a fixed cost for obtaining a new (empty)

data tuple with its corresponding class label, followed by incremental feature value costs.

(Imagine it costs $50 to have a patient come into a clinic, after which each individual test

costs $10.) Concerning the budget, one could consider the scenario where we have a “soft”

budget, perhaps with an increasing cost per feature after we have expended our initial b. If

there are major differences in costs or if features are expensive, then the goal should be to

learn a cost-sensitive or active classifier [GGR96, Tur00] still in this budgeted framework.

Though it is too computationally expensive to solve optimally, our problem does have

some structure that may be exploitable in its MDP form. We are also interested in the

suitability various approximate methods for solving MDPs (i.e., [Duf02]) for use on our

problem.

5.2 Contributions

We have formulated the general “budgeted learning problem” as a Markov Decision Process

and shown that its optimal solution appears to require computation time exponential in

the number of features. (In fact it is NP-hard under different feature costs, see [MLG03].)

In examining the simpler but closely related ‘Coins Problem,’ we have seen that uniform

strategies are suboptimal, even for seemingly simple cases with uniform and identical priors.

We have also shown in empirical settings that simple policies such as round-robin and

greedy loss reduction can be problematic on certain datasets, and propose two alternatives

(Biased-Robin and Single Feature Lookahead) that can perform significantly better than

these simple policies in certain situations. Empirical performance results both on synthesized

data and on parts of the UCI dataset support our claim that the budget-aware policies we

have proposed are preferable when faced with a budgeted learning problem.

45

Bibliography

[Ang92] D. Angluin. Computational learning theory: survey and selected bibliography.
In Proc. 24th Annu. ACM Sympos. Theory Comput., pages 351–369. ACM Press,
New York, NY, 1992.

[BF85] D.A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experi-
ments. Chapman and Hall, New York, NY, 1985.

[BM98] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[Dev95] J. Devore. Probability and Statistics for Engineering and the Sciences. Duxbury
Press, New York, NY, 1995.

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley &
Sons, New York, NY, 2001.

[Duf02] M. Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. PhD thesis, University of Massachusets, Amherst, 2002.

[GGR96] R. Greiner, A. Grove, and D. Roth. Learning active classifiers. In Proceedings of
the Thirteenth International Conference on Machine Learning, 1996.

[GGR02] R. Greiner, A. Grove, and D. Roth. Learning cost-sensitive active classifiers.
Artificial Intelligence, 139(2), 2002.

[Gre96] Russell Greiner. PALO: A probabilistic hill-climbing algorithm. Artificial Intel-
ligence, 84:1 – 2:177 – 204, 1996.

[Hec95] David Heckerman. A Tutorial on Learning With Bayesian Networks. Microsoft
Research, Redmond, WA, 1995.

[Hol93] R. C. Holte. Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 3:63 – 91, 1993.

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, New York, NY, 2001.

[Kae93] Leslie Pack Kaelbling. Learning in embedded systems. MIT Press, Cambridge,
Mass., 1993.

[LMG03] Daniel J. Lizotte, Omid Madani, and Russell Greiner. Budgeted learning of naive-
bayes classifiers. In Proceedings of UAI-03, 2003.

[LMRar] M. Lindenbaum, S. Markovitch, and D. Rusakov. Selective sampling for nearest
neighbor classifiers. Machine Learning, To appear.

[MCR93] R. Musick, J. Catlett, and S. Russell. Decision theoretic subsampling for induction
on large databases. In Proceedings of the Tenth International Conference on
Machine Learning, pages 212 – 219, Amherst, MA, 1993.

[Mit97] Tom M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

[MLG03] O. Madani, D. Lizotte, and R. Greiner. Foundations budgeted learning: The
multi-armed bandit case. submitted, 2003.

[MM97] O. Maron and A. Moore. The racing algorithm: Model selection for lazy learners.
Artificial Intelligence Review, 11(1-5):193–225, 1997.

46

[Put94] M. Puterman. Markov decision processes: Discrete stochastic dynamic program-
ming. John Wiley & Sons, New York, NY, 1994.

[RM01] Nicholas Roy and Andrew McCallum. Toward optimal active learning through
sampling estimation of error reduction. In Proc. 18th International Conf. on
Machine Learning, pages 441–448. Morgan Kaufmann, San Francisco, CA, 2001.

[RN95] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[SG95] Dale Schuurmans and Russell Greiner. Sequential PAC learning. In Proceedings
of COLT-95, Stanford University, 1995.

[TK00] S. Tong and D. Koller. Active learning for parameter estimation in bayesian
networks. In NIPS, pages 647–653, 2000.

[TK01] S. Tong and D. Koller. Active learning for structure in Bayesian networks. In
Proceedings of the International Joint Conference on Artificial Intelligence, 2001.

[Tur00] P. Turney. Types of cost in inductive concept learning. In Workshop on
Cost-Sensitive Learning at the Seventeenth International Conference on Machine
Learning, pages 15–21, 2000.

[Val84] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[Web] http://www.cs.ualberta.ca/∼greiner/budget.html.

[Wei] Eric Weisstein. Faulhaber’s formula. Eric Weisstein’s World of Mathematics.
http://mathworld.wolfram.com/FaulhabersFormula.html.

47

Appendix A

Proofs

Lemma 4. (Page 17.) If PB(x; γ1, γ2) is a Beta distribution with parameters γ1 and γ2,
then

PB(x; γ1, γ2) =
γ1

γ1 + γ2
· PB(x; γ1 + 1, γ2) +

γ2

γ1 + γ2
· PB(x; γ1, γ2 + 1) (A.1)

Proof.

PB(x; γ1, γ2) =
γ1

γ1 + γ2
· PB(x; γ1 + 1, γ2) +

γ2

γ1 + γ2
· PB(x; γ1, γ2 + 1)

=
γ1

γ1 + γ2
·

Γ(γ1 + γ2 + 1)

Γ(γ1 + 1)Γ(γ2)
xγ1(1− x)γ2−1

+
γ2

γ1 + γ2
·

Γ(γ1 + γ2 + 1)

Γ(γ1)Γ(γ2 + 1)
xγ1−1(1− x)γ2

=
Γ(γ1 + γ2)

Γ(γ1)Γ(γ2)
xγ1(1− x)γ2−1 +

Γ(γ1 + γ2)

Γ(γ1)Γ(γ2)
xγ1−1(1− x)γ2

=
Γ(γ1 + γ2)

Γ(γ1)Γ(γ2)

[

xγ1(1− x)γ2−1 + xγ1−1(1− x)γ2

]

=
Γ(γ1 + γ2)

Γ(γ1)Γ(γ2)

[

xγ1−1
(

x(1− x)γ2−1 + (1− x)γ2

)]

=
Γ(γ1 + γ2)

Γ(γ1)Γ(γ2)

[

xγ1−1(1− x)γ2−1 (x + (1− x))
]

=
Γ(γ1 + γ2)

Γ(γ1)Γ(γ2)

[

xγ1−1(1− x)γ2−1
]

= PB(x; γ1, γ2)

Note that by integrating both sides of Equation A.1, we can derive the same rule for
Beta cumulative density functions, which is used in proving Theorem 1.

Theorem 1. (Page 17.) For any policy π,

∑

s∈O(π,s0)

P (s) · 〈Θmax|s〉 = 〈Θmax|s0〉

Proof. First, we will show that

∑

s∈O(a,s0)

P (s) · 〈Θmax|s〉 = 〈Θmax|s0〉

48

I.e., for any action ak, the expected value of Θmax summed over all outcome states of ak

from s is the same as the expected value of Θmax evaluated in state s. Using Lemmas 4 and
3 and Equation A.1, it is easy to show that

〈Θmax|s〉 = 1−

∫ 1

0

∏

i

cdf i(x) dx

= 1−

∫ 1

0

∏

i6=k

cdf i(x) ·
[

θ̂kcdfk(x|γk1++) + (1− θ̂k)cdfk(x|γk2++)
]

dx

= 1− θ̂k

∫ 1

0

∏

i6=k

cdfi(x) · cdfk(x|γk1++) dx

− (1− θ̂k)

∫ 1

0

∏

i6=k

cdfi(x) · cdfk(x|γk2++) dx

= θ̂k + (1− θ̂k)− θ̂k

∫ 1

0

∏

i6=k

cdf i(x) · cdfk(x|γk1++) dx

− (1− θ̂k)

∫ 1

0

∏

i6=k

cdfi(x) · cdfk(x|γk2++) dx

= θ̂k



1−

∫ 1

0

∏

i6=k

cdf i(x) · cdfk(x|γk1++) dx





+ (1− θ̂k)



1−

∫ 1

0

∏

i6=k

cdf i(x) · cdfk(x|γk2++) dx





= θ̂k · 〈Θmax|(s|γk1++)〉+ (1− θ̂k) · 〈Θmax|(s|γk2++)〉 (A.2)

which means that 〈Θmax|s〉 does not change when averaged over the possible outcomes of any
action. To see how this extends to a policy, we refer to Figure A.1, which shows a policy tree.
Nodes in the tree represent belief states, with the leftmost in the figure being s0. (Nodes
are labeled with the action taken next by the policy at that point.) From a given state s,
following an upward arc (i.e., observing a ‘heads’) takes us to state s|γk1++, and following a
downward arc (i.e., observing a tails) takes us to state s|γk2++. Using Equation A.2 starting

from the right side of the tree (leaf nodes,) we can ‘collapse’ the value of 〈Θ
(s)
max〉 into earlier

states, all the way back to s0. (N.b., though Figure A.1 shows an optimal policy tree, the
same induction applies to general policy trees.)

49

Figure A.1: (Repeated from page 10.) An optimal policy tree for budget b = 3 on identical
uniform priors, where n = 4. Diamond boxes are actions, with ‘head’ outcomes leading up,
and ‘tail’ outcomes leading down. Transition probabilities are indicated. Some branches
terminate early as the coin to report (circled) is already determined.

50

