Gaussian Process Response Surface Optimization

Dan Lizotte
Department of Statistics
University of Michigan

Russ Greiner, Dale Schuurmans
Department of Computing Science
University of Alberta

Response Surface Methods for Noisy Functions

- * Review of response surface methods for optimizing deterministic functions
- * New methodology for algorithm evaluation
- * Applying our methodology to response surface methods for noisy functions

- * Methods for optimizing a function f(x) that is
 - * At least somewhat continuous/differentiable/regular
 - * i.e., not thinking about combinatorial problems
 - * Non-convex, multiple local optima
 - * Expensive to evaluate

- * Two main components:
 - * Response Surface Model
 - * Makes a prediction $\mu(x)$ about f(x) at any point x
 - * Provides uncertainty information $\sigma(x)$ about predictions
 - * Acquisition Criterion
 - * A function of $\mu(x)$ and $\sigma(x)$
 - * Expresses our desire to observe f(x) versus f(z) next
 - * Prefers points x that, with high confidence, are predicted to have larger f(x) than we have already observed

- * DO
 - * Construct a model of f(x) using Data, giving $\mu(x)$ and $\sigma(x)$
 - * Model is probabilistic; can accommodate noisy f
 - * Find the optimum of the acquisition criterion, giving x+
 - * Evaluate $f(x^+)$, add observation to our pool of Data
- * UNTIL "bored" (e.g. number of samples >= N), or "hopeless" (e.g. probability of improvement less than ε)

Example Application: Robot Gait Optimization

- ★ Gait is controlled by ~12 parameters
- * "f(x)" is walk speed at parameters x
 - * Expensive 30s per

Response Surface Model Choice

- * We will consider Gaussian process regression
 - * Subsumes linear and polynomial regression, Kriging, splines, wavelets, other semi-parametric models...
 - * But there are certainly other possible choices
- * Still many modeling choices to be made within Gaussian process regression

Gaussian Process Regression

- * Bayesian; have prior/posterior over function values
- * Posterior of f(z) is a normal random variable Fz|Data

query point domain points observations
$$\mu(F_z|\mathbf{F_x}) = \mu_0(z) + k(z,\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}(\mathbf{f}-\mu_0(\mathbf{x}))$$

$$\sigma^2(F_z|\mathbf{F_x}) = k(z,z) - k(z,\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}k(\mathbf{x},z)$$

$$\int$$
 scalar 1-by-N N-by-N N-by-1

Gaussian Process Regression

- * The kernel k(x,z) gives covariance between F_x and F_z
 - *k(x,x) can be augmented to accommodate observation noise
- * Prior mean $\mu_0(x)$ is 'baseline'

query point domain points observations
$$\mu(F_z|\mathbf{F_x}) = \mu_0(z) + k(z,\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}(\mathbf{f}-\mu_0(\mathbf{x}))$$

$$\sigma^2(F_z|\mathbf{F_x}) = k(z,z) - k(z,\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}k(\mathbf{x},z)$$

$$\int$$
 scalar 1-by-N N-by-N N-by-1

Example Kernel

$$k(x,z) = \sigma_f \cdot e^{-\frac{1}{2} \sum_{i=1}^d \left(\frac{x_i - z_i}{\ell_i}\right)^2}$$

- * Signal variance, length scales are free parameters
- * Can use maximum likelihood, MAP, CV, to learn parameters
- * Parametric form of k is one choice among many

Acquisition Criteria

- * Two main criterion choices:
 - * MPI Maximum Probability of Improvement
 - * Acquire observation at point x^+ where $f(x^+)$ is most likely to be better than (best_obs + ξ)
 - * MEI Maximum Expected Improvement
 - * Acquire observation at point x^+ where the expectation of [best_obs $(F(x^+) + \xi)]_+$ is maximized.
- * In both cases, greater ξ means more 'exploration'

Parameters So Far

- * Parametric form of kernel function
 - * Plus parameter estimation method
- * Choice of acquisition criterion
 - * Plus choice of ξ

Potential Drawbacks to the Response Surface Approach

- * Model choice not obvious
 - * Free parameters in the definition of the RS model
- * Acquisition criterion not obvious
 - * Different proposals, each with free parameters also

How do I choose these for my problem?

- * Traditionally, such questions are answered with a small set of test functions
- * Choices are adjusted to get reasonable behavior
- * Alternative methodology: Use 1000s or 10000s of test functions, not 10s of test functions

Gaussian Process as Generative Model

* Can also draw sample functions from this model

$$\mathbf{F}_{\mathbf{x}} \sim \mathcal{N}(\mu_0(\mathbf{x}), k(\mathbf{x}, \mathbf{x}))$$

- * In practice, we take a grid of x, and sample F_x
- * In this way, we can sample as many test functions as we wish.
- * We hope algorithms designed by testing on many different objective functions will be more robust.

Example

Grey:
$$\mu_0(x) = 0.00$$
, $k(x, z) = 1.0 \cdot e^{-\frac{1}{2}(\frac{x-z}{0.13})^2}$

Red:
$$\mu_0(x) = 0.14$$
, $k(x,z) = 0.77 \cdot e^{-\left(\frac{x-z}{0.22}\right)^2}$

Simulation Study Goals

We wanted good choices for:

- * Kernel parameter learning
 - * ML, MAP
- * Acquisition criterion
 - ***** MPI, MEI, ξ

Regardless of, or tailored to:

- * Signal variance
- * Vertical shifting
- * Dimension
- * Length scales
- * Observation budget
- * Tests on over 100 000 functions Results forthcoming

Acquisition Criterion for Noisy Functions

- * MEI Maximum Expected Improvement
 - * Acquire observation at point x^+ where the expectation of [best_obs $F(x^+)$]+ is maximized.
 - * No concern for producing an accurate estimate of the optimum
- * Augmented MEI
 - * Huang et al. (2006)
 - * Find points that has a large predicted value, but penalize the uncertainty in that value
 - * Introduces yet another parameter c

How do I pick c?

How do I pick c?

- * Authors chose c = 1.0, ran test on 5 functions
- * Results look encouraging

How do I pick c?

- * Authors chose c = 1.0, ran test on 5 functions
- * Results look encouraging

- * We can apply our test problem generation strategy to explore the relationship between
 - * Test model parameters
 - * New parameter c
 - * Measures of algorithm performance

Summary

- * Response Surface optimization seems well-suited to optimizing noisy functions
- * Most work to date has focussed on deterministic functions
- Good ideas for the noisy case, but perhaps underexplored
- * Our evaluation methodology can help to more rigorously identify where RS algorithms will work and not work

Thank you

- * Dan Lizotte, danjl@umich.edu
- * Supported in part by NSERC of Canada and US NIH grants R01 MH080015 and P50 DA10075
- * C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006a.
- * Daniel J. Lizotte, Russell Greiner, Dale Schuurmans. An Experimental Methodology for Response Surface Optimization Methods. (e-mail Dan)
- * D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global optimization of stochastic black-box systems via sequential kriging metamodels. Journal of Global Optimization, 34:441–466, 2006.