Gaussian Process Response Surface Optimization Dan Lizotte Department of Statistics University of Michigan Russ Greiner, Dale Schuurmans Department of Computing Science University of Alberta # Response Surface Methods for Noisy Functions - * Review of response surface methods for optimizing deterministic functions - * New methodology for algorithm evaluation - * Applying our methodology to response surface methods for noisy functions - * Methods for optimizing a function f(x) that is - * At least somewhat continuous/differentiable/regular - * i.e., not thinking about combinatorial problems - * Non-convex, multiple local optima - * Expensive to evaluate - * Two main components: - * Response Surface Model - * Makes a prediction $\mu(x)$ about f(x) at any point x - * Provides uncertainty information $\sigma(x)$ about predictions - * Acquisition Criterion - * A function of $\mu(x)$ and $\sigma(x)$ - * Expresses our desire to observe f(x) versus f(z) next - * Prefers points x that, with high confidence, are predicted to have larger f(x) than we have already observed - * DO - * Construct a model of f(x) using Data, giving $\mu(x)$ and $\sigma(x)$ - * Model is probabilistic; can accommodate noisy f - * Find the optimum of the acquisition criterion, giving x+ - * Evaluate $f(x^+)$, add observation to our pool of Data - * UNTIL "bored" (e.g. number of samples >= N), or "hopeless" (e.g. probability of improvement less than ε) # Example Application: Robot Gait Optimization - ★ Gait is controlled by ~12 parameters - * "f(x)" is walk speed at parameters x - * Expensive 30s per # Response Surface Model Choice - * We will consider Gaussian process regression - * Subsumes linear and polynomial regression, Kriging, splines, wavelets, other semi-parametric models... - * But there are certainly other possible choices - * Still many modeling choices to be made within Gaussian process regression # Gaussian Process Regression - * Bayesian; have prior/posterior over function values - * Posterior of f(z) is a normal random variable Fz|Data query point domain points observations $$\mu(F_z|\mathbf{F_x}) = \mu_0(z) + k(z,\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}(\mathbf{f}-\mu_0(\mathbf{x}))$$ $$\sigma^2(F_z|\mathbf{F_x}) = k(z,z) - k(z,\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}k(\mathbf{x},z)$$ $$\int$$ scalar 1-by-N N-by-N N-by-1 # Gaussian Process Regression - * The kernel k(x,z) gives covariance between F_x and F_z - *k(x,x) can be augmented to accommodate observation noise - * Prior mean $\mu_0(x)$ is 'baseline' query point domain points observations $$\mu(F_z|\mathbf{F_x}) = \mu_0(z) + k(z,\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}(\mathbf{f}-\mu_0(\mathbf{x}))$$ $$\sigma^2(F_z|\mathbf{F_x}) = k(z,z) - k(z,\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}k(\mathbf{x},z)$$ $$\int$$ scalar 1-by-N N-by-N N-by-1 #### Example Kernel $$k(x,z) = \sigma_f \cdot e^{-\frac{1}{2} \sum_{i=1}^d \left(\frac{x_i - z_i}{\ell_i}\right)^2}$$ - * Signal variance, length scales are free parameters - * Can use maximum likelihood, MAP, CV, to learn parameters - * Parametric form of k is one choice among many ## Acquisition Criteria - * Two main criterion choices: - * MPI Maximum Probability of Improvement - * Acquire observation at point x^+ where $f(x^+)$ is most likely to be better than (best_obs + ξ) - * MEI Maximum Expected Improvement - * Acquire observation at point x^+ where the expectation of [best_obs $(F(x^+) + \xi)]_+$ is maximized. - * In both cases, greater ξ means more 'exploration' #### Parameters So Far - * Parametric form of kernel function - * Plus parameter estimation method - * Choice of acquisition criterion - * Plus choice of ξ # Potential Drawbacks to the Response Surface Approach - * Model choice not obvious - * Free parameters in the definition of the RS model - * Acquisition criterion not obvious - * Different proposals, each with free parameters also # How do I choose these for my problem? - * Traditionally, such questions are answered with a small set of test functions - * Choices are adjusted to get reasonable behavior - * Alternative methodology: Use 1000s or 10000s of test functions, not 10s of test functions # Gaussian Process as Generative Model * Can also draw sample functions from this model $$\mathbf{F}_{\mathbf{x}} \sim \mathcal{N}(\mu_0(\mathbf{x}), k(\mathbf{x}, \mathbf{x}))$$ - * In practice, we take a grid of x, and sample F_x - * In this way, we can sample as many test functions as we wish. - * We hope algorithms designed by testing on many different objective functions will be more robust. ## Example Grey: $$\mu_0(x) = 0.00$$, $k(x, z) = 1.0 \cdot e^{-\frac{1}{2}(\frac{x-z}{0.13})^2}$ Red: $$\mu_0(x) = 0.14$$, $k(x,z) = 0.77 \cdot e^{-\left(\frac{x-z}{0.22}\right)^2}$ # Simulation Study Goals We wanted good choices for: - * Kernel parameter learning - * ML, MAP - * Acquisition criterion - ***** MPI, MEI, ξ Regardless of, or tailored to: - * Signal variance - * Vertical shifting - * Dimension - * Length scales - * Observation budget - * Tests on over 100 000 functions Results forthcoming # Acquisition Criterion for Noisy Functions - * MEI Maximum Expected Improvement - * Acquire observation at point x^+ where the expectation of [best_obs $F(x^+)$]+ is maximized. - * No concern for producing an accurate estimate of the optimum - * Augmented MEI - * Huang et al. (2006) - * Find points that has a large predicted value, but penalize the uncertainty in that value - * Introduces yet another parameter c # How do I pick c? ## How do I pick c? - * Authors chose c = 1.0, ran test on 5 functions - * Results look encouraging # How do I pick c? - * Authors chose c = 1.0, ran test on 5 functions - * Results look encouraging - * We can apply our test problem generation strategy to explore the relationship between - * Test model parameters - * New parameter c - * Measures of algorithm performance ## Summary - * Response Surface optimization seems well-suited to optimizing noisy functions - * Most work to date has focussed on deterministic functions - Good ideas for the noisy case, but perhaps underexplored - * Our evaluation methodology can help to more rigorously identify where RS algorithms will work and not work ## Thank you - * Dan Lizotte, danjl@umich.edu - * Supported in part by NSERC of Canada and US NIH grants R01 MH080015 and P50 DA10075 - * C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006a. - * Daniel J. Lizotte, Russell Greiner, Dale Schuurmans. An Experimental Methodology for Response Surface Optimization Methods. (e-mail Dan) - * D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global optimization of stochastic black-box systems via sequential kriging metamodels. Journal of Global Optimization, 34:441–466, 2006.